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Abstract—This paper describes a method to localize faces in color images
based on the fusion of the information gathered from a stereo vision system
and the analysis of color images. Our method generates a depth map of
the scene and tries to fit a head model taking into account the shape of
the model and skin color information. The method is tailored for its use
in factory automation applications where the detection and localization of
humans is necessary for the completion or interruption of a particular task,
such as robot manipulator safety or the interaction of service robots with
humans. Keywords: Face localization, human detection.

I. INTRODUCTION

The ability to recognize a human face or a facial expression is
of great importance for the interaction of computers and robots
with humans. At the Institut de Robòtica i Informàtica Indus-
trial, UPC-CSIC, we are interested in providing our mobile plat-
form Marco [1] with the ability to recognize people. Some re-
sults from our group on the recognition of human faces with the
aid of a computer vision system are reported in [2]. However,
this technique does not address the problem of locating faces
in the scene prior to recognition. For this reason, we present
now a method for the localization of faces that complements our
recognition module.

The method is tailored for its use in factory automation appli-
cations where the detection and localization of humans is neces-
sary for the completion or interruption of a particular task. This
is particularly useful in robotic workcells that require automatic
safety precautions such as speed reduction or sound warnings
when a human operator approaches its workspace, or immediate
motion interruption if such operator interferes with robot mo-
tion. These systems are tailored to multirobot workcells where
motion sensors cannot accurately estimate human presence.

Another application field is that of human-machine interac-
tion. It is desirable for a mobile service robot to be able to mod-
ify its behavior with respect to its interaction with people. Such
is the case of surveillance systems or mobile delivery units that
must modify their trajectory in the presence of humans. And
ultimately, be able to recognize among different people and be-
have accordingly.

When no restrictions are imposed on the input images, hu-
man face localization can be a challenging task. Apart from
scale variation and position uncertainty, there exist other arti-
facts that make this problem difficult including the a priori igno-
rance of the pose of the face in the image, i.e., frontal, sideways,
or nodded; occlusions of the face by other objects; or the light-
ing conditions that may change the position of the skin color
in the color space. Also, complex backgrounds could lead to
inference of false head shapes.

Many approaches have been proposed for the detection and
localization of human faces. A survey on face detection meth-
ods can be found in [3]. The reader should take into account the

Fig. 1. MARCO mobile robot.

distinction in the literature between face localization and face
detection. The former is aimed at finding the right position and
orientation of a single face in an image, with the prior knowl-
edge that the image does contain a face. This constraint is not
necessarily true in the detection problem. Face detection tech-
niques are divided in the following four groups:

1. Template matching. This approach maximizes a correlation
function of a human face pattern over the entire image. A sample
image window with a face model is initially stored and some-
times normalized and scaled. Then, the saved model is searched
on a query image, maximizing a localization hypothesis at the
image point where the correlation value is the largest. An exten-
sion to this technique includes the use of deformable contours,
due to the fact that not all face viewpoints have the same shape.
The main drawback of this extension is the time response of
deformable models, and its sensitivity to initial conditions and
local minima.
2. Knowledge-based model techniques. A more general ap-
proach consists on describing a model by features that we de-
rive from our knowledge of human faces, and their relation with
each other. These features and their relations are typically ex-
pressed as sets of rules, and the search for a face on an image
consists on the formulation of hypotheses and the verification of
these hypotheses with the aid of a decision tree. An example
application of this technique can be found in [4], where gen-
eral rules that describe what a face looks like, and specific rules
about the details of facial features are combined in a multires-
olution system. One such rule used to find face candidates at a



low resolution level could be the center part of a face has a re-
gion with a basically uniform gray level. The main drawback of
knowledge-based modeling is the necessity of an expert to come
up with efficient rules for discerning.
3. Feature-invariant approach. This method for face detection
also searches for sets of facial features. The difference between
this method and the previous one resides on the technique used
for feature verification. In the feature-invariant case, face de-
tection candidates are obtained maximizing one or more search
criteria, instead of decision rules. In this approach, the kind of
features used for face detection are expected to be invariant re-
gardless of the face pose or viewpoint. These features can be
either geometric, such as the edges of the frontal view of a face
or the curvature of the shape of the face; or based on appear-
ance, i.e., face texture, and most importantly skin color. Re-
cent contributions combine the extraction of various geometric
and appearance-based facial features to improve their robustness
(most of them use skin color and shape). For example [5] begins
the detection stage with the search for skin-like regions, and af-
ter a clustering stage, facial candidates are considered in regard
to the elliptical or oval shape of a connected region. The prob-
lem with this technique is that most of these features even when
invariant to size and orientation are still sensitive to lighting con-
ditions, occlusions and noise.
4. Appearance-based methods. This set of techniques charac-
terize human faces as topological structures in a multidimen-
sional feature space, namely, the image space. Several train-
ing images of a small window containing the same face with
small viewpoint variations will usually map to different points in
the attribute space, forming a manifold parameterized by pose.
Scaled query windows of the candidate image to be analyzed
must be projected to the attribute space, and the closer the pro-
jection of this window is to the manifold, the greater the prob-
ability that the candidate window will correspond to the trained
human face. When the feature space is reduced with the aid of
principal components, we call this method eigenfaces [6]. In [7]
on the other hand, a neural network trained to output the pres-
ence or absence of a face is directly applied to portions of the
input image. Another example is shown in [8], where a proba-
bilistic model for 3D face detection is described with separate
detectors tailored to specific face orientations.

