

689

Journal of Computer and Systems Sciences International, Vol. 37, No. 5, 1998, pp. 689–698.
Translated from Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, No. 5, 1998, pp. 29–38.
Original Russian Text Copyright © 1998 by Creemers, Riera, Tourouta.
English Translation Copyright © 1998 by

åÄàä ç‡ÛÍ‡

/Interperiodica Publishing (Russia).

INTRODUCTION

Constraint Logic Programming (CLP) is a relatively
new programming paradigm that integrates the main
principles of Logic Programming [1] with active use of
constraints on the basis of Constraint Solving Tech-
niques [2]. It forms an elegant and attractive tool for
solving difficult discrete combinatorial problems as
found in scheduling, resource allocation, placement
problems, routing, configuration, financial and produc-
tion planning, etc. Despite its young age, it is a subject
of intense research all over the world, while having
already shown its potential in a large number of fielded,
industrial applications [3]. CLP-technology, owing to
its power to handle these complicated problems, can be
effectively applied for developing methods of high
fault-tolerance achievement for modern complex tech-
nical systems at the stages of their design and opera-
tion. Highly dimensional discrete optimization prob-
lems are typical for these areas.

Today’s industrial systems, made up of a great many
Operational Units (OUs), are more and more complex
and demanding. Improper operation of such a system
caused by failures of OUs may not only result in
reduced efficiency of a system with important associ-
ated cost but also in accidents with catastrophic conse-
quences. Therefore, by now, ensuring an extremely
high level of dependability, survivability, and safety of
industrial systems has become unconditional demand.
The main way to address this problem is creating fault-
tolerant systems, i.e., those possessing the ability to
perform their functions correctly (perhaps at a
degraded but acceptable level of operation quality) in
the case of failures of a certain number of components.
The property of a system fault-tolerance is the basis for
ensuring its dependability, survivability, and safety.

One of the promising approaches to assure a high
degree of a complex system fault-tolerance in optimal
way is based on redistribution of a system tasks over
non-faulty OUs using reconfiguration of a system
structure and fault recovery. It permits one to use inter-
nal, “natural” redundancy inherent to modern modular
reprogrammable systems and, as a consequence, can
prevent an extremely large overhead to reach the
required high level of fault-tolerance. This trend
appears to be particularly promising for systems com-
posed of multiple reprogrammable units, those possess-
ing potential ability to reassign the tasks of faulty OUs
to non-faulty ones using natural redundant resources of
OUs. The vast majority of modern industrial systems
belong to this class.

This approach was primarily adopted to an extent in
some fault-tolerant computing systems [4–6] and was
considered theoretically in [7, 8]. However, these
works and projects do not touch upon some important
aspects (task execution time ordering, concurrency and
interactions of tasks, functional degradation; i.e., the
possibility for a system to reject some tasks, etc.) and
do not address the problem of optimized Task Redistri-
bution (TR), i.e., such that would guarantee a system’s
functioning with a predetermined level of fault-toler-
ance at the optimized figures of merit of its operation
quality accounting for cost, resource, and real-time
constraints.

The general concept of

Fault-Tolerance oriented
Optimal Static Task Redistribution (OSTR/FT)

 and a
set of formal methods to implement this concept for a
variety of distributed systems have been proposed in
[9, 10]. The concept calls for arranging a system tasks
execution in such a way that, in the event of occurring
faults of some OUs, the tasks can be reassigned in an
optimal way for execution into the remaining non-

Constraint Logic Programming for Fault-Tolerant
Distributed Systems

T. Creemers**, J. Riera**, and E. N. Tourouta*

* Institute of Problems of Data Transmission, Russian Academy of Sciences, Moscow, Russia
** Institut de Robótica i Informática Industrial (UPC-CSIC), Barcelona, Spain

Received April 27, 1998

Abstract

—This paper presents key notions of Constraint Logic Programming (CLP), which is a young pro-
gramming paradigm oriented toward solving difficult discrete highly combinatorial problems by making active
use of constraints on the basis of mechanisms of Logic Programming. Being the subject of intensive research
all over the world, CLP has already been used successfully in a large variety of application areas. As one of the
important applications where CLP demonstrates its potential, we propose CLP-based procedures of solving the
problems of optimal resource and task allocation at the stages of design and operation of Fault-Tolerant Dis-
tributed Technical Systems.

THEORETICAL MODELS

cetto
Rectangle

cetto
Rectangle

cetto
Rectangle

690

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 37

No. 5

1998

CREEMERS

et al

.

faulty OUs, thereby reactivating proper functioning of
a system. This goal is achieved by means of creating

optimal static Fault-Tolerant Task Allocation (FT-TAll)

which results in task redundancy: scheduling the possi-
bility to execute the same task in different OUs. The
problem of finding such FT-TAll is a combinatorial dis-
crete optimization problem under a number of different
constraints; i.e., one which is the most suitable for solv-
ing by means of CLP.

This concept may be adopted for a distributed sys-
tem of whatever type or nature (technical, economical,
administrative, etc.) comprised of multiple operational
units and devoted to performing a predetermined set of
tasks, provided that any of these units is capable of exe-
cuting any task from the given set or from some subset
of it.

This paper presents a short overview of the CLP
research area and its main features as a powerful tool to
solve the problems of distributed systems fault-toler-
ance achievement at the stages of their design and oper-
ation. The key notions of the general OSTR/FT concept
as an advanced approach to ensure a high level of fault-
tolerance of a Distributed System (DS) during its
design are given, and the applicability for technical DS
is demonstrated by considering two typical representa-
tives, namely,

Distributed Computing Control Systems
(DCCS) and Flexible Manufacturing Systems (FMS)

.
Implementation of one of the OSTR/FT techniques on
the basis of CLP for creating fault-tolerant DCCS is
described using the application example. Effective
application of CLP for sustaining fault-tolerant opera-
tion of a large technical system is demonstrated by
solving the complicated problem of maintenance tasks
scheduling on an electric power distribution network.

