
Efficient Gait Generation using Reinforcement
Learning

Josep M Porta and Enric Celaya
Institut de Robòtica i Informàtica Industrial, UPC-CSIC, Barcelona, Spain.

SYNOPSIS

The use of a free gait becomes necessary when walking over discontinuous terrain or when
performing changes in the heading of the robot. If no look-ahead planning is possible, the free
gait must be generated reactively. We present a basic gait generation strategy and a heuristic
enhancement of it that results in a significant efficiency improvement. In the search for a
better strategy, we decided to let the robot adjust the gait by itself attending to a reinforcement
signal. Results of the application of a novel reinforcement learning algorithm to the free gait
generation task are reported.

1 INTRODUCTION

One of the central problems in the control of legged robots is that of gait generation. A class
of statically stable periodic gaits, known as wave gaits, observed in insects walking on flat
ground at constant speeds, are known to be optimal in stability for each given value of the
duty factor (fraction of the gait period each leg stays in support phase) (1). However, in the
general case of irregular trajectories or discontinuous terrain, periodic gaits become inefficient
(or even unfeasible) and more flexible gaits must be used. The problem of generating a gait
that adapts to an arbitrary trajectory on possibly faulty terrain is known as the problem of free
gait generation.

We are interested in the problem of free gait generation for a six-legged robot when the terrain
profile, as well as the future trajectory of the robot, are not known beforehand. This situation
is found, for example, when a robot is driven by a human on rough terrain, where unexpected
obstacles or holes may appear, and the driver may decide a change in the heading direction at
arbitrary times. This makes planning impossible, and a reactive approach responding to the
immediate situation must be used.

Obviously, whatever free gait algorithm is used, the stability of the robot must be granted at
any moment. However, the number of possible statically stable gait sequences is very large,
and their efficiency may vary to a large extent from one to another. We have developed a gait
generation strategy (described next) but, in our search for a better one, we decided to use a
reinforcement learning algorithm to automatically adapt the gait of the robot, and the results
are reported in this paper. In section 2, we formalize the reactive free gait generation problem
and we describe our hand-coded solution. Section 3 is devoted to introduce the reinforcement
learning framework and to describe the learning algorithm we used for the gait generation
task. Section 4 surveys the results of applying this algorithm using a simulated six-legged
robot and compares the results with our hand-coded strategy. Finally, section 5 concludes the
paper with some general considerations about our work.

2 REACTIVE FREE GAIT GENERATION

The reactive free gait generation problem can be stated as follows:

“ given the robot with the legs in an arbitrary but stable configuration, determine which legs
should be lifted to start a step and which ones should contact the ground to support and

propel the robot”

As mentioned, any gait generation mechanism should ensure the stability of the robot. In the
case of most six legged robots, it is reasonable to assume that the stability is granted if we
avoid any pair of neighbouring legs to be on the air at the same time. We call this the stabilit y
rule. The fulfilment of this rule reduces the number of feasible gait sequences (i.e., when a leg
is on the air, the stability rule forbids any of the adjacent legs to be lifted). However, the
number of gait sequences that satisfy the stability rule is still very large (for instance, all wave
gaits fulfil this rule) and the optimal one should be selected attending to its efficiency, that we
define as the speed of the robot.

Since speed is the criterion we want to optimize, it seems reasonable to first execute steps
with those legs that, if not lifted, would reduce more the possible advance of the robot, i. e.,
those legs that are nearer to the rear border of its workspace1. This allows us to define a
simple gait generation strategy captured in the following rule:

start a step with a leg if its two neighbouring legs are in contact with the ground and if it i s
closer to the rear border of its workspace than its two neighbouring legs. In any other case

keep the leg in contact with the ground.

This gait generation rule establishes a stepping order between each couple of neighbouring
legs (a, b) that we denote as:

a<b,

meaning that leg b is closer to its backward kinematic limit and, consequently, will start the
step in the firsts place.

1 Observe that the “rear border” of the leg workspace depends on the advance direction of the robot at a given
moment.

The gait state of a legged robot can be defined as a sequence of symbols < and > ,
corresponding to the relationships between neighbouring legs taken in a clockwise circuit
around the robot. For instance, for a six-legged robot, the gait state

<><><>
represents the following relationships between legs:

1<2>4<6>5<3>1

From the gait state we can deduce which legs are allowed to execute a step according to the
gait generation rule described above: those preceded by a < and followed by a > symbol (legs
2, 6, and 3 in the above example).