We present an approach for face localization using a mixture
of two techniques: the segmentation of skin regions through
color histograms, and the localization of a head shape model
with a known size in the depth map acquired with a stereo vi-
sion system. Our approach belongs to the set of feature-invariant
techniques labeled above in the sense that we also search for the
combination of facial features maximizing several criteria. The
novelty of the approach resides on the partitioning of the head
shape search space in terms of depth. The size of the model is
accurately scaled at various depth slices in such a way that the
model searched in a further region will appear smaller than a
model searched in a region closer to the viewpoint. Moreover,
when a face is detected, we know its exact three-dimensional
position with respect to the camera.

Our system operates in three stages. First, two parallel low-
level vision modules extract information from the scene. A
stereo vision system builds a depth map of the scene; while at the

Fig. 2. Stereo geometry for a pair of pinhole cameras.

same time, skin-like regions are extracted from the original im-
age with a color histogram segmentation technique. Secondly,
the system refines the depth map eliminating those regions that
do not correspond to our previously stored skin model. Finally,
a correlation based search for a head shape model is performed
in the refined depth map. One last verification step analyzes the
percentage of skin color pixels on the hypothesized face location
according to our skin color model.

Detailed descriptions of the stereo vision and color segmenta-
tion modules are given in Section 2. In Section 3, the proposed
fusion model is derived. Some performance issues and conclu-
sions are presented in Section 4.

II. LOW LEVEL MODULES

A. Depth Estimation

Stereo vision allows us to reconstruct the three-dimensional
structure of a scene from its projection in two images.

Given a pair of perspective projection matrices
���

and
���

for the stereo vision model depicted in Fig. 2, the projection of
the homogeneous coordinates of a point ����
	 �
������������� � from
the origin of the � -th camera centered frame onto the � -th image
plane is given by

������ � � �� (1)

where �������	  !�"�$#����$%&�'� � are the homogeneous coordinates of
that projection line. The intersection of ���� and the � -th image
plane is given by �(�
�)	 *�����+,�"����� � .

Reconstruction consists on solving for �� given a pair of image
correspondences �(� and the known camera projection matrices� � . The technique is applicable not only to a pair of views, but
for as many cameras as desired, provided the point correspon-
dences have been found. When two or more cameras are used,
the problem is overconstrained, and we choose the solution that
minimizes the sum of the squared distances from �� to the corre-
sponding lines ���� in - � .

��.�0/21 � 143$5 � 1 �76 (2)



Fig. 3. Image rectification brings epipolar lines to collinearity, therefore reduc-
ing the dimensionality of the point correspondence search space.

where for the stereo case
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and the perspective projection matrix associated with the � -th
camera is written in the following form

� �H� 8: ; � < � > � E < �GF > �; � < � > � E < ��F > �; � <�=�> � E <�= F > �
BD (5)

The steps that we have used to implement our stereo vision
system, are the following:
1. Calibration of the stereo head. In this stage the camera ma-
trices

� � are determined using the calibration algorithm detailed
in [11].
2. Image rectification. Once the perspective projection matrices
are computed, we transform the images in such a way that epipo-
lar lines become collinear in each pair of images, see Fig. 3. By
performing this transformation corresponding image points can
be searched for in the same scanline, therefore reducing the di-
mensionality of the search space from two dimensions to one.
To rectify our images, we have implemented the algorithm pre-
sented in [12].
3. Solution of the correspondence problem. The most critical
step in any stereo vision system is the solution of the correspon-
dence problem, i.e., identifying the projection of the same 3D
point in the two images. To cope with it, we have used a corre-
lation method that takes the grey level of a neighborhood around
an interest pixel in one image, and searches for the pixel loca-
tion with similar grey distribution in the other image. For rec-
tified images, the search is performed along the same scanline,
i.e., over collinear epipolar lines. In this application we have re-
sorted to the sum of absolute differences operator to compute the
similarity between the area around possible matching pixels in
the grayscale version of the left and right images. The location
of a matching pixel from image � to image I is given by*KJ��L*���M�N,O�PRQ�S TU VWYX Z&[]\_^�` a ��/'*H��+b3 ? a J]/'*�M�c���+b3 ` (6)

