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Abstract

Many applications in Computer Graphics require fast and robust 3D collision detec-
tion algorithms. These algorithms can be grouped into four approaches: space-time
volume intersection, swept volume interference, multiple interference detection and
trajectory parameterization. While some approaches are linked to a particular object
representation scheme (e.g., space-time volume intersection is particularly suited to
a CSG representation), others do not.

The multiple interference detection approach has been the most widely used under
a variety of sampling strategies, reducing the collision detection problem to multiple
calls to static interference tests. In most cases, these tests boil down to detecting
intersections between simple geometric entities, such as spheres, boxes aligned with
the coordinate axes, or polygons and segments.

The computational cost of a collision detection algorithm depends not only on
the complexity of the basic interference test used, but also on the number of times
this test is applied. Therefore, it is crucial to apply this test only at those instants
and places where a collision can truly occur. Several strategies have been developed
to this end: 1) to find a lower time bound for the first collision, 2) to reduce the
pairs of primitives within objects susceptible of interfering, and 3) to cut down the
number of object pairs to be considered for interference. These strategies rely on
distance computation algorithms, hierarchical object representations, orientation-
based pruning criteria, and space partitioning schemes.

This paper tries to provide a comprehensive survey of all these techniques from
a unified viewpoint, so that well-known algorithms are presented as particular in-
stances of general approaches.

Key words: Geometric algorithms, languages and systems, Collision Detection,
Interference Tests

! E-mail: {jimenez,thomas,torras}@iri.upc.es

Preprint submitted to Elsevier Preprint 13 April 2000



1 Introduction

Many collision detection algorithms have been proposed in recent years within the fields
of Computational Geometry, Robotics, and especially Computer Graphics. Some appear
tailored to particular applications, others stem from theoretical concerns, and their diverse
origins and aims often hide the common ground on which they lie. This article tries to
unravel this common ground.

A recent survey [53] on the subject classifies collision detection algorithms according to the
geometric object model used. The present paper is rather oriented towards a systematic
characterization of the solving strategies, as explained below. The reader interested in
a quick comparison of the most well-known algorithms can have a look at the table in

http://brl.ee.washington.edu/BRL/shc/collide.htm

Computer Graphics encompasses a broad set of applications related to Computer-Aided
Design, Virtual Reality and Physical Simulation that require fast collision detection. The
algorithms developed in this context are above all intended to be of practical use. Con-
trarily, the field of Computational Geometry seeks to synthesize algorithms with the best
possible worst-case complexity, which in many cases entails the design of intrincate data
structures. Thus, while computational geometers and graphicists have a substantial over-
lap of interest in geometry, their algorithms obey markedly different purposes.

Computational geometry algorithms often assume “general position” but real-world mod-
els tend to have a lot of degeneracies such as coplanar or parallel faces. Thus, any assump-
tion of “general position” is inappropriate in practical settings. Not only degeneracies, but
also “bad data”, lead to challenging problems. For example, as noted in [40], polyhedral
models generated by some widely used CAD systems tend to have various degrees of
nearly coplanar vertices, i.e., polygonal faces bounded by four or more vertices where the
vertices only approximately lie on the same plane. And even worse, many models tend to
have self-intersections, i.e., they contain faces which intersect at places other than their
boundaries. As a consequence, practical collision detection algorithms are shaped not only
by the application itself, but also by the challenging inputs arising in practice.

The application largely delimits the kind of algorithms to be applied. For example, while
the path taken by the moving object in Virtual Reality applications is not known a pri-
ori, precisely specified trajectories have to be checked for collision in rigid body physical
simulation systems that involve the exact reproduction of mechanical processes. Thus,
a trajectory-based approach, suitable in the latter case, would be useless in the former
one. Moreover, when the application allows it and for efficiency’s sake, a collision detec-
tion algorithm might deliberately introduce error. For example, objects might be crudely
approximated by cubes, spheres, polyspheres, etc., and complex trajectories decomposed
into simpler ones or simply discretized. Practical collision detection algorithms have long
sought to exploit this tradeoff between solution quality and computational time. We de-
vote an important part of this survey to these approximations.

The paper is structured as follows. Section IT shows that the available collision detection
approaches lie within two main categories: geometric and algebraic, and explains how
those based on the former category apply two techniques: projection and sampling, or



combinations of them. This overview makes clear that tests for static interference between
simple geometric entities lie at the base of most detection approaches. Section III presents
these tests. The efficiency of a basic interference test does not guarantee that a collision
detection algorithm based on it is in turn efficient, because the number of times the test is
applied is another key factor. Thus, Section IV reviews the different strategies to restrict
the application of the interference test to those instants (time bounds) and object parts
(space bounds) at which a collision can truly occur. Finally conclusions are sketched in
Section V.