1. CONSTRAINT LOGIC PROGRAMMING
(CLP)

Constraint Logic Programming as a scientific field
related to a specific concept for solving discrete highly
combinatorial problems and particular programming
paradigm results from the merging of two trends of
research, namely, Logic Programming and Constraint
Solving. The former is the well-known declarative pro-
gramming paradigm implemented in the programming
language Prolog [1]. Logic programming allows sepa-
rating the specification part of the problem (what needs
to be solved) from the procedural part (how to solve it).
The procedural part is taken care of by a generic, built-
in resolution mechanism, while to a large extent the
specification part (usually in Prolog-like syntax) is the
only major aspect the application programmer needs to
care about. However, one of the most serious limita-
tions of logic programming lies in its computation rule
resulting in a “generate and test” procedure and, conse-
quently, in backtracking with the well-known perfor-
mance problem. It is the root of Prolog’s inefficiency.

Constraint Logic Programming originated from the
attempt to overcome the difficulties of logic program-
ming by enhancing Prolog-type languages with con-
straint solving mechanisms. Constraint manipulation
and propagation have been studied in Artificial Intelli-
gence in the late 1970s and early 1980s to improve
search procedure efficiency [11–13]. A set of tech-
niques like local-value propagation, data-driven com-
putation, forward checking (to prune the search space),
and look ahead summarized under the heading

Consis-
tency Techniques

has been developed for solving con-
straints. Development of CLP has been strongly influ-
enced by the work on consistency techniques. The use
of these techniques for improving the search behavior
of a logic programming system has been advocated in
[14] where the active use of constraints to prune the
search tree in an

a priori

 way has been proposed instead
of using constraints as passive tests leading to a “gener-
ate and test” and standard backtracking behavior. The
usage of consistency techniques in CLP is systemati-
cally described in [2]. These consistency techniques,
combined with the possibility of declaratively express-
ing constraints from various domains, have resulted in
a class of highly efficient CLP-languages with high
expressive power [15]. In CLP-languages, the underly-
ing resolution mechanism has been enhanced with con-
straint-solving techniques, which at any time will
enforce consistency between the problem variables.

Research on CLP in Europe was primarily concen-
trated at the European Computer Industry Research
Centre (ECRC) in Munich and has resulted in probably
the most widely known CLP languages, CHIP (Con-
straint Handling in Prolog) [16] and ECLiPSe (ECRC
Common Logic Programming System). These lan-
guages, based

on local propagation techniques

 over
variables with

finite domains

, have shown one of the
most powerful paradigms and are penetrating most rap-
idly into various industrial application domains. Basi-
cally, in languages like CHIP and ECLiPSe, problem
modeling consists of defining a set of problem

decision
variables

, each having a finite set of possible, discrete
values (

the variable’s domain

), and stating the con-
straints which must hold between these problem vari-
ables.

The problem-solving process

 then proceeds as
follows: on each change in the domain of a variable
(i.e., on each

reduction

 of the set of possible values),
the “

demons

” associated with each constraint the vari-
able is involved in get woken up and a

consistency
algorithm

 is executed to make all the constraint’s vari-
ables consistent again; i.e., inconsistent values are
removed from other variables’ domains. This, in turn,
will wake up other constraints’ demons and further
domain reductions are performed until the “

constraint
network

” reaches some kind of stable state (or fixpoint)
in which all domains are locally consistent with respect
to the constraints. At this point, the logic program can
make a choice (e.g., try assigning a value to a variable),
and the

constraint propagation

 mechanism can go on
again as before. If at any point inconsistency is

cetto
Rectangle

cetto
Rectangle

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 37

No. 5

1998

CONSTRAINT LOGIC PROGRAMMING FOR FAULT-TOLERANT DISTRIBUTED SYSTEMS 691

detected, the process will backtrack to the last choice
point made by the logic program and make an alterna-
tive choice.

One should note here the substantial reduction in the
amount of backtracking needed to reach a solution with
respect to classical methods where constraints are used
in

a passive “generate-and-test”–like

 way. Letting
constraints propagate their consequences as much as
possible before making any choice is an

active

 way of
using constraints, reducing drastically the amount of
backtracking (or the number of choice points), and
pruning the search space

a priori

. In this context, the
paradigm is sometimes called “

constrain-and-gener-
ate

” to indicate that constraints are used at the begin-
ning and values are only generated afterwards when the
search space is reduced maximally.

In the case of optimization problems, the following
strategy is implemented on top of the above general
scheme. The value of the objective function is repre-
sented as a domain variable

C

. After constraint propa-
gation and making the right choices, an initial solution
satisfying all constraints is found. In this solution, the
domain variable associated to the objective function,
will have been instantiated to some value

C

1

: the cost of
the initial solution. Then, the process is restarted from
scratch but with one additional constraint added to its
constraint store:

C

 <

C

1

. Forcedly, the solution of this
second iteration will have a lower cost, which in turn
can be translated into a new constraint. This process
continues until in some iteration inconsistency is
detected. At that point, one can be sure that the last
found solution has the lowest possible cost.

Thus, CHIP provides constraint solvers for finite
arithmetic, linear rational, and Boolean domains.
Moreover, the user has the possibility to define his own
constraints and control their execution. There are sev-
eral software products based on CHIP technology that
are commercially available from the companies
COSYTEC, Bull, and ICL. Many features of ECLiPSe
are the same as for CHIP, but CHIP’s constraint solvers
are hard-coded in the language C, whereas ECLiPSe’s
are written in itself for easier modification. Generalized
constraint propagation technique are also used in
ECLiPSe.

One of the founding works on CLP was carried out
by J. Jaffar and J.L. Lassez at Monash University in
Melbourne [17]. They have presented the CLP(X) sys-
tem, which was later specialized for several computa-
tion domains: CLP(R) for real linear arithmetic (at
Monash University, IBM Yorktown Heights research
facility, and Carnegie Mellon University), CLP(Q) for
rational numbers, and CLP(Z) for integers. The CLP-
language Prolog-III for the domains of linear rational
arithmetic, Boolean terms, and finite strings or lists was
developed by A. Colmerauer (one of the fathers of Pro-
log) at the University of Marseille [18]. Several CLP
systems have been developed for different computation
domains, such as Trilogy; non-Prolog-based system for

integer arithmetic (from “Complete Logic Systems” in
Vancouver, Canada); CAL, the first CLP-language for
non-linear constraints [19]; and its parallel version
GDCC [20] (from ICOT, Tokyo), which are able to
operate in the domains of non-linear real equations,
Boolean constraints, linear rational arithmetic, and
some others.