Since we are interested in gaits that maximize the advance speed of the robot, we would like
to keep the robot in gait states where the maximum possible number of steps can be executed
simultaneously. The clockwise circularity number (CCN) (defined as the number of <
relationships in a given gait state) provides information about the maximum number of steps
that can be issued simultaneously in each gait state according to our gait generation rule. Only
gait states with CCN=3 allow three steps to be executed at the same time. With a CCN
different from 3, we have marginal gait states where only two or even one step can be issued
at a time, resulting in an inefficient gait.

Observe that, in normal circumstances2, when a leg recovers contact with the ground after
executing a step, it is further away from the backward limit of the workspace than its
neighbouring legs (that, according to the stability rule, have remained on the ground ensuring
stability and moving backward to make the robot advance). Consequently, in normal
conditions, the CCN is constant since a step transforms a sub-sequence of stepping leg
relationships from ...<> ... to ...>< ... (both containing a single <). We call these type of steps
conservative steps.

However, when footholds are scarce or when a new heading command is issued, the robot can
execute non-conservative steps. If a leg can not find a valid foothold in the intended landing
position, it must look for a support in the vicinity and it can end the step in a position nearer to
the backward limit of the workspace than one (or even both) of its two neighbouring legs. In
this case, the step produces the modification of a gait state sub-sequence from ...<> ... to
...<< ... or to ...>> ... or, in extremes cases, the sub-sequence remains unchanged. On the other
side, a change in the heading of the robot produces a redefinition of the “ backward limit” of
leg workspaces and this may produce an arbitrary change of the gait state. In both cases
(scarce footholds and heading changes) the CCN of the gait state can be reduced or
incremented, producing a sub-optimal gait.

To avoid the inefficiencies provoked by the fluctuation of the CCN many strategies can be
devised. We have classified these strategies in two groups: those that avoid changes in the
CCN and those that are able to recover from marginal states (see (2)). In real cases, to avoid
any change in the CCN results a too restrictive strategy and a recovery strategy must be
implemented. In this line, we propose a recovery mechanism that every time the CCN is

2 Enough support points available in the terrain and no heading changes.

different from 3 modifies the gait state increasing or decreasing the CCN using the following
heuristic rules:

...>><... ⇒ ...><<.... to increase the CCN
...><<... ⇒ ...>><.... to decrease the CCN

The idea is to temporarily use a gait state different from the real one (the one computed from
leg advance positions) in order to induce the execution of steps that do not fulfil the gait
generation rule described above, but that are necessary to obtain a (real) gait state with
CCN=3.

Observe that, using the above rules, we never prevent a leg that is going to perform a step
from doing it (it never changes any pair of <> relationships around a leg) and, therefore, legs
whose step is more urgent are always lifted in the first place. In this way, we expect to
minimize the number of legs that reach the limit of its workspace, blocking the advance of the
robot.

Tests performed with these CCN recovery rules show a significant improvement over the
initial gait generation mechanism. Although different heuristics can be easily devised, the
determination of an optimal one results a very hard task. For this reason, we have tried an
alternative approach that consists in letting the robot learn a better strategy by reinforcement.

3 REINFORCEMENT LEARNING

Reinforcement learning (3) is a method that, by means of trial and error, selects, for each
situation, the action that, statistically, results in more reward in the long term. In the
application of reinforcement learning to a given task we find three different elements:

• The environment in which the task is to be solved. In the case of gait generation this is
the terrain to be traversed.

• The learning agent that can sense the environment through sensors and act in the
environment using its actuators. In our case, the learning agent is the robot that
perceives the terrain using its sensors (contact sensors,...) and walks in the environment
by performing steps.

• The reward signal that provides information about the performance of the learner. In
our case, the reward signal will carry information about the advance of the robot. The
larger the reward obtained by the robot, the larger the advance speed.