2 Approaches to collision detection

Collision detection admits several problem formulations, depending on the type of output
sought and on the constraints imposed on the inputs. The simplest decisional problem,
that looking for a yes/no answer, is usually stated as follows: Given a set of objects and
a description of their motions over a certain time span, determine whether any pair will
come into contact. More intricate versions require finding the time and features involved
in the collision. Placing constraints on the inputs is a usual way of simplifying problems.
Thus, often objects are assumed to be polyhedra, usually convex ones, and motions are
constrained to be translational or linear in a given parameter space.

In the following subsections the four main approaches that have been proposed to deal
with the different instances of the collision detection problem are described.

2.1 Spatio-temporal intersection

The most general representation of the collision detection problem is based on the extru-
sion operation [13]. The extruded volume of an object is the spatio-temporal set of points
representing the spatial occupancy of the object along its trajectory. A collision between
two objects occurs if, and only if, their extruded volumes intersect (see Figs. 1 and 2)2.

The extrusion operation is distributive with respect to the union, intersection and set dif-
ference operations. This motivated the development of the extrusion approach in the con-
text of Constructive Solid Geometry (CSG) representations. The mentioned distributive
property guarantees that an object and its extruded volume can be represented through
the same boolean combination of volumetric primitives and extrusions of these primitives,
respectively.

The formal beauty of this approach is partially occluded by the high cost of its practical
implementation, whose bottleneck is the generation of the 4D extruded volumes them-
selves. Thus, for example, the extrusion of a linear subspace subject to a constant angular
velocity is bounded by a helicoidal hypersurface. For this reason, the implementation deals
only with linear subspaces subject to piecewise translational motions [13].

2 Almost all figures that illustrate the different issues in the text represent the corresponding
2D situation for clarity.



Fig. 1. Extruded and Swept Volumes. Time is explicitly taken into account. Since the extruded
volumes interfere, a collision is detected. Below, the corresponding swept volumes in 2D are
shown.

Fig. 2. Extruded and Swept Volumes (cont.). Here no collision takes place, and therefore the
extruded volumes do not interfere. Note that the corresponding swept volumes in 2D are the
same as those in the previous figure.

If the computation of the extruded volumes in 4D were simple, no other approaches would
have been introduced, since they are all aimed at avoiding this explicit computation.
These approaches are either geometric or algebraic. Among the geometric ones, two main
alternatives have been proposed, namely projecting the extruded volume onto a lower-
dimensional subspace —which leads to the swept volume approach— and sampling along
the trajectory, which boils down to the repeated application of an intersection detection



algorithm. The algebraic approach consists of parameterizing the trajectory. Next, we
describe these approaches.

2.2 Swept volume interference

The volume containing all the points occupied by a moving object during a time period
is called the swept volume. If the swept volumes for all the objects in a scene do not
intersect, then no collision between them will occur during the specified time period.
However, this is a sufficient, but not a necessary condition: It may happen that the swept
volumes intersect but no collision takes place. This fact is shown in Figs. 1 and 2. In both
situations the same swept volumes are generated, but only in the first situation collision
actually occurs.

In order for the condition to be also necessary, the sweep has to be performed according
to the relative motion of one object with respect to another one, for each pair of objects.
In this case, while one of the objects is considered fixed, the volume swept out by the
other one during its relative motion is computed. This can be computationally very costly,
although now it can be ensured that, if the swept volume intersects with the fixed one,
collision actually happens.

The generation of the swept volume is also computationally expensive. This is the reason
why many works adhering to this approach deal with convex approximations of the swept
volume and, only when the global swept volumes intersect, they proceed to split the
trajectory into pieces and to compute a convex approximation of the swept volume for each
piece. For convex objects, Foisy and Hayward [29] have proved that the approximations
obtained in the successive splittings of the trajectory converge to the real swept volume.

Simplifying alternatives are restricting the shapes and trajectories to very simple ones [41],
and creating implicitly the swept volume from the volumes swept out by the primitives
of the boundary representation B-rep [10]. Recall that an object can be described by the
surface bounding it, so that the B-rep description of a polyhedra, for example, consists of
a list of its boundary primitives (vertices, edges, and faces) together with their topological
adjacencies.

