Learning of Dynamic Environments by a Mobile Robot from Stereo Cues
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Abstract

A system thar builds a three-dimensional map of an in-
door environnmient for a mobile rohat is presented. The ap-
proach uses lmmljbmure,s' exrracted ffom stereo iniages as
landmarks. A learning rule associated with each landmark
is used to compuie i1s existence state. New landmarks are
merged into the map and rransient landmarks are removed
from the map overtime. The location of the landmarks in the
map is continwousiv refined from observations. The posifion
of the robot is estimared by combining sensor readings, mo-
tion commands, and the current map state by means of an
Extended Kalman Filter: The combination of neural net-
work principles for map updating and Kalman filtering for?
pasition estinmation allows for robust map learning of in-
door dynamic envirenments.

Keywords. Mup learning, mobile robor navigation,
topological maps.

1. Introduction

Efficient indoor mobile robot navigation is limited
mainly by the ability of a robot to perceive and interact with
its surroundings in a deliberative way. And, for such in-
teraction to take place, a model or description of the en-
vironment usually needs to be specified beforehand. If a
global description or measurement of the elements present
in the environment is not available, at least the descriptors
and methods that will be used for the autonomous building
of one are required. This is, either the robot has a global
map, or it is given the means to learn one.

Many systems that incorporate human-made models of
the environment have been successfully developed, even
when only an approximate map is given, or in cluttered en-
virenments [8, 12]. However, the autonomous building of a
global, and possibly dynamic, map of the environment for
a mobile robot is still a difficult problem. Three main diffi-
culties arise during autonomous learning of an indoors map
by a mobile robot:
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1. Dead reckoning. As a robot moves, its global position
estimate from encoder readings accumulates drift er-
rors, and after a small period of time, unless corrected,
that estimate is unreliable.

b

. Sensors. Obstacle and landmark position estimates are
restricted by the type of sensors used. and by the fi-
nesse of the algorithms used for extraction, location,
and identification.

3. Dynamic environments. In a restricted number of ap-
plications, the environment remains static. However,
for the general case, obstacle locations usually change
over time, pushing for stochastic map models that con-
tinuously updatc the environment map to reflect these
changes.

Map construction in mobile robotics has been made typ-
ically by updating grid maps of ebstacles. Recent contribu-
tions on grid-based map building include [2, 13]. An ex-
tension to these metheds includes sensor signatures on each
grid cell for later attempts at robot localization [7]. Prob-
abilistic methods for obstacle parameterization and robot
localization have also been suggested {5, 10, 14]. A tech-
nique used to refine a simulated graph-based map using lin-
ear components in a truss is presented in [9]. Some authors
have even recently proposed the use of goal criented cog-
nitive maps to leam the relatienship between successively
explored places [3, 4]. However, all of these methods are
usually limited in that it is not possible to dea! with chang-
ing environments.

A methodology for the construction and update of a dy-
namic topological map by a mobile robot is presented. Un-
like grid-based techniques, it is scale independent. [t was
designed so that map updating can occur even in changing
environments, exploiting the relationship between neigh-
boring landmarks. It does not make any assumption on the
distribution of the landmark positions, but it does expect
white distribution of dead reckoning and sensor errors. The
system architecture is shown in Fig. 1, and it includes three
distinctive modules: sensing, robot localization, and map
updating.
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Figure 1. System Architecture

2. Landmark Extraction

The extraction of landmarks from the environment re-
lies solely on visual information. A salient feature locator
was implemented based on Beaudct's cornerness measure
[6], and a refinement using a variance descent approach.
These salient features are pairwise matched in cach sterco
set by correlation and by the enforccmcm of epipolar con-
straints. Each feature’s 3-D position 27 with respect to the
robot is reconstructed from stereo geometry, and together
with an associated vector of appearance properties (;, con-
stitute & landmark. The appearance properties, which are
used to validate future map landmark matches, inciude the
pixel gray-level mean and distribution over a small window,
and the energy of the feature computed from the cornerness
measure.