Traditional reinforcement learning algorithms (see (4) for a classical example) are grounded
on the Markov decision theory and this guarantees convergence to an optimal solution.
However, as the number of inputs received by the learner grows, so does the convergence time
of the algorithms. In realistic problems, as the one we aim to confront, many sources of
information about the environment are available (each leg position, contact with ground, ...)
and this makes traditional reinforcement learning algorithms inadequate. That is the reason
why we decided to use a novel reinforcement learning algorithm that we briefly describe next.

3.1 The partial rule learning algorithm
The partial rule reinforcement learning algorithm tries to find out minimal preconditions from
which it is possible to approximate the return of a given action. To achieve that we define the
so called partial rules. A partial rule is a condition-action pair with an associated reward
value. Each rule can be interpreted as:

If condition c holds, then the execution of action a results, in average, in a reward r.

The algorithm starts by considering the most general possible rules (ones that include only one
input in the condition part of the rule) and tries to adjust the average reward statistic. If, for a
given situation and action, the reward can not be correctly forecasted using the initial rules,
then new rules have to be generated. This is done by specialising some of the already existing
rules by adding inputs to the condition. The task can be completely achieved when the
learning algorithm has a set of partial rules that are valid to predict the reward of any action in
the different situations of the environment.

In a given situation, many active partial rules (i.e., partial rules whose condition holds) can be
used to predict the return of each action. This algorithm uses a winner-takes-all mechanism so
that only the most relevant rule is used in each case. To determine the relevance of the rules an
estimation of the error on the return prediction for each rule is maintained, since, the lower the
error, the higher the relevance.

One of the main characteristics of reinforcement learning is the trade-off between exploration
and exploitation. To obtain a lot of reward the agent must execute actions that in the past
resulted effective in producing high return. However, to discover such actions, it has to try
actions it has never tried before. In the partial rule algorithm, the error measure for each rule is
used to adjust the exploratory ratio: the reward prediction for each action is derived using both
the average and the error statistic of the most relevant rule. In this way, actions whose
predicted average return is close to the maximal one but that are not well known (i.e., its
reward prediction presents a large error) are favoured, and this helps to gather more
information about them.

 Initialize the set of partial rules.
Repeat

Evaluate the actions using the active partial rules.
Execute the best action.
Get the reward produced by the action.
Update the return and error statistics for the active rules that proposed

the executed action.
If the reward prediction was too wrong then

Generate new rules as a refinement of the existing ones.
endif

Until end of the task
Algorithm 1: The partial rule learning algorithm.

The advantage of this algorithm is that it does not consider all the combinations of available
inputs from the very beginning avoiding a combinatorial explosion that is the final responsible
of the slow convergence of traditional reinforcement learning algorithms. If the number of

inputs to be taken into account to correctly predict the effect or each action is small, then this
algorithm results much more efficient than already existing ones.

Algorithm 1 shows a high level description of the partial rule algorithm. A more detailed one
can be found in (5).

4 RESULTS

To test the feasibility of the partial rule reinforcement algorithm to learn a proper gait
generation strategy we used a simulation of the Genghis II robot.

The task to confront was modelled as follows. The situations that can be distinguished for the
learning purposes are given by 12 binary values, two per leg, one telling if the leg is lifted or
on the ground, and another telling if the leg is nearer to the rear border of the workspace than
its clockwise neighbour or not. The set of possible actions among which the system must
choose in each situation are all the possible combinations of step triggers and leg descents that
are compatible with the stability rule, so that stability is always granted. Finally, the reward is
given by the distance advanced after executing each action. The actual advance of the robot is
performed by a balance mechanism that automatically moves legs in contact with ground in
response to the advance of legs that are on the air (6).

Figure 1: Performance of the learned gait generation strategy.

Figure 1 shows the average result of 10 experiments with the learning algorithm performed
following a trajectory with frequent changes of heading direction (generated randomly)
compared with the average results when using our hand-coded gait generation strategy. In the
figure, the horizontal dotted line indicates the average performance using the original strategy.
By its side, the dashed line shows the average performance using this same strategy but
enhanced with the CCN recovery heuristic detailed in section 2. As a reference, when the

robot executes the tripod gait walking along a straight line on flat terrain the average
performance is 25. It can be seen that the learned strategy (the continuos line) outperforms the
two hand-programmed controllers. This means that the learning algorithm is able to derive
CCN recovery rules that, in many situations, are better than the ones we devised.