2.8 Multiple interference detection

The simplest way to tackle collision detection is to sample object trajectories and repeat-
edly apply a static interference test. The way sampling is performed is crucial for the
success of the approach. A too coarse sampling may miss a collision, while a too fine one
may be computationally expensive. The reasonable way out is to apply adaptive sampling.

Ideally, the next time sample should be the earliest time at which a collision can really
occur. The different sampling strategies differ in the way this earliest time is estimated.
The most crude estimation is the one relating a lower bound on the distance between
objects to an upper bound on their relative velocities [11,25].



More sophisticated strategies take not only distance into account, but also directional
information. One such strategy [33] requires computing the closest points from two convex
polytopes (extended to general convex objects in [32]) at the current time sample, as well
as the line joining them. The first future instant at which the projections of the objects on
the line meet is taken as the next time sample (see Fig. 3). Therefore, this technique can
be viewed as a hybrid of sampling and projecting onto lower-dimensional subspaces (a 1D
subspace in this case), according to the terminology introduced at the end of Section 2.1.

Fig. 3. Adaptive time sampling. The starting position is depicted in (a), where the closest points
and the line joining them are computed. The projections of the objects on this line meet at
instant (b), which is taken to be the next time sample. At this instant, the new closest points are
computed (c), and the next time sample, where the polygons do actually collide, is determined
in the same way (d).

Since the closest points between two objects lie always in their boundaries, it is usual
practice to resort to B-reps when following a multiple interference detection approach.
However, as we shall see in Section 4, to confine the application of the interference test
to those object parts susceptible of colliding first, spatial partitioning techniques such as
octrees and voxels have also been used in conjunction with this approach.

2.4 Trajectory parameterization

The collision instant can be analytically determined if the object trajectories are expressed
as functions of a parameter (time). For example, consider the simple case in which a point
undergoes a linear motion and we want to detect if it intersects a fixed triangle in space.
Then, the parametric vector equation

p+ (p'—Pp)t =po+ (P1 — Po)u+ (P2 — Po)v



where p and p’ are the initial and final positions of the point and the p;’s define the
triangle, is set up and solved for the variables u, v, and ¢. v and v are parametric variables
for the plane defined by the triangle, whereas ¢ is a time variable which is 0 at the beginning
of the simulation step, and 1 at theend. f0 <¢t<landu>0andv >0and u+v <1,
then the point intersects the triangle during the time step [61]. This vector equation
represents three scalar equations in three unknowns which can be reduced to a single
polynomial in ¢.

Conditions of intersection for general polyhedra following complex trajectories can be set
up in the same way, the only difference being the degree of the polynomials in the variable
t to be solved. When rotations are present, the resulting expressions contain trigonometric
functions, but they can also be reduced to polynomials in a single variable by means of a
proper change of variables.

Depending on the trajectories, the degrees of the resulting polynomials may be arbitrar-
ily high. Then, as polynomials of order 5 and above cannot be solved analytically, the
determination of the collision instant can be computationaly very expensive for arbitrary
trajectories.

In [18], the problem is tackled in a radically different way: a trajectory connecting two
arbitrary configurations for a moving polyhedron in a polyhedral environment is designed
so that the obtained polynomials are of degree 3; i.e., the lowest possible degree when the
moving polyhedron translates and rotates simultaneously. A polyhedra interference test
is expressed as a combination of parameterized basic contact functions, these functions
reflecting the spatial relationships between the primitives of the B-rep of the polyhedra.
The zeros of these functions delimit several time intervals, whose combination according
to the interference test provides the desired set of intervals over which objects would be
intersecting, if they were adhering to the predefined trajectories. While [18] uses a param-
eterization based on quaternions, [46,72] follow the same approach using homogeneous
coordinates.

In [73], the problem of detecting collisions between deformable models is regarded as a
constrained minimization problem, which is solved using interval Newton methods.

In the context of Computer Graphics, a parameterized collision condition can be easily
derived for triangulated surface representations [61], which can be extended to non-rigid
time-dependent parametric surfaces [87].

3 Static interference detection

All but the last approach described in the preceding section eventually require to apply a
static interference test between either 3D volumes or 4D ones. Here efficient interference
detection strategies are described, where the considered objects are convex or non-convex
polyhedra. Convexity plays a very important role in the performance of interference de-
tection algorithms, and it is therefore used as criterion for classifying these strategies.