The landmark position estimates and their correlational
information will help in building the map, as well as in po-
sitioning the robot within this map by minimizing the lo-
calization error in the least squares sense. To this aim, we
must define the landmark position with respect to the robot
in terms of the current estimated robot posc, the absolute
landmark position in world coordinates, and the uncertainty
in sensor measurement:

2 (k) = h(x(k), 2z}, v(k)) n

A noise-free approximate measure of this quantity is
given by

k) = R'(k)zl - RT(k)t(k) @
cos(P(k)) —sin(8(k)) ©

R(k) = | sin(8(k)) cos(B(k)) O 3)
0 0 1

t(k) = [o(k),y(k),0] (4)

and a linearized version can be expressed as a Taylor Series
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with the higher order terms dropped, i.¢.,

(5)

In practice we do not know the true values for the robot
pose at time step &, nor the real landmark positions. It is
only through Eqgs. 2 and 5 that we are able to refine an esti-
mate for the robot pose x{k).

As the reader may suggest by now, we are seiting the
necessary building blocks for the formulation of an Ex-
tended Kalman Fiiter approach to robot self localization.
Before delving into the details of the EKF, we will explain
first how the map data structure is preserved.

3. Map Update

The updating of the map is a continuous process that
takes place during robot navigation. All landmarks D{k) =
{zf,zrf',... ,ziR} coming from sensor measurements are
searched for a match in the previous map state T(k — 1},
This search is limited t0 a reduced number of landmarks,
i.e., all current map entries are first reprojected into the vi-
sual space, and only those map landmarks that fall within
the field of view a¢ the current robot position are considered
during the map update process. T'(k) C T(k — 1) being
the set of landmarks that fall within the field of view.

If a sensed landmark falls within the uncertainty region
of a pruned map landmark, and their appearance properties
are highly correlated, then we can consider it a scenc-to-
map landmark match. Once a match is obtained, the distri-
bution parameters for the uncertainty of the landmark posi-
tion are updated, as well as its vector of appearance prop-
erties. Scene to map landmark matches are contained in
M (k) = D{k) nT'(k), and the sct of new landmarks that
must be added to the map is N (k) = D(k) — M (k).

The uncertainty region for the location of a landmark in
the map is parameterized by a normal distribution with run-
ning mean Z}" and sample covariance S;; and to check if a
scene landmark falls inside the uncertainty region of a map
landmark we use the Mahalanobis distance.

The landmark existence state was first introduced in [1]
as a measuring device of how persistent a landmark is in
order to be considered a strong reference for environment
representation and robot tocalization. Groups of landmarks
repeatedly present on a scene are considered strong indi-
cators of the structure of the environment; and temporary
landmarks and those coming from noisy sensor readings are
pruned from the map as their existence state diminishes over
time. The set F(k) contains the landmarks that are removed
from the map during the k-th iteration.

We have resorted to neural network principles for the
formulation of the landmark existence state because of the
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Figure 2. Map Update

{ for each iteration do:

D(k) «  Landmark extraction.

T'(k} <  Pruning by map reprojection.
Input: Tk — 1), %(k — 1),

M{k) <+ Sceneio map landmark maiching.
Juguat: D{kY, T'{k), %(k — 1},

T{k)  Mapaugmentation with new landmarks,
refinement of matched landmark positions.
and pruning of weak landmarks.

Inpue: NORY, M k), Ftk), T(k — 1), %(k — 1).

%(k} + Robot pose update.

Inpui: M(kY, T{k — 1), %{k — 1}.

Table 4. Algorithm for Map Update

exponential decay properties of the Hebbian learning rule
and the possibility to link neighboring landmarks in a net-
worked representation.  Within this framework, two ap-
proaches have been analyzed for the update of the existence
state: first, we consider the landmarks as uncorrelated fea-
tures that characterize the robot environment; and secondly,
their reciprocal relationship is examined'.