where c is the disparity displacement along the direction of *
on each rectified image, d � is the search area window, a � is the
entire reference image, and a J is the search image.
4. Depth map refinement. The last step in the implementation of
our stereo vision module is the refinement of the correspondence
computation. The following three refinement operations take
place:

(a) Since the sum of absolute differences does not provide
accurate disparity computation for homogeneous regions, we
eliminate from the depth map building process those pixel lo-
cations whose gradient is lower than a given threshold e by con-
volving the original images with a set of interest operators d J .Q�S TJ / a ��f d Jg3ih e (7)

with \kjmlonprqtsussvsussvs 5 q
wx \_y�lonpzs{q|ss}s}ss 5 qts

wx
\_~
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and � and � are the ����� matrices of ones and zeros respec-
tively, and � is a power of 3. When � ��� , it is called Moravec’s
interest operator. The size of � and the value of e will depend on
the quantity of detail and the quality of the images for a particu-
lar setting.

(b) Left to right image comparison. To overcome the difficul-
ties that arise on any stereo application due to occlusions or il-
lumination variations, we exclude from the analysis those corre-
spondences that have distinct disparity values computed in both
directions with Eq. 6.

(c) Interpolation. The two refinement techniques used above
might produce holes on the disparity map. The recovery of depth
values for these artificial holes is computed interpolating over
the average depth value on the neighboring points of each hole.

B. Depth Segmentation

Once we have determined the depth map of an image, we
perform a depth segmentation step in order to divide the scene
into sections according to their distance to the camera. Depth
segmentation allows for the separation of objects over a desired
depth range, even when they posses similar color and texture
properties, provided enough detail is extracted to accurately esti-
mate their distance to the camera. This technique is particularly
useful for the extraction of objects of interest from a complex
background. In our application to face localization, we will use
this technique to extract the human head in an image.

Moreover, when depth segmentation is present, the size of
each extracted region can be estimated from its projection in
both images, resulting in an accurate location of the head in 3D
space.

Fig. 4 shows sample result images of the depth extraction pro-
cess where brighter points correspond to points with smaller
depth values and further apart points appear dark. The figure
also shows some slices of the image at distinct depth values.
Note how in some of these images the human head is extracted
from the background.



Fig. 4. Depth map and scene segmentation at various depth intervals.

C. Color Segmentation

While the depth map of the scene is computed, an indepen-
dent process takes place over the same input images for the ex-
traction of skin color regions. We have developed an algorithm
for skin-like supervised region classification based on the com-
putation of color histograms, and the lookup for a match on a
hash-table made up of a subsampled version of this histogram.

During an off-line training session, the system is provided
with user-selected regions of skin texture extracted from vari-
ous images of human faces under different illumination condi-
tions. To reduce the sensitivity of the system to the illumination
source, the RGB color values for each pixel on these sample
windows is normalized with8:��� �� ��

BD � �� � � M � � M � �
8: ���

BD (8)

and stored in fixed size buckets on a normalized RGB histogram.
The discretization of the histogram space depends on the task at
hand. If for example, we wish to differentiate among different
classes of skin texture or among various illumination settings, a
fine discretization is required. If on the other hand, we only wish
to recognize skin-like texture from images, the bucket size can
be larger. After several empirical tests, we found that for our par-
ticular application, a suitable number of buckets that achieved
robust skin-color characterization on the normalized histogram
space was �Y� = . Fig. 5 depicts a three-dimensional distribution of
non-empty buckets on the histogram space for a set of various
training samples of skin-color taken from different people under
varying illumination conditions.

Only after training the system with a skin color model, we
can start the online process of image segmentation of skin-like
regions. For each pixel on an image we must calculate its nor-
malized RGB value with Eq. 8. Skin classification is achieved if
this pixel color value falls on a non-empty bucket on the trained
hash-table [13].

One last morphological operation is necessary in order to fill
for those pixels on the sample image that, even when they fall

Fig. 5. Skin model distributions in the normalized RGB space for three different
training sets.

inside the face area, their pixel color values fall onto an empty
bucket in the color histogram. This can be achieved with just
one dilation over the resulting image. Fig. 6 shows several skin
segmentation results.