3.1 Convez polyhedra

As pointed out in [52], intersection detection for two convex polyhedra can be done in
linear time in the worst case. The proof is by reduction to linear programming, which is
solvable in linear time for any fixed number of variables. If two point sets have disjoint
convex hulls, then there is a plane which separates the two sets. The three parameters
that define the plane are considered as variables. Then, a linear inequality is attached to
each vertex of one polyhedron, which specifies that the point is on one side of the plane,
and the same is done for the other polyhedron (specifying now the location on the other
side of the plane).

Moreover, convex polyhedra can be properly preprocessed [27] to make the complexity of
intersection detection drop to O(lognlogm). Preprocessing takes O(n+m) time to build
a hierarchical representation of two polyhedra with n and m vertices. The lowest level P;
in the hierarchical representation is the original polyhedron, the highest one, say P, is a
tetrahedron (where » = O(logn)). At each level of the hierarchy, vertices of the original
polyhedron are removed, such that they form an independent set (i.e., are not adjacent)
in the polyhedron corresponding to the previous hierarchical level, and the corresponding
edge and face adjacency relationships are updated. These hierarchical representations need
to be computed only once, and they can be used for any interference query involving the
same polyhedra. The algorithm described in [27] actually computes the separation (i.e.,
the minimum distance) between the polyhedra, interference is detected implicitly when
this separation turns out to be null.

Actually, most algorithms used to detect interferences between convex polyhedra rely on
the computation of the minimum distance and will be described in Section 4.4.1.

3.2 Polyhedra with convex faces

Disregarding the case in which one polyhedron is fully inside another one 2 , they intersect
if their boundaries do. The detection of intersections between polyhedral surfaces reduces
to detecting that an edge of one surface is piercing a face of the other surface. Since all
edges are to be tested against all faces, the complexity of procedures following this scheme
is necessarily O(nm). However, when faces are convex polygons, interference detection
becomes quite simple and easy to implement, as explained below.

This reduction of the interference problem to detecting edges piercing convex faces, for-
mulated using the idea of predicates associated with basic contacts, was introduced in [17].
There are two basic contacts between two polyhedra. One takes place when a face of one
polyhedron is in contact with a vertex of the other polyhedron (Type-A contact), and the
other when an edge of one polyhedron is in contact with an edge of the other polyhedron
(Type-B contact).

3 Later it is shown that this case is no exception, since it can be dealt with using the same
procedures.



It is possible to associate a predicate with each basic contact, which will be true or false
depending on the relative location between the geometric elements involved. Let us assume
that face F; is represented by its normal vector f;; edge Ej, by a vector e; along it; and
vertex Vi by its position vector vi. Although this representation is ambiguous, any choice
of vector orientation leads to the same results in what follows.

According to Fig. 4(a), predicate Ay, r;, associated with a basic contact of Type-A, is
defined as true when

<fj,VZ' - Vk> > O, (1)

for any vertex Vj in face F}, and false otherwise.

According to Fig. 4(b), predicate Bg, g,, associated with a basic contact of Type-B, is
defined as true when

(ei X €5,V — Vk> > 0, (2)

Vi and Vj, being one of the two endpoints of F; and Ej, respectively, and false otherwise.

‘@ - e

Fig. 4. Geometric elements involved in the definition of the predicates associated with Type-A
(a) and Type-B (b) basic contacts.

It can be checked [17] that if one of the following boolean expressions
0%y, = ~Av, i NAy, A\ Brg
Ej €edges(Fj)

in
E;,F; = AVm’FJ’ A _'AVyaFj A /\ —Bg, 5, (3)
Ej€edges(Fj)

is true, then edge F; intersects convex face Fj, provided that its edges (Ej) are traversed
counter-clockwise (refer to Fig. 5).



Fig. 5. Basic edge-face intersection test (convez faces).

The case where one of the polyhedra is completely contained inside the other one can
be handled with the same tools, by drawing an arbitrary ray from any point on the first
polyhedron: if this ray intersects an odd number of faces of the second polyhedron (which
can be checked with equation (3)), then inclusion exists.

3.3 General polyhedra

General non-convex polyhedra are qualitatively more difficult to handle. Therefore, most
authors resort to decomposing them or their boundaries into convex parts (convex poly-
hedra or polygons, respectively), and to apply interference detection algorithms to those
parts. Few works try to cope directly with non-convex polyhedra, without decomposing
them. Moreover, note that, in general, it is not possible to express a non-convex curved
object as the union of convex objects; for example, consider a block with a cylindrical hole
drilled into it. This is the reason why the more accurate is the polyhedral aproximation
of a curved object, the more complex is, in general, its decomposition into convex parts.