3.1. Independent Landmarks

For each landmark in the map, there exists an associated
memory cel that will register how persistent, and how old
the landmark is. The state of the -th neuron z;(k) will be
considered as the existence state or strength of landmark 1,
and the input to the neuron g;{k} = {—1, 1} the landmark
identification stamp at time k. The proposed update rule

'In [1] 2 more complicated model for a neuron was used. However, our
experiments have shown that the simpler Hebbian learning rule is easier
to fine tune, and still exhibit the desired behavior for the existence state in
both the independent and correlated landmark cases.
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equation for the existence of landmark ¢ in the map is

1
1 + e—(@iei{k)+Bizi(k})

zik+1) = (8)
whete «; is the input weight, used to regulate the contribu-
tion of the identification of a landmark in the current scene
over the previous map configuration; and 3; is the mem-
ory weight, used to regulatc the contribution of the previous
state of a given landmark over its new state.

It should be stressed that the neuron states are only up-
dated for those [andmarks in the set T'{k), i.e., the ones that
fall within the view area from the current robot position at
time step k. At this tme, we do not evaluate the strength
of a landmark in the map if it cannot be projected onto the
field of view. Finally, if the existence state x;(k) falls be-
low a forgetting threshold ¢, it means the corresponding
landmark has been forgotien. and it is immediateiy removed
from the map.

3.2. Correlated Landmarks

The learning rule in Eq. 6 omits the relationships that ex-
ist among different landmarks. thus neglecting correlational
information. To mode] these correlations, consider now the
fotlowing rule for the propagation of activity through the
network

1
l+e—(a.’E;(k)+l3.':.'(k)+zjér.u(”w_,-.'(k)z,-(k))

(7)

ik +1) =

and the long-term learning expression wj;(k + 1)
w;i(k) + vri{k)x;(k); with v a positive constant that de-
termings the speed of leaming. It is common practice to
normalize the sum of weights into a state node ¢ to restrict
them from growing indefinitely over time.

To this point, the scarch for a scene to map landmark
match takes place one landmark at a time. We will see
now how by considering groups of consistently present
landmarks (landmark sets) we can speed up this search.
The grouping of landmarks into landmark sets comes as a
byproduct of our existence statc leamning algorithm. Say, if
landmarks 1 and § appear consistently in a scene, their states
will be active at the same time, and their weights w;; (k) and
wj:{k) will see a considerable increase. A large value for
a connection from landmark 7 to landmark 7 in the network
implies strong landmark correlation. Conversely, if their
existence states are not active simultancously, their learned
weights will not see much improvement,

To use this correlational information to our advantage
during scene to map landmark matching, consider the fol-
lowing strategy. For each map entity, we maintain links to
their highly correlated counterparts. These sets of links con-
stitute the aforementioned landmark sets. The search or-
der for a scene to map landmark match is governed by the
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weights learned on these links. This is, once a scene land-
mark has been matched to a map landmark, the next scene
landmark will be first compared to those in the map known
to be correlated to the one previously matched. Provided the
scene has not changed considerably, and the robot has not
moved a long way on each iteration. this technigue allows
for fast scene to model landmark matching, thus reducing
in average the overall time complexity of the map building
algorithm.

Note that different from the rule used in the uncorrelated
case, we need now 1o update not only the existence stare, but
as much as |[T(k — 1)| — |F (k)| + |N (k)| weights for cach
landmark as well. This is an upper bound. In reality, the
number of weights for each landmark is close to | D(k){ - 1,
plus the connections to other landmarks in previous views.
The size of the sct D(k) can be regulated during feature
extraction. By dynamicatly keeping the sensitivity of the
corner detector within a specified range. we can ensure a
systematical number of corners extracted from the images
at all times.

The proposed map update scheme has the following ad-
vantages over other map learning algorithms:

1. The map preserves its topological structure. The pre-
vailing relationships among existing features are their
own Euclidean metrics, as well as the learned weights
for the correlated case.

2. The map is not limited in resolution, as opposed to
grid-based maps. This allows for the modeling of dif-
ferent size environments without the need to modify its
general structure.

3. The search for a scene to map landmark match can be
sped up if the correlational information among land-
marks is considered.

4. The dynamic property of the map allows for the robust
modeling of changing or noisy environments. It also
refrains the map from growing indefinitely, a situation
that could affray with system resources (search speed
and memory).