The CLP scheme was further generalized into the
framework of concurrent constraint programming
which accommodates all operation on constraints that
can be defined as closure operations and therefore sig-
nificantly extends the scope of CLP languages by
enabling issues such as concurrence, control, and
extensibility at the language level. This trend results in
the language cc(FD), which is a successor to the finite
domain part of CHIP. It was applied for solving two
practical combinatorial problems, test-pattern genera-
tion, and car sequencing [21].

The advantages of CLP technology over traditional
techniques and, hence, the reasons for its industrial suc-
cess lie in the next major points: (a) declarative prob-
lem statement much closer to a natural one in which the
programmer does not have to care about finding algo-
rithms to solve a problem (instead he can concentrate
on what has to be solved); (b) allowing rapid prototyp-
ing, which in industry means gaining a lot of money:
where traditionally a software project would take one
year, a CLP solution will take about two months; and
(c) CLP programs are much more maintainable and
easier to modify and extend, which is also a major cost
factor in software development. Thus, these advantages
can be summarized in huge money-saving in software
development and maintenance. The potential of CLP-
technology lies in its ability to handle exactly those dif-
ficult combinatorial problems that are hardest for con-
ventional programming techniques: NP-complete
search problems where the time needed for search
increases exponentially or worse with the problem size.
Constrained search problems like scheduling, alloca-
tion, layout, fault diagnosis, and hardware design are
typical representatives of this class. The traditional
approach for solving these problems requires substan-
tial effort for the development of specialized programs
in procedural languages that are hard to maintain, mod-
ify, and extend. A large number of constrained search
problems have been solved by means of CLP systems
resulting in drastically decreased development time
while achieving a similar efficiency. A wide range of
applications demonstrates flexibility of CLP to adapt to
different problem areas [3]. Among the most relevant of
these applications, we can mention solutions for circuit
design, network problems (cable layout in buildings),
warehouse distribution planning, operational control of
water-distribution networks, distributed banking [22],
personnel assignment problems [23], production plan-
ning and scheduling problems (aircraft assembly) [24],
workshop scheduling [25], transport problems, data-
base query optimization, military command and control
systems, and portfolio management problems. One of

cetto
Rectangle

cetto
Rectangle

692

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 37

No. 5

1998

CREEMERS

et al

.

the most recent and important applications, namely,
solving a large intricate problem of reconfiguration and
maintenance scheduling on power-distribution net-
works [26], is described in the Section 3 of this paper.

A number of solutions based on CLP technology are
being used by large industrial corporations such as
Michelin and Dassault, the French national railway
authority SNCF, Siemens, the airline companies SAS,
Swissair, Cathay Pacific, the Hong Kong international
terminal, and the harbor of Singapore. A large number
of applications are currently under development in the
frame of national and European projects.

2. DISTRIBUTED SYSTEMS FAULT-TOLERANCE
ACHIEVEMENT USING CLP-TECHNOLOGY

AT THE DESIGN STAGE

2.1. Fault-Tolerance Oriented Optimal Static Task
Redistribution (OSTR/FT)

In general, a Distributed System (DS) is treated as a
set

H

= {

M

i

},

i

 = 1, …,

n

, of

n

 interconnected Opera-
tional Units (OUs). It executes a fixed job, i.e., a set of

tasks

Ω

= {

U

j

},

j

 = 1, …,

L

, each unit

M

i

 executing a
fixed subset

J

i

⊂

Ω

 of tasks. Permanent faults of OUs
may occur with the known failure rates. A

structural
state (s-state)

 of a system is defined as a binary vector

s

v

 = {

σ

i

},

i

 = 1, …,

n

, where

σ

i

 = 0

if OU

M

i

 is non-
faulty,

σ

i

 = 1

 if

M

i

 is faulty;

s

0

 = {0, 0, …, 0}

 is the

ini-
tial

 s-state; and any other s-state

s

ω

 is called distorted.

Fault-tolerance of a DS is treated as its capability to
execute a given job with acceptable degradation in
operation quality provided that, because of OUs faults,
a system can transit into any of the distorted s-states of
the given set

S

ω

 determined by the maximal acceptable
number of faulty OUs, let

d

. Generally, there are two
types of system degradation, functional and temporal,
estimated through

functional

 and

temporal

 measures of
a system operation quality [9, 27]. The required level of
a DS fault-tolerance is achieved by means of rational
redistribution of the tasks of a system job in each dis-
torted s-state of the set

S

ω

 for executing them by non-
faulty OUs. This redistribution is attained by means of

optimized static Fault-Tolerant Task Allocation
(FT-TAll)

, which is formed using

basic

 and

additional

ones. Task Allocation (TAll) is described by a binary
matrix

X

 =

|

x

ji

|

,

j

 = 1, …,

L

,

i

 = 1, …,

n

, where

x

ji

 = 1

 if
a task

U

j

 is allocated in OU

M

i

; i.e., a program module
of

U

j

is loaded into a storage of OU

M

i

, otherwise

x

ji

 =
0

. A

Basic

TAll

X

 is the allocation of the

basic tasks

,
i.e., those to be executed in the initial s-state: each task
Uj ∈ Ω is allocated in one and only one OU. An Addi-
tional TAll Y = |yji |; i.e., an allocation of spare passive
copies of tasks in OUs, is formed as superposition of
Task Assignment (TA) plans for all distorted s-states

sω ∈ Sω. For each sω an optimal TA plan Dω = , j =
1, …, L, i = 1, …, n, is calculated which assigns the

d ji
ω

tasks Uj ∈ Ω to non-faulty OUs for execution in this

s-state (= 1 if a task Uj is assigned for execution in

OU Mi in the state sω, = 0 otherwise). Then, in each
OU Mi, the copies of all the tasks are allocated, those to
be executed in accordance with each of the TA plans
Dω. The global FT-TAll is the result of allocating both
the basic tasks and their spare copies and is formed by
superposing X and Y, creating allocation Z = |zji |, where
zji = xji ∨ yji. In the initial s-state, only the basic tasks are
executed. When a system transits into distorted s-state
sω ∈ Sω, the spare copies of the tasks of faulty OUs allo-
cated in non-faulty ones are initiated in accordance
with the TA plan for this s-state.