3.3.1 Decomposition into conver parts

It is possible to apply the above algorithms to non-convex polyhedra just by decomposing
them into convex entities. Typically, decomposition is performed in a preprocessing step,
and therefore has to be computed only once. The performance of this step is a tradeoff
between the complexity of its execution and the complexity of the resulting decomposition.
For example, the extreme case of solving the minimum decomposition problem is known to
be NP-hard in general [3]. On the other hand, algorithms such as that in [19] can always
partition a polytope of n vertices into at most O(n?) convex entities.

Some interference detection algorithms work exclusively with convex polyhedra, others
need only the faces of the polyhedron to be convex. In the first case, preprocessing will
consist in a solid decomposition of the non-convex polyhedra, the output consisting of
a set of smaller convex polyhedra (see [22,6]), whereas in the second case only a sur-
face decomposition algorithm will be needed [21,20]. In any case, a number of additional
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fictitious entities are created, that have to be considered in the intersection tests.

3.8.2  Direct approach

It has long been known [10] that, even for non-convex faces, a simple two-step test suffices
to detect whether an edge intersects a face. First, check if the edge endpoints are on
opposite sides of the face plane. If so, check whether the point of intersection between the
edge and the face plane is located inside the face, by simply casting a ray from this point
and determining how many times the ray intersects the polygon. Then, if this number
is odd, intersection does exist (odd-parity rule). Note that the latter check corresponds
directly to solving a point-in-polygon problem, for which several alternatives, different
from that of shooting a ray, have been proposed [63], p. 239.

As mentioned in the preceding section, the application of this test to all edge-face pairs
leads to an O(nm) complexity. Thus, a quadratic number of intersection points may need
to be computed to ascertain that there is no intersection between two polyhedra. A way
to avoid these intersection computations is to reduce the test to computing the signs of
some determinants [76], as in many other problems arising in Computational Geometry

[2].

Fig. 6. Basic edge-face intersection test (general faces).

Consider a face from one polyhedron, defined by the ordered sequence of vertices around
it, represented by their position vectors p, ..., p;, expressed in homogeneous coordinates
(that is, p; = (P, Py;» P> 1)), and an edge from the other, defined by its endpoints h and
t. Then, consider a plane containing the edge and any other vertex, say v, of the same
polyhedron, so that all edges in the face whose endpoints are not on opposite sides of this
plane are discarded. In other words, we define, according to Fig. 6, s :=sign |h t v p;|.
Then, if p; and p;;; are on opposite sides, s should have a different sign from that of
htv pil.

It can be checked [76] that, if the number of edges straddling the plane and satisfying
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s * sign |h t p; pix1| > 0 is odd, then the face is intersected by the edge. Actually, this
is a reformulation of the odd parity rule that avoids the computation of any additional
geometric entities such as those resulting from plane-edge or line-edge intersections.

The two special cases in which the arbitrary plane intersects at one vertex of the face or it
is coplanar with one of the edges lead to determinants that are null. Actually, equivalent
situations also arise when the ray shooting strategy is used. In order to take them into
account, a simple modification of the odd parity rule has to be introduced as in [10].

It is also worth mentioning that, if the arbitrary point v is a vertex of one of the two faces
in which the edge lies, different from its endpoints, the above approach is a generalization
of Canny’s predicates, since these predicates can also be expressed in terms of signs of
determinants involving vertex locations [76].

Thus, in order to decide whether two non-convex polyhedra intersect, only the signs of
some determinants involving the vertex location coordinates are required. Since the signs
of all the involved determinants are not independent, it is reasonable to look for a set
of signs from which all other signs can be obtained. This is discussed in [75] through a
formulation of the problem in terms of oriented matroids.

4 Strategies for time and space bounding

Even if a basic interference test is made very efficient, as described in the preceding section,
the collision detection algorithm can still be computationally expensive if the basic test
has to be applied many times. Thus, the key aspect of any collision detection scheme is to
restrict as much as possible when and where this test is applied, by taking advantage of
the objects’ geometry and the objects’ dynamics, if this information is available. Knowing
how the objects are moving and how far away they are from one another, it is possible to
bound the time interval where the collision is likely to occur. Therefore, it is important to
determine quickly the distance between objects. On the other hand, if the complexity of
the objects is high, it is desirable to restrict the search for collisions to those object parts
that may actually collide. Finally, if there are many moving objects in the scene, means
to avoid having to check every pair of objects for collision need to be provided. These are
the issues of the next subsections.