21

3

5

4

6

Leg Numbering

Step 1,4,5Step 3,6 Step 2,3,6

1>2<4>6<5>3<1

25

1>2<4<6>5<3>1

0

5

−25

5

29

11

−25

25

25

−13

−20

−20

4

1<2>4<6>5<3>1

59

25

25

25

−30

−9

−9

Step 2,3,6 Step 1,4,5 Step 2,3,6

1>2<4>6<5>3<1

109

−25

25

−25

−25

25

25

0

25

25

25
−27

−27

−21

5

−25

5

29

11

−25

32 82 132

25
−25

25

25
−25

−25 −25

25

−25

25

25

−25

Figure 2: The hand-programmed gait strategy (top sequence) vs. a learned one (bottom
sequence). The position of the robot at each snapshot is indicated below each picture.

Figure 2 shows the difference between our hand-coded gait generation strategy and a learned
one. The gait state of the initial posture of the example is 1>2<4<6>5<3>1 that has CCN=3.
Using the hand-coded strategy the robot starts to walk raising two legs (3 and 6) and, in few
time slices, it reaches a state from which the tripod gait is generated.

By its side, the learned strategy tries to generate the tripod gait from the very beginning.
Observe that, in the first state, stepping leg number 2 (that, at first glance, seems unnatural)
produces a larger advance of the robot. This is caused by the workings of the balance
mechanism that only affects legs that are on the ground. In this way, in the learned strategy the
advance of legs 2, 3 and 6 is compensated by three legs (1, 4 and 5) while in the hand-
programmed strategy the advance of legs 3 and 6 is compensated by four legs (1, 2, 4, and 5)
resulting in a smaller advance per supporting leg and, consequently, in a smaller advance for
the robot.

Additionally, in this particular example, the advance of the robot while using the hand-coded
solution is also reduced because a leg reaches the end of its workspace (position -30) in one
occasion (see leg number 2 in the third snapshot) and this completely blocks the advance of
the robot for this time slice.

5 CONCLUSIONS

In this paper, we have shown the feasibilit y of using a learning method to reactively generate a
free gait for a legged robot. The obtained strategy outperforms our hand-coded one.

The problem of gait generation has been confronted previously using reinforcement learning
(see (7), for instance), but with the objective of generating periodic gaits, not free ones.

Observe that our set up of the gait learning problem can be implemented in a real robot
without the risk of damaging it in the initial phases of the learning, since the only effect of an
inappropriate action would be nothing else than a simple loss in gait eff iciency. Consequently,
in the near future, we plan to implement the gait generation learning algorithm on a real robot.

ACKNOWLEDGEMENTS

This works has been partially supported by the Dirección General de Investigación del
Ministerio de Ciencia y Tecnología under the project “ Autonomous robot navigation guided
by visual targets” (DPI2000-1352-C02-01).

REFERENCES

1 Song, S. M. and Waldron, K. J. “ An Analytical Approach for Gait Study and its
Application on Wave Gaits” . The International Journal of Robotics Research, 6, 2, pg.
60-71, 1987.

2 Celaya, E., Porta, J. M. Ruiz de Angulo V. “ Reactive Gait Generation for Varying Speed
and Direction” . First International Conference on Climbing and Walking Robots, 1998

3 Sutton R. S. and Barto A. B. “Reinforcement Learning : An Introduction” , A Bradford
Book, The MIT Press, 1998.

4 Watkins C. J.C. H. and Dayan P. “ Q-learning” . Machine Learning 8, pg. 279-292, 1992.

5 Porta J. M. and Celaya E. “L earning in Categorizable Environments” . Proceedings of the
Sixth International Conference on Simulation of Adaptive Behavior: From Animals to
Animats, pg. 343-352, 2000.

6 Celaya E. And Porta J.M. “ A control structure for the locomotion of a legged robot on
difficult terrain” , IEEE Robotics and Automation Magazine, Special Issue on Walking
Robots, 5, 2, 1998.

7 Maes, P. And Brooks R. “L earning to Coordinate Behaviors” . Proceedings of the AAA I,
pg. 796-802, 1990.