Thus, the problem consists in creating the Optimal
or Rational FT-TAll that meets the requirements for a
system fault-tolerance (e.g., guarantees proper execu-
tion of a system job in each s-state from the given set
S = s0 ∪ Sω) and optimizes the given figures of merit of
a system operation quality observing cost and resource
restrictions. The rational TA plans and task schedules
for all sω ∈ Sω also must be created.

We use the next measures to evaluate a DC.
(A). Functional measures:
the functional capability of a system in a state sν

(2.1)

where bj is the weight of a task Uj, i.e., some value eval-
uating significance of the task for a system; Wν is the set
of the tasks assigned execution by a system in a state sν;

lost efficiency (“losses”) of a system in a state sν
(when the weight of a task Uj is naturally estimated by
the cost value ρj of lost output of a system resulting
from non-execution, i.e., “rejection” of this task):

(2.2)

where Ων* = Ω/Ων is the set of the rejected tasks for the
state sν.

(B). Temporal measure: the next vector measure for
each s-state sν

(2.3)

where is total execution time of all the tasks of the

set assigned for execution in the unit Mi in the state
sν; i.e.,

d ji
ω

d ji
ω

Eν b j,

U j Ων∈

∑=

Rν ρ j,

U j Ων∗
∈

∑=

TΣ
ν

TΣi
ν{ } , i 1 … n,, ,= =

TΣi
ν

Ωi
ν

TΣi
ν τ j,

U j Ωi
ν∈

∑=

cetto
Rectangle

cetto
Rectangle

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 37 No. 5 1998

CONSTRAINT LOGIC PROGRAMMING FOR FAULT-TOLERANT DISTRIBUTED SYSTEMS 693

where τj is execution time of the task Uj.

2.2. Distributed Technical Systems

Two typical classes of DS may illustrate the applica-
bility of the OSTR/FT concept combined with CLP-
technology for today’s technical systems.

Distributed Computing Control Systems (DCCS).
At present, computing control systems are crucial inte-
gral parts of demanding industrial systems in many
application fields. A fault of such a system may result
not only in decreased efficiency of the controlled indus-
trial object but also in a catastrophic event. As a rule,
these systems are topologically or functionally distrib-
uted; composed of multiple Processing Modules (PM),
each containing a processor, individual memory, and
appropriate interfaces; and connected through a com-
munication structure (e.g., bus interconnections or
local area network). The variety of DCCSs ranges from
systems for controlling some local processes or instal-
lations up to total-plant hierarchical systems involving
several functional levels: technological process control,
supervision of individual operating units, and overall
plant functioning optimization. Generally, a DCCS
executes both real-time and non-real-time jobs com-
posed of the tasks of different types such as periodical,
randomly initiated, and strictly interconnected commu-
nicating tasks. The OSTR/FT techniques for this vari-
ety of jobs are summarized in [27].

The Flexible Manufacturing System (FMS) [28]
consists of a number of interconnected numerically
controlled (NC) machining centers (which process var-
ious workpieces simultaneously) and has a hierarchical
control structure. An NC-center is made up of several
NC-machines and a control block which includes a
Computerized Numerical Controller (CNC). Auto-
matic machining of a workpiece is performed by NC-
machines that execute typical job shop operations and
automatic tool changes in accordance with geometric
and technological instructions, which are coded and
stored as NC-programs in the CNC. The OSTR/FT
concept may be applied not only to the control system
of an FMS (in the same manner as for general DCCS)
but also to its manufacturing equipment. In fact, an
FMS may be considered as a set H = {M1, …, Mn} of
interconnected OUs, i.e., NC-machining centers or
NC-machines. Each of these OUs is capable of per-
forming machining operations of the same type, which
are treated as tasks of an FMS. A particular set of
machining operations performed by each OU Mi is
determined by a set of NC-programs assigned for exe-
cution in this OU. These programs may be stored either
in individual storage of each OU or in common storage
of a system. To achieve an FMS fault-tolerance with
respect to failures of OUs, i.e., NC-machining centers
or NC-machines, OSTR/FT may be employed by
means of allocating several spare passive copies of the
same NC-program into different OUs. In the case of

faults of some OUs, the machining operations initially
assigned to them will be initiated in those non-faulty
OUs that store the spare copies of the corresponding
NC-programs. Implementation of FT-allocation of NC-
programs requires not only additional memory in the
control part of an FMS but some reorganization in
workpiece and tool supply subsystems resulting in
resource redundancy, which may be taken into account
by means of resource constraints. Time constraints
must reflect restrictions for overall time of machining
the given workpiece and the reduced number of
machines result in increased load for them.

2.3. CLP-Based Procedure of Creating
Optimal Fault-Tolerant Task Allocation

The techniques previously proposed for solving the
FT-TAll problem [27] are based on various methods of
discrete optimization and scheduling, often necessarily
powered by heuristics, and in general do not provide
optimal, but acceptable, “rational” solutions. The com-
mon characteristic of any one of these techniques con-
sists in creating the rational Task Assignment plan (as
the solution of an optimization problem) separately for
each s-state from the given set S. The global solution, a
rational FT-TAll, is obtained as the result of superpos-
ing these TA plans for all the states of S. In this case,
besides spending a great amount of time in solving the
large number of “local” optimization problems, the
obtained global solution is not guaranteed to be opti-
mal. Even the local solutions may be sub-optimal if
they were obtained through the application of heuris-
tics.

We believe that CLP can be an efficient instrument
for solving the problem of creating the optimal FT-
TAIl. Instead of finding FT-TAll by means of a “state-
by-state” approach, CLP allows one to tackle the global
optimization problem for the set S as a whole. The opti-
mal FT-TAll plan and the individual plans for each state
of S are obtained simultaneously by means of a proce-
dure of constraint propagation. All constraints involved
in the global problem are taken into account at once.
Depending on the nature of the desired objective func-
tion, solutions found can be guaranteed to be globally
optimal. The latter will probably constitute the main
merit of applying CLP to FT-TAll problems, i.e., the
possibility to find better solutions which are out of
reach of the classical approaches. We consider FT-TAll
creation for one of the common types of DCCS,
namely, for a hierarchical system for technological pro-
cess control, using the next statement of the problem.