4.1 Distance computation for collision time bounding

Spherical representations are appealing because the elementary distance calculation be-
tween two spheres is trivial. The problem rather consists in determining which spheres of
the representation have to be tested. In [78] objects are described in terms of spherical
cones (generated by translating a sphere along a line and changing its radius) and spher-
ical planes (which are obtained by translating a sphere in two dimensions, and eventually
changing also its radius). These primitives can also be viewed as a collection of spheres.
Any distance can be expressed as a combination of the distances between two spherical
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cones and between a sphere and a spherical plane.

In [70], ellipsoids are used to approximate convex polyhedra. A free margin function of one
ellipsoid with respect to the other is then computed. This function behaves in a manner
similar to the euclidean distance, except in that it is negative (instead of zero) as the
ellipsoids interfere, and it is not symmetric in the general case.

Computing the distance between implicit and parametric surfaces is a very involved prob-
lem in general. Basic approaches to compute the closest points of two free-form objects
neglect the fact that these points satisfy the necessary condition that their normals are
aligned and opposite in direction. In [77] this constraint is used to obtain a measure of
penetration distance, in the case that both objects intersect.

Most distance computation algorithms have been developed for convex polyhedra. Some
exploit specific features of polyhedra and therefore cannot be used with other types of
geometric models. Others, like the method explained in [34], can be used with spherical
[38] or other non-polytopal surface descriptions [32]. These algorithms follow two main
streams, namely the geometric and the optimization ones, which are the objects of the
next subsections.

4.1.1  The geometric stream

The idea is to determine the closest points of two polyhedra, and then compute the
euclidean distance between them. Three methods for determining the closest points have
been proposed, two of them proceed by expanding an incremental representation in the
direction of the minimum distance, while the third navigates along the boundaries of
the polyhedra to find the closest points. These methods are described in the following
paragraphs.

Using Dobkin and Kirkpatrick’s hierarchical polyhedral representation (described in Sec-
tion 3.1), distance computation can be performed in optimal O(lognlogm) time [27].
Every step in the closest points search procedure corresponds to a level in the hierarchical
representation. In the first step, the closest points of two tetrahedra (the lowest level in
the hierarchy) are trivially determined. Now, consider the direction of the segment that
joins the closest points found at a given step. The two planes perpendicular to this direc-
tion that touch each polyhedron (at the level expanded so far) bound the zone where the
next closest pair has to be searched for. The intersection of this zone with the polyhedra
expanded at the next level may consist of either two simplices, one simplex or the empty
set. If the closest points are not the same as in the previous step, then at least one of
them belongs to one of these simplices. Therefore, every search step is restricted to at
most two simplices. The number of steps is bounded by logn - logm. Figure 7 may help
understand this procedure.

The Minkowski difference Mpg = {p — ¢|lp € P,q € Q} of two polytopes P and @ has
been used in distance computation algorithms [16], exploiting the fact that the distance
between P and @) is equal to that from Mpg to the origin (Fig. 8). Since the complexity
of computing the entire Mp g is quadratic, a directional construction of this set, similar to
that used by Dobkin and Kirkpatrick, has been proposed [34]. Starting from an arbitrary
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Fig. 7. The hierarchical representation allows to build up and search only those parts of the
polygons where the closest points can be found.

tetrahedron contained in Mp g, vertices closest to the origin in the direction of minimum
distance are added one at a time, while non-relevant vertices are deleted, so that the
search for the point closest to the origin is always performed on a simplex, as shown in
Fig. 9. The “vertex-selection” part of the algorithm can be done in linear time: a single
direction is tested over the set of vertices of one of the original polyhedra and the opposite
direction over the vertices of the other one.

(b)

Fig. 8. The Minkowski difference Mp (dashed line) can be constructed by taking the convex
hull of the points resulting from subtracting the vertices of @ from the vertices of P (thin lines).
(a) The distance between P and @ (dotted line) is the same as that from the origin to Mpg. (b)
If P and @ are interfering, the origin will be within Mpg.

An alternative to the incremental construction of data structures, for speeding up distance
computation, is to navigate along the boundaries of the involved polyhedra in the direc-
tion of decreasing distance. The key notion here is that of Voronoi region (refer to Fig. 10):
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Fig. 9. (a) The closest point from the Minkowski polygon to the origin 0 has to be determined.
(b) The first simplex is chosen arbitrarily, and the segment 09 realizing the minimum distance is
computed. (c) The vertex 6 whose projection on this segment is closest to the origin is selected,
vertex 1 is deleted, and the new direction realizing the minimum distance is computed. (d) The
next vertex selected, 7, turns out to be the closest point from the Minkowski polygon to the origin.