Table | summarizes the steps performed during each iter-
ation of the map building process, and Fig. 2 illustrates this
process. The figure shows the position of the robot at vari-
ous time instances. The triangles represent the field of view
of the robot, and the landmarks are represented by dots, The
thick doted lines connecting some of the landmarks indicate
the weight connections on the correlated case for the com-
putation of the landmark existence state.

4, Robot Localization

Resorting to the classification presented in [15], proba-
bilistic mobile robot localization techniques can be divided
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mainly into two groups:

1. Kalman filters that estimate the current robot position
from current and previous sensor readings, past posi-
tion estimates, and motion commands, as well as un-
certainty measurements of sensory and motion infor-
mation, ¢.g. [7].

2. Markov localization techniques which maintain a po-
sition probability density over the whole set of robot
poses, ¢.g. {8].

Kalman filters are typically robust for incremental lo-
calization, whercas Markov iocalization is better suited for
global focalization. The former technique requires that the
initial location of the robot be known, and the latter method
usually requires stronger assumptions about the nature of
the environment. In this work, we are limited to the con-
struction of an environment map starting from a known po-
sition or origin; and since the computation of the actual
rebot position is very sensitive to the accumulation of dead-
reckoning error, we have opted for the use of an Extended
Kalman Filter for robot localization,

Continuing the discussion started in Section 2, we wili
describe now the equations used to update our estimate of
the robot pose from landmark measurements and the actual
equations that govern the robot motion. Each iteration of
the EKF for the update of the robot pose estimate can be
divided into a correction step and a prediction step. It is the
results from the prediction step that serve as input data to
the correction step.

By differentiating Eq. 1 with respect to the robot pose,
we obtain the following expression for the Jacobian or mea-
surement innovation matrix for landmark ¢ at time step k:

—cos(8) —sin(6) [RT(zY —t)],
Hi(k) = | sin{8) —cos{8) [RT(zl" —t)],
0 0 -1 x=%{k)
¥ =2 (k)
8)

where the notation [); represents the j-th vector element.
During the correction step, the following computations
take place for each landmark in M (k) (recall that M{k) is
the set of scene to map landmark matches as specified in
Sec, 3):
First, the Kalman Filter Gain is computed with

K; = PH] (,PHT +R'S;R) ™" ©)

where 8; is the measurement residual error covariance at
time k for landmark 1, and RT8;R is the base change that
will express this error covariance matrix in robot centered
coordinates, the reference frame where observations take
place.
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At this point, we are able to compute the robot pose esti-
mate update from each observation,

ox;(k) = K;(k) (2 (k) — h(X(k),2z{" (k),0)  (10)

Eq. 10 shows how cach of the observed landmarks con-
tributes to the correction of the robot pose estimate %;(k).
Note that Z}¥ (k) is the best approximation we have to the
real landmark position in world coordinates at time step &,
and that the measurement error zft (k) — h(%(k), 2} (k), 0)
is also an approximation to the actual error in locating that
particular landmark. Given the convergence properties of
the Kalman filter, and provided a sufficient number of mea-
surements for each landmark are made over time, the es-
timate for the landmark position 2}'" is guaranteed o con-
verge to its true value,

In the typical formulation of the EKF. it is always known
where the observations come from. This is, all features can
be observed at the same time, and can be matched from one
step to the next. They form what is known as the observa-
tion vector, and relate to the state variable (the robot pose)
through just one equation similar to Eq. 1. 1f we were to
consider landmark correlations during an update iteration
on the robot pose, we should stack together all measure-
ments zi‘i in a 3n dimensional vector, and obtain a 3n % 3n
Jacobian martrix and a similarly large Kalman gain. How-
ever, the robot can only see a fcw of these featurcs at a time,
and only after matching their appearance properties by cor-
relation to entries in the map, we would know their posi-
tion within this targe observation vector. Also, the size of n
(the total number of landmarks) is not known a priori. For
this reason, we are forced to consider the contribution from
each observation separately, and compute filter gains and
estimate updates for cach of them.

To combine the contribution from all matched landmarks
for the estimate of the robot pose we have opted for a
weighted sum of the indtvidual contributions.