Let the required level of a system fault-tolerance be
specified by the given maximum acceptable number d
of PMs, which may be at fault during a system opera-
tion. Then, our problem is the following: assuming that
the number of faulty PMs does not exceed the given
value d, create such an FT-TAll which guarantees exe-
cution of a system job with minimal losses in each state
sν ∈ S (2.2), provided that the given constraints for the

cetto
Rectangle

cetto
Rectangle

694

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 37 No. 5 1998

CREEMERS et al.

temporal measure (2.3) and for memory volume of
each PM are satisfied. The problem is formulated as
follows:

 min, ∀ sν ∈ S, (2.4)

where = 1 if the task Uj is rejected in the state sν,
i.e., is assumed to be assigned to fictitious PM Mf; oth-

erwise, = 0;

(2.5)

(2.6)

where gν is the number of non-faulty PMs in the state
sν; vj is the memory volume for the task Uj program
module; and zji is an element of the binary matrix of FT-

TAll Z given by zji = , where ∪ denotes log-

ical function OR; , and are the maximal allow-
able values (for a PM Mi) of total execution time of all
the tasks in the state sν and of individual memory vol-
ume.

Note that the expressions (2.4) and (2.5) are given
for each state sν ∈ S, while the memory constraint (2.6)
must be satisfied for the global FT-TAll accounting of
all the states. Our previous solution using traditional
optimization techniques implies creation of rational TA
plans separately for each s-state sν ∈ S using a simpli-
fied memory constraint for each sν. Most likely, this
solution is not optimal.

Now, we present the solution of this problem by
means of CLP technology using the application exam-
ple: a simplified fragment of DCCS of a gas distribu-

TΣ
ν

Rν ρ jd jf
ν

U j Ω∈
∑=

d jf
ν

d jf
ν

TΣi
ν τ jd ji

ν

U j Ω∈
∑ TΣi* , i≤ 1 … gν; sν∀, , S;∈= =

Vi v jz ji

U j Ω∈
∑ Vi*, i≤ 1 … n,, ,= =

d jl
ν

sν S∈∪
TΣi* Vi*

tion s stem composed by 7 PMs (with the parameters
given by Table 1) in a hierarchical structure (figure).
The system executes 21 tasks with the given parameters
(Table 2): memory requirement vj, execution time τj,
losses ρj, and a set Hj of PMs in which the task Uj is
allowed to be allocated (for technological reasons).

The problem statement (2.4)–(2.6) for the set S
determined by the given value d = 1 was implemented
using the CLP language CHIP, v.5 from Cosytec. Since
description of the complete program is believed to be
far out of the scope of this paper, we give here some
taste of how the particular problem aspects have been
modeled.

Decision variables and search space. The basic
decisions that have to be made in the above exposed
problem consist of determining the assignment of tasks
to PMs. Therefore, for each task, we introduce the
assignment variable with the domain of values, which
ranges from 1 to 8 (assigning to 1 of the 7 PMs or
rejecting the task). In the final solution, these domains
will have been reduced through constraint propagation
to one single value. The number of these assignment
variables will be one for every task in every stale; i.e.,
21 × 8 = 168. As a consequence, the size of the uncon-
strained search space is 8168, which is way beyond the
capabilities of most classical search methods. The
active use of problem constraints to a priori prune
away large parts of this search space is a real necessity.

Forbidden assignments, either due to failure of a PM
in a certain state or simply because of technological
reasons (Table 2), are stated straightforwardly such as:

T31#\ = 3 %Task 1 in state 3 cannot take value 3
(PM3 is faulty)% or not in (T11, 2, 7) %Task 1 in
state 1 cannot take values from 2 to 7%.

Losses and optimization. The losses introduced by
a task in a certain state are represented as a domain
variable, which has two values: 0 when the task is not
rejected, or some value dependent on the task when a
task is rejected. To make the link between the assign-
ment variable for a certain task and its loss variable R,
the built-in symbolic constraint element/3 is used, for
example,

element(T11, [0, 0, 0, 0, 0, 0, 0, 500], R11).
As an optimization criterion, we want to minimize the
maximal losses in any one of the 8 states where the
losses Rν in a state sν are defined by a constraint of the
kind:
R1 #= R11 + R12 + R13 + R14 + R15 + R16 + … .

The optimization predicate min_max/2 is used to state
the minimization criterion:

min_max(labeling(…),
[R1, R2, R3, R4, R5, R6, R7, R8]).

Time and memory constraints. Both time and
memory constraints are of cumulative nature: as tasks
are assigned to PMs, a resource of limited availability
(either time or memory) is used, constraining the

M1
Compressor
Station

M2
Compressor
Plant

M3
Compressor
Plant

M4
Compressor
Plant

M7
Compressor
Unit

M6
Compressor
Unit

M5
Compressor
Unit

Figure.

cetto
Rectangle

cetto
Rectangle

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 37 No. 5 1998

CONSTRAINT LOGIC PROGRAMMING FOR FAULT-TOLERANT DISTRIBUTED SYSTEMS 695

assignment of other tasks. This kind of constraint is
typical in scheduling problems and is effectively han-
dled by some powerful global constraints. The time
constraints can efficiently be modeled through CHIP’s
cumulative/8 constraint for resource-constrained
scheduling problems. The constrained resource in this
case is the execution time used per module. The mem-
ory constraint is somewhat more complicated due to the
fact that it is a constraint spanning all states, while the
time constraint can be stated for each state separately.
Its implementation makes use of the global constraints
diffn/6 and among/5. It also enforces that a task be
assigned to at most 2 different PMs in different states.