Every feature (vertex, edge or face) of a polyhedron has associated one such region, con-
sisting of all the points that are closer to it than to any other feature. The Voronoi regions
for rectangular boxes were introduced in [58], and extended to convex polyhedra in [52],
where an incremental algorithm for distance computation was proposed. The algorithm
works as follows. First, two arbitrary features are selected and the closest points between
them are obtained. If each of the two points belongs to the Voronoi region of the other
feature, then they are actually the sought closest points between the polyhedra and the
procedure stops. If not, each point has to be closer to another neighboring feature, which
is selected, and these steps are repeated until the condition of inclusion in the respective
Voronoi regions is met. This algorithm is linear in the total number of features. Note that,
if the polyhedra are intersecting, the algorithm would go into a cyclic loop. To overcome
this difficulty, some authors have extended the space partition to the interior of the poly-
hedron, by defining pseudo-Voronoi regions whose boundaries are faces determined by the
centroid of the polyhedron and its edges [54,24,68,44]. These pseudo-Voronoi regions are
used only to determine if the polyhedra interpenetrate or not. V-Clip [59] does also handle
the case where the polyhedra interpenetrate and is very robust in both cases. It avoids
the explicit computation of the closest points between features, by using simple clipping
operations together with scalar derivative tests. The code is simple and its implementation
does not require to specify any numerical tolerance.

In [52], another important point is addressed: consider that the distance between two

polyhedra has to be computed as they move along a finely discretized path. The closest
features do not change often, and a change almost always involves neighboring features,
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Fig. 10. Voronoi regions of a vertez (a), an edge (b), and a face (c).

due to the convexity of the polyhedra and the small discretization step. Therefore, not
an arbitrary pair of features, but the closest features at the previous step are taken as
initial features for the next step. Simple preprocessing of the polyhedra, so that every
feature has a constant number of neighboring features, allows the distance computation
algorithm, once initialized, to run in expected constant time.

In [14,15,82], this ability to track the distance between two convex polyhedra was also
analyzed for the algorithm described in [34], showing that a minor modification also gives
it a expected constant execution time.

4.1.2  The optimization stream

Distance is viewed here as a quadratic function to be minimized, under linear constraints
due to the convexity of the polyhedra. Formally, in [7], the function f(p,q) = ||p — ¢||*/2
is minimized subject to the linear constraints (p,nl’) < df,;i =1,--- k¥ and (q,n?} <
d?, j =1, --,k9, where these constraints mean that p € P and ¢ € @, with the polyhedra
P and @ being described as intersections of halfspaces. Rosen’s gradient projection algo-
rithm is used. At each step, the active constraints are determined (those where equality
holds, with a certain tolerance) and Kuhn-Tucker conditions are used to test whether the
global minimum has been attained. If this is not the case, the coefficients of the Kuhn-
Tucker conditions are used to find the new search direction. There are two alternatives
for obtaining the starting points: to apply a simplex minimization subalgorithm along
the direction defined by the centroids of the polyhedra, or to obtain the points where the
segment joining the centroids intersects the boundaries of the polyhedra.

In applying Rosen’s gradient projection method as Bobrow did, a convergence problem
may occur, as stated in [88]. This problem is called the zig-zag phenomenon and it appears
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when the Kuhn-Tucker conditions are satisfied alternatively at each polyhedron. This
happens because a zero vector is given as search direction on the polyhedron where the
Kuhn-Tucker conditions are satisfied. The solution proposed by these authors is to consider
as search direction for this polyhedron the projection of the search direction for the other
polyhedron on the active constraints of the first one, instead of the zero vector, as shown
in Fig. 11.

(b)

Fig. 11. The zig-zag phenomenon (a) is avoided if the projection of Sp1 on the active constraint
of @ is taken as the search direction Sq (b).

Certain quadratic optimization problems can be solved in linear time, as shown in [57].
In particular, as already mentioned in Section 3.1, Lin and Canny [52] proved that the
computation of distances between convex polyhedra is one such problem. In [71] the
complexity of computing other measures of proximity between polyhedra are discussed.

The described algorithms based on optimization techniques have not been proved to be
superior to those based on geometric considerations which, in practice, have become the
prevalent ones in most implementations, mainly the one described in [52] because of its
conceptual simplicity.