%(k) = % (k) + Fiﬂ izu: dxa(k) an

Similarly, the contribution to the error covariance esti-
mate is obtained with

P(k) = (I - ZK.-(k)Hi(k)) PR (12)
M

To predict the behavior of the system, we need to add the
motion command vector u{k), and system noise Q for the
next time step. This is,

%(k+1) =
Plk+1) =

%(k) + u(k) (13)
P(k} + Q(k) (14)

The robot motion noise matrix Q is typically set to a
constant value, and can be computed by running a set of

motion commands and parameterizing the deviation of the
robot from the desired pose. If the number of samples is
sufficiently large, white noise parameters can be expected
for Q.

The evaluation of Egs. 9-14 after each image processing
step completes an itcration of the Kalman filter, used to re-
fine our robot posc estimate %(k). The reader is referred
to [}, 16] for a detailed explanation on Kalman Filtering
techniques. Our formulation follows closely that of [16].

5. Experiments

A series of controlled experiments were performed to
test the viability of the proposed system. A set of 60 im-
age pairs of an easily identifiable stationary landmark were
taken by our mobile robot MARCG at a distance of approx-
imately 50cm. Then, the robot was commanded a motion
of 10cm backwards, and a rotation of 5° was cxerted coun-
terclockwise, both at rime step & = 61; and a new set of
60 image pairs was acquired. In this experiment we wanted
to show two things. Firstly, how the projection of the mea-
sured landmark position in the world reference frame can
vary significantly after a motion command due to dead reck-
oning error. And secondly, how the estimate for the land-
mark position improves during each iteration of the filter.

Our initial estimate for the robot pose in the world coor-
dinate system must be known; e.g., %(0) = [6,0,0]7; and
the initial estimate for the error covariance can be set to the
identity matrix P(0) = I. Even if these initial cstimates are
not correct, the filter is guaranteed to converge to the actual
robot pose; it will just take more time to do so.

Fig. 3 shows the detected landmark, as well as its un-
certainty region from a point of view similar to that of the
robot. The x marks indicate the measured landmark po-
sitions projected into the world reference frame. The dot-
ted trajectory indicates the adjustment of the mean land-
mark positicn; and the ellipse indicates the distribution of
the sampled measures around their current mean. Note how
the landmark position measurements are separated by an ap-
parently constant value along the Zy axis. This is due to
variations by one row in the localization of the landmarks
in the images.

A second experiment was performed on a real scenario.
Fig. 4 shows a group of matched salient features from one of
the stereo images. The hollow boxes show the features ex-
tracted from the image, whereas the filled boxes correspond
to features that have been matched properly in the stereo
pair. Fig. 4 shows also a top view of the estimated posi-
tien of the matched landmarks with respect to the robot as
well as their position error covariance estimate in the form
of uncertainty ellipses. The straight lines indicate the corre-
spondence of scene to map landmarks. The updated robot
position is also shown in the figure.
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6. Conclusions

The methodelogy for the construction and update of a
dynamic map for a mobile robot was presented. Unlike
grid-based techniques, it is scale independent. It was de-
signed so that map updating can occur even in moderately
changing environments, by exploiting the relationships ex-
isting among neighboring landmarks, and the persistence of
each landmark in the scene. it does not make any assump-
tion on the distribution of the landmark positions, but it does
expect white distribution of dead reckoning and sensor er-
fors.

We propose a novel formulation of the landmark exis-
tence state, a measuring device of how persistent a land-
mark is in order to be considered a strong reference for en-
vironment representation and robot localization. Temporary
landmarks and those coming from noisy sensor readings are
pruned from the map as their existence state diminishes over
time. On the other hand, those groups of landmarks that
are repeatedly seen are considered stronger indicators of the
structure of the environment.

Due to the fact that the robot can only see a limited num-
ber of landmarks during each iteration, we have considered
the independent contribution from each observation for the

updating of the robot position. The combination of neural
network principles for map updating and Kalman filtering
for position estimation provides a suitable platform for the
learning of indoor dynamic environments.
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