RESULTS

The program using a SparcStation 20 yields the
optimal solution after 8 sec.: TA plans for the initial
state s0 and for the distorted states sk, k = 1, …, 7, each
corresponding to a faulty PM Mk (Table 3, where each
cell (j, k), present the number of a PM for allocating the
task Uj in the state sk and the global FT-TAll (Table 4).
The minimal losses for the states s0, s1, …, s7 are
[0, 780, 30, 30, 300, 30, 30, 300].

3. ARRANGING FAULT-TOLERANT OPERATION
OF A POWER DISTRIBUTION SYSTEM
ON THE BASIS OF CLP-TECHNOLOGY

The exploitation of a power distribution network
involves the scheduling of multiple maintenance and
unforeseen repair tasks. The main resource is a network
subject to topological, economical, and electric con-
straints. A line section being maintained needs to be
isolated from the rest of the network by opening all sur-
rounding switches. This, in turn, would leave other
areas of the network de-energized, which is unaccept-
able in most cases. Hence, these areas have to get their
supply via some alternative way, i.e., service needs
being restored by closing switches connected to an
energized part of the network taking into account over-
loading of branches, energy losses, and the cost of the
necessary switching operations. In case tasks are car-
ried out in the same area, switching operations might be
shared among them. In some cases, a valid network
reconfiguration might not even exist. Finally, typical
scheduling constraints have to be met: resources of lim-
ited availability (manpower, vehicles, etc.), due dates,
priority relations, etc.

To solve this problem, the prototype scheduler
PLANETS (Planning Activities on NETworkS) have
been developed using the CLP-language CHIP [26]. It
generates near-optimal schedules for the tasks to be
carried out in one week making sure that, at any
moment in time, the network is appropriately reconfig-
ured to guarantee power supply to all consumers. The
preparation of such schedules is not trivial. Certainly,
the planning engineer is facing a complex decision
problem since he needs to consider many constraints
and assign values to many variables.

In order to carry out every foreseen maintenance
task, it is first of all necessary to isolate the affected line
section by opening all the nearest surrounding
switches. Next, the engineer has to decide through
which of the many possible alternative paths of the net-
work he will keep on energizing all consumers affected

Table 1. Parameters of the modules

Module Mi M1 M2 M3 M4 M5 M6 M7

Allowable Memory 64 32 32 32 16 16 16

Allowable Total Execution Time 1.6 0.3 0.3 0.3 0.15 0.15 0.15

Vi
*

TΣi
*

Table 2. Parameters of the tasks

Tasks
 Uj

Losses
ρj

Memory
vj

Execut.
time τj

Hj

M1 M2 M3 M4 M5 M6 M7

1 5.0 36.0 1.0 1

2 0.2 2.0 0.02 1 1 1 1

3 4.0 1.0 0.1 1 1 1 1

4 0.15 1.5 0.001 1 1 1 1

5 0.1 1.0 0.1 1 1 1 1

6 3.0 1.0 0.3 1 1 1 1

7 6.0 0.8 0.02 1 1 1

8 6.0 0.8 0.02 1 1 1

9 6.0 0.8 0.02 1 1 1

10 0.3 0.5 0.001 1 1 1

11 0.3 0.5 0.001 1 1 1

12 0.3 0.5 0.001 1 1 1

13 2.5 2.0 0.1 1 1

14 2.5 2.0 0.1 1 1

15 2.5 2.0 0.1 1 1

16 8.0 0.6 0.03 1 1 1

17 8.0 0.6 0.03 1 1 1

18 8.0 0.6 0.03 1 1 1

19 4.0 3.0 0.1 1 1 1

20 4.0 3.0 0.1 1 1 1

21 4.0 3.0 0.1 1 1 1

cetto
Rectangle

cetto
Rectangle

696

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 37 No. 5 1998

CREEMERS et al.

by a maintenance task. He has to reconfigure the net-
work while keeping it radial, i.e., there may not exist
any closed loops, and ensuring that current limits of all
lines are not exceeded. The number of disconnected
consumers has to be minimized. The disconnection of
a customer is only justified in certain cases where there
does not exist any reconfiguration of the network that
can maintain power supply. The amount of uncon-
sumed energy translates directly into profit loss for the
company. It is necessary to achieve optimal usage of the
company’s limited resources involved in maintenance
activities. These are basically equipment, mobile tech-
nical staff, transportable generators, distribution opera-
tors, and the distribution network itself. By properly
constructing the schedule, this is possible. The dynamic
behavior of the energy demand along the week must be
considered. Thus, a maintenance task involving the dis-
connection of a main line carrying high current values
cannot be performed at peak hours. The overload pro-
duced in neighboring lines as a consequence of the
reconfiguration could cause significant damage. Addi-
tionally, temporal constraints must be met, such as pri-
orities; due dates; and, for some tasks, a priori fixed
dates. Finally, if one bears in mind the huge size of the
electric networks dealt with (they can easily contain
2000 nodes and 800 switches), one understands the

combinatorial complexity of the problem the planning
engineer is periodically faced with.

The next kinds of constraints are implemented in the
scheduler PLANETS by means of CHIP.

Isolation constraints: during job execution, the area
surrounding the maintained branch must be in outage
state. This is achieved by opening all surrounding
switches. The constraint was implemented by means of
an extension to the built-in element/3 constraint, forc-
ing a number of elements in a list of currents (of the
maintained branch) or switch states (of the surrounding
switches) to be 0, starting at a position indicated by a
temporal domain variable (the start time of the job).

Resource constraints: the available amount of
resources must be respected at all times. Possible
resources required by a maintenance job are vehicles,
manpower, etc. The constraint is enforced by a straight-
forward use of the built-in cumulative/8.