III. FUSION MODEL

In this section we will describe how a human head is charac-
terized in terms of its geometry and its color properties. Also,
the searching of this model on input images is explained, pay-
ing special attention to the data fusion aspects of the different
low-level image processing modules.

A. Model Definition

Our face model consists on two distinctive features. One of
them is purely geometric, i.e., the shape of the head, which size
is modified under perspective projection as the search is per-
formed at different depth ranges on the scene. The head and
neck silohuete follows the model depicted in Fig. 7. In our im-
plementation, we have considered human heads with parame-
ters �4�)�,�Y�,�4� and �����Y�Y�,�4� ; and the size of the window
containing the head shape plus a section of the neck is of size�Y� �,�r� �Y� �Y� .

The second feature is the skin-color information modeled as
a distribution over a normalized RGB histogram. The collec-
tion of training samples of skin-color under various illumination
conditions was explained in Section 2.3.

B. Model Search

Once both a depth map has been computed, and a color region
segmentation has been obtained from a given scene, we need to
search for our model. The original depth map is filtered with the
trained color information. This reduced depth map is used for
the search of our head model. The search is performed at various
depth intervals starting from further regions and approaching the
camera viewpoint.

Two special considerations are taken into account during this
search. First, the interval to be analyzed from the color-reduced
depth map is constrained to a distance of approximately 400mm



Fig. 6. Various skin segmentation samples.

at each depth interval. To do so, our color-reduced depth map
is filtered using the appropriate projection matrix, providing as
a result an even more constrained version of the depth map with
not only the desired color range, but the desired depth slice as
well.

The second consideration consists on reprojecting the head
model onto this slice, so that the shape of the head and the
size of the search window are modified dynamically as we move
from depth slice to depth slice, see Fig. 8. Both our model and
the sliced depth map are binarized prior to the computation of a
match score with the following normalized correlation equation�@� �b� �&¡£¢ ¤L¥�¦¨§z¤L¥�¤©¦ª « ¤L¥�¬
§ � ¤L¥ ¡ ¬�­ « ¤®¦¯¬
§ � ¤©¦ ¡ ¬�­ (9)

where a represents the reduced and binarized depth map posi-
tion a /'*HM � ��+£M I 3 , and ° indicates the projected model position° / � � I 3 . All summations take place on the interval / � � I 3k± d ,
with d being the dynamically modified search window.

The partitioning of the depth map may lead to false formation
of head shapes. One last verification step is performed to over-
come this issue. The correlation value ² /'*H��+b3 is augmented
with the percentage ³ /'*H��+b3 of pixel values in the search win-
dow d that fall within the trained skin color histogram model
according to the linear form%´/'*H��+b3R� e�² /'*H��+b3
M©/"� ? e 3 ³ /'*H��+b3 (10)

By changing the value of the parameter e in the range � he h�� the user can give more or less importance to either the

Fig. 7. Parameterized head model.

Fig. 8. The perspective projection of the parameterized head model creates dif-
ferent size correlation windows according to the depth slice to be processed.

geometry of the model or its color property. The resulting hy-
pothesized head location /'*H��+b3 with the largest matching score% is considered as the most probable position for a human face
on the scene. Fig. 10 shows the various face localization steps
over a sample image.

IV. CONCLUSIONS

We have presented a method to localize faces in color images
based on the fusion of the information gathered from a stereo
vision system and the analysis of color images. Our method
generates a depth map of the scene and tries to fit a head model
taking into account the shape of the model and skin color infor-
mation.

The fusion of different data acquisition modules simplifies
considerably the search complexity of a model to scene match,
therefore reducing the possibility of incurring on false matches.
The shortcomings of the individual low-level processing mod-
ules are overcome in an integrated environment. However, the
inherent variability of these low-level modules and the data for-
mats and noise levels they produce make sensor fusion a chal-
lenging task.

One of the particularities that make our model robust is that
on images containing human faces, the depth map covering the
region close to the face is usually dense since human faces con-
tain enough detail information. So even for those cases when
the initial depth map is sparse or contains false matches due
to the homogeneity of certain regions or occlusions, the region
containing a human head will still be well defined on the depth



Fig. 9. The shortcomings of individual low-level processing modules are over-
come in an integrated environment.

map. Fig. 9 shows an example illustration of such condition,
where the initial depth map contains many false matches. How-
ever head localization is still possible.

On the other hand, large regions on an image with color simi-
lar to our skin model will also be partitioned thanks to the slicing
of the depth map, thus reducing the possibility of false matches
due to color similarity.
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