Precedence constraints: jobs on ancestor branches
must be carried out before jobs on their descendant
branches. The constraint translates into a number of
inequality relations between temporal domain vari-
ables. Apart from this precedence, every job has addi-
tionally an absolute priority number. However, these
priorities are not considered as “hard” constraints. They

Table 3. Task Assignment plans for the states sν ∈ S

Task Uj

State sν

s0 s1 s2 s3 s4 s5 s6 s7

1 1 8 1 1 1 1 1 1

2 1 2 1 1 1 1 1 1

3 1 2 1 1 1 2 1 2

4 1 2 1 1 1 1 1 1

5 1 2 1 1 1 1 1 2

6 1 4 4 4 8 4 4 8

7 2 2 1 2 1 1 2 1

8 3 3 3 1 3 3 1 1

9 4 7 7 7 7 7 7 4

10 2 2 1 8 1 1 8 1

11 3 3 8 1 1 8 1 1

12 4 8 1 1 1 1 1 1

13 2 2 1 1 1 1 1 1

14 3 3 1 1 1 1 1 1

15 4 8 1 1 1 1 1 1

16 5 2 5 2 2 2 2 2

17 6 3 3 6 3 3 3 3

18 7 7 1 1 1 1 1 1

19 5 5 1 5 5 1 5 1

20 6 3 3 6 3 3 3 3

21 7 7 7 1 1 1 1 1

Table 4. Global Fault-Tolerant Task Allocation (FT-TAll)

Task Uj

Module Mi

M1 M2 M3 M4 M5 M6 M7

1 (1) 0 0 0 0 0 0

2 (1) 1 0 0 0 0 0

3 (1) 1 1 0 0 0 0

4 (1) 1 0 0 0 0 0

5 (1) 1 0 0 0 0 0

6 (1) 1 1 0 0 0 0

7 1 (1) 0 0 0 0 0

8 1 0 (1) 0 0 1 0

9 1 0 0 (1) 0 0 0

10 1 (1) 0 0 0 0 0

11 1 0 (1) 0 0 0 0

12 1 0 0 (1) 0 0 0

13 1 (1) 0 0 0 0 0

14 1 0 (1) 0 0 0 0

15 1 0 0 (1) 0 0 0

16 1 1 0 0 (1) 0 0

17 1 0 0 0 0 (1) 0

18 1 0 0 1 0 0 (1)

19 1 1 0 0 (1) 0 0

20 1 0 1 0 0 (1) 0

21 1 0 0 1 0 0 (1)

cetto
Rectangle

cetto
Rectangle

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 37 No. 5 1998

CONSTRAINT LOGIC PROGRAMMING FOR FAULT-TOLERANT DISTRIBUTED SYSTEMS 697

merely act as preferences. Violations represent an addi-
tional cost per time slot that can be minimized.

Consumer constraints: at all times there must flow a
minimal nonzero current to the consumers. These con-
straints will propagate changes to the domains of many
other current variables and, doing so, will force the net-
work to reconfigure itself in case of an outage. In case
such a reconfiguration would be impossible, we allow
exceptionally the isolation of some consumers during a
period of at most the duration of the particular job. This
exception was necessary to avoid failure of the sched-
uler and getting a no answer. It is implemented by the
built-in atmost/3 constraint: the list of currents supply-
ing any of these consumers can have at most d zeros,
where d is the duration of the particular job. For all
other consumers, the constraint is enforced simply by
setting the initial domain of their respective lists of cur-
rent variables.

Continuity constraints: on all nodes, except the root
and consumer nodes, the continuity law of Kirchoff
must hold at all times. This constraint says that the sum
of all incoming currents in a node must equal the sum
of all outgoing currents. It forms the basis for the prop-
agation of current domains through the network. These
constraints are linear equations between domain vari-
ables.

Switch-behavior constraints: an open switch cannot
carry a current. This constraint forms the basis for the
topological reconfiguration of the network in all time
slots. It is implemented by means of the conditional-
propagation construct in CHIP. For all 15 elements of
the lists of currents and the lists of switch states, we
have

(if S #= 0 then I #= 0),
(if I #\= 0 then S #= 1).

Radiality constraints: at all times the network must
be radial, i.e., not contain any closed cycles. This is
enforced by searching all possible cycles and stating
that, at any time, at least one of the switches in any
cycle must be open, using the built-in atmost/3.

Overload constraints: in every branch, current must
be below its allowable maximum. This constraint trans-
lates into simple inequalities on the current domain
variables.

Energy-demand constraints: in every consumer
branch the domain of the current variable is restricted
to a pre-defined profile of energy demands.

Due-date constraints: any job must be finished
before its due date. In the normal case, this is a “hard”
constraint. However, the user can indicate that it should
be treated as a “soft” one, minimizing violations which
represent a cost per time slot.

A solution to the overall problem is generated by
labeling the temporal and, afterwards, the topological
domain variables, yielding a schedule and its associated
network reconfigurations. Labeling is embedded in a
branch-and-bound process using the min_max/2 meta-

predicate. A function representing the global cost of all
necessary switching operations is minimized. For this
purpose, every switch has a nominal state and two asso-
ciated costs: a cost for changing its state (from 0 to 1 or
from 1 to 0) and a cost for staying in a non-nominal
state during one time slot. These cost terms are added
up for all switches and over all time slots, yielding the
global cost.

The PLANETS scheduler and reconfigurator were
completely written in CHIP and run on a Sun worksta-
tion. For a power distribution network of about
1200 nodes and 400 operable switches and 15 mainte-
nance jobs to be scheduled, the system creates about
22000 domain variables. The total time to produce the
optimal solution with respect to the cost functions at
hand is about 2.5 minutes CPU time on a SuperSparc20
with 70% of that time used to create the variables and
set up the constraints; the remaining time is needed for
variable labeling and branch and-bound minimization.

The developed system improves the exploitation of
the power distribution network. From an economical
point of view, an extra benefit is obtained by minimiz-
ing the total amount of undistributed energy due to
forced maintenance outages. The global cost of carry-
ing out the maintenance schedule is lowered due to the
efficient use of the finite resources and the elimination
of many redundant operations.

CONCLUSION

Thus, CLP-technology, which has emerged during
the last decade, has already become a powerful tool for
solving difficult combinatorial problems and, nowa-
days, is being used in a large variety of applications. In
view of the results of research and a number of projects,
it is clear that CLP is particularly well suited for tack-
ling the problems of optimal resource and task alloca-
tion and scheduling. An additional advantage discov-
ered during some projects is that bigger problems come
within the reach of smaller programs. For solving a
really big problem, it is worth applying CLP; for a
small one, it is probably better to use traditional meth-
ods. The major advantage of CLP is saving a huge
amount of time and resources (and, as a consequence,
money) in software development and maintenance.

On the other hand, creating complex and demanding
technical systems that would guarantee extremely high
fault-tolerance of operation is one of today’s chal-
lenges. Implementation of modern promising concepts
of creating highly fault-tolerant systems runs into
highly dimensional discrete combinatorial and optimi-
zation problems, which are hardest to solve using con-
ventional methods and programming techniques,
which, moreover, cannot guarantee the optimal solu-
tion. This is the major obstacle for wide application of
the new approaches. Employment of CLP technology
with appropriate adaptation for solving the problems of
fault-tolerance of complex systems seems to be an

cetto
Rectangle

cetto
Rectangle

698

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 37 No. 5 1998

CREEMERS et al.

effective way out. This paper demonstrates this possi-
bility and exposes both a new promising application
area for CLP and a new effective instrument to solve
one of the crucial problems, namely, the problem of
creating highly dependable systems.

REFERENCES

1. Sterling, L. and Shapiro, E., Programming with Prolog
Language, Moscow: Mir, 1990.

2. Van Hentenryck, P., Constraint Satisfaction in Logic
Programming, Cambridge, Mass.: MIT Press, 1989.

3. Wallace, M., Practical Applications of Constraint Pro-
gramming, Constraints, International J., 1996, vol. 1,
no. 1.

4. Rennels, D.A., Fault-Tolerant Computing—Concepts
and Examples, IEEE Trans. Computers, 1984, vol. C-33,
no. 12.

5. Behr, P.M. and Giloi, W.K., The design of Fault-Toler-
ance in the UPPER System, Computer Architecture
Technical Committee NEWSLETTER (IEEE Comp.
Society), June 1985.

6. Deswarte, Y., Alami, K., and Tedaldi, O., Realization,
Validation, and Operation of a Fault-Tolerant Multipro-
cessor: ARMURE, 16th Annual Int. Symp. on Fault-Tol-
erant Computing (FTCS’16), Vienna, Austria, 1986.

7. Hariri, S. and Raghavendra, C.S., Distributed Functions
Allocation for Reliability and Delay Optimization,
IEEE/ACM, 1986 Fall Joint Comp. Conf., Dallas, 1986.

8. Shatz, S.M. and Wang, J.-P., Models and Algorithms for
Reliability-oriented Task Allocation in Redundant Dis-
tributed Computer Systems, IEEE Trans. Reliability,
1989, vol. 38, no. 1.

9. Tourouta, N., Organization of Task Allocation in Com-
puting Systems That Ensures Their Fault-Tolerance,
Autom. Control and Comput. Sci., 1985, vol. 19, no. 1.

10. Tourouta, E.N., Fault-Tolerant Mapping Algorithms
onto Hardware Structure of a Multiprocessor System,
5th Annual European Computer Conf. (COM-
PEURO’91), Bologna, Italy, 1991.

11. Montanari, U., Networks of Constraints: Fundamental
Properties and Applications to Picture Processing, In.
Sci., 1974, vol. 7, no. 2.

12. Mackworth, A.K., Consistency in Network of Relations,
Artificial Intelligence, 1977, vol. 8, no. 1.

13. Davis, E., Constraint Propagation with Interval Labels,
Artif. Intell., 1987, vol. 32, no. 3.

14. Gallaire, H., Logic Programming: Further Develop-
ments, IEEE Symp. on Logic Programming, Boston,
1985.

15. Cohen, J., Constraint Logic Programming Languages,
Commun. ACM, 1990, vol. 33, no. 7.

16. Dincbas, M., Van Hentenryck, P., Simonis, H.,
Aggam, A., Graf, T., and Bathie, F., The Constraint
Logic Programming Language CHIP, Int. Conf. on 5th
Generation Computer Systems (FGCS’88), Tokyo,
1988.

17. Jaffar, J. and Lassez, J.-L., Constraint Logic Program-
ming, 14th ACM Symp. on Principles of Programming
Languages, Munich, 1987.

18. Colmerauer, A., An Introduction to Prolog-III, Commun.
ACM, 1990, vol. 33, no. 7.

19. Aiba, A., Sakai, K., Sato, Y., et al., Constraint Logic Pro-
gramming Language CAL, Int. Conf. on Fifth Genera-
tion Computer Systems (FGCS-88), ICOT, Tokyo, 1988.

20. Aiba, A. and Hasegava, R., Constraint Logic Program-
ming Systems—CAL, GDCC and Their Constraint
Solvers, Int. Conf. on Fifth Generation Computer Sys-
tems (FGCS-92), ICOT, Tokyo, 1992.

21. Van Hentenryck, P., Simonis, H., and Dincbas, M., Con-
straint Satisfaction Using Constraint Logic Program-
ming, Artif. Intell., 1992, vol. 58, nos. 1–3.

22. Chiopris, C. and Fabris, M., Optimal Management of a
Large Computer Network with CHIP, 2nd Int. Conf. on
Practical Applications of Prolog (PAP-94), London,
1994.

23. Baues, G., Kay, P., and Charlier, P., Constrained-based
Resource Allocation for Airline Crew Management, Int.
Conf. ATTIS-94, Paris, 1994.

24. Bellone, J., Chamard, A., and Pradelles, C., PLANE - An
Evolutive Planning System for Aircraft Production, Int.
Conf. on Practical Applications of Prolog (PAP-92),
London, 1992.

25. Chamard, A., Deces, F., and Fischler, A., A Workshop
Scheduler System Written in CHIP, 2nd Int. Conf. on
Practical Applications of Prolog (PAP-94), London,
1994.

26. Creemers, T., Ros, L., Riera, J., et al., Constraint-based
Maintenance Scheduling on an Electric Power-Distribu-
tion Network, 3rd Int. Conf. on Practical Applications of
Prolog (PAP-95), Paris, 1995.

27. Tourouta, E.N., The Methods for Ensuring Fault-Toler-
ance of Distributed Control Systems, IFAC Symp.
SAFEPROCESS’94, Helsinki, 1994.

28. Rembold, U., Nnaji, B., and Storr, A., Computer Inte-
grated Manufacturing and Engineering, Addison-Wes-
ley, 1993.

cetto
Rectangle

cetto
Rectangle