No work has been devoted specifically to distance computation between non-convex poly-
hedra. In the context of collision detection, non-convex objects are usually approximated
by simpler convex shapes, and a conservative lower bound on the distance is thus obtained.
Some authors that deal with convex polyhedra mention the possibility of extending their
algorithms to non-convex ones by decomposing them into convex entities, as explained
in Section 3. Unfortunately, if the number of generated convex entities is important, a
large number of pairwise distances have to be computed, and although the individual
objects are simpler, the net result is an important increment in the global complexity. As
a consequence, it is important to restrict the pairwise distances to be computed to those
entities included in regions most likely to collide. The way these regions can be efficiently
computed is described in the next section.

4.2 Bounding collision areas in objects

Three strategies can be followed to focus the search for collisions on relevant portions of
the objects. One is to exploit a hierarchy of bounding volumes, another is to determine
forefront features in the direction of motion, and the third is to exploit temporal coherence
to keep track of closest points. Hierarchical bounding can be applied to both volume and
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boundary representations, while the the latter two strategies are specifically suited to
boundary representations.

4.2.1 Hierarchical volume bounding

The idea behind the approaches using a hierarchy of bounding volumes is to approxi-
mate the objects (with bounding volumes) or to decompose the space they occupy (using
decompositions), to reduce the number of pairs of objects or primitives that need to be
checked for contact. Two main advantages of these approaches must be highlighted: (a)
in many cases an interference or a non-interference situation can be easily detected at the
first levels in the hierarchy, and (b) the refinement of the representation is only necessary
in the parts where collision may occur. Space and object partitioning representations for
collision detection are surveyed next.

Octrees [37] or octree-like structures [4], BSP-trees [62], brep-indices [9], tetrahedral
meshes [49], and regular grids [31] are all examples of spatial partitioning represen-
tations. By dividing the space occupied by the objects, one needs to check for contact
between only those pairs of objects (or parts of objects) that are in the same or nearby
cells of the decomposition. Using such decompositions in a hierarchical manner can fur-
ther speed up the collision detection process. Octrees and BSP-trees have been the most
widely used. As their names indicate, octrees recursively partition cubes into octants, and
BSP-trees recursively cut the space by hyperplanes. The octree representation allows to
avoid checking for collision in those parts of space where octants are labeled “empty”,
that is, those entirely free of objects. If a “full” (totally occupied by an object) or “mixed”
(partially occupied) octant is inside a “full” one of another object, interference occurs be-
tween them. Only if a “full” or “mixed” octant is inside a “mixed” one, the representation
has to be further refined. The natural octree primitive is a cube [1,39], but there exist
also models based on the same idea where spheres are used, as octant-including volumes
[42] or within a different space subdivision technique, where the subdivision branching
is 13 instead of 8 [55]. BSP trees [74] can be considered a crossing between octrees and
boundary representations. In them partitioning is not restricted to be axis-aligned, as
in octrees, and therefore transformations (orientation changes, for example) can be sim-
ply computed by applying the transformation to each hyperplane, without rebuilding the
whole representation.

Object partitioning representations are used in the collision detection context to
simultaneously attain the following three goals: (a) approximate tightly the input primi-
tives; (b) admit a rapid intersection test to determine if two bounding volumes overlap;
and (c) be updated quickly when the primitives (and consequently the bounding vol-
umes) are rotated and translated in the scene. Unfortunately, as recognized in [40], these
objectives are usually in conflict, so a balance among them must be reached.

Commonly used object partitioning representations use hierarchies of spheres [26,56,69,65,43]
or spherical shells [8,50] for bounding at different resolution levels. Inner and outer bounds
are often used.

Volume bounding strategies can be used in conjunction with boundary representations.
Hierarchies of volumes enclosing boundary features permit focussing on those susceptible
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of interfering. Thus, octrees have been used to build bounding box hierarchies around
features of the polyhedron belonging to its convex hull and around concavities of non-
convex polyhedra [68]. Once intersection has been detected between the convex hulls of
two polyhedra, a sweep and prune algorithm is applied to traverse the hierarchies up
to the leaf level, where overlapping boxes indicate which faces may intersect, and exact
contact points can be quickly determined.

In cluttered environments, oriented bounding bores (OBB) perform better than axis-
aligned boxes or spheres, as they fit the objects tighter and, therefore, less intersections
between bounding volumes are reported. An OBB tree is used in [35] to represent poly-
hedra with triangulated boundaries. Overlaps between OBBs are rapidly determined by
performing 15 simple axis projection tests (about 200 arithmetic operations), as proved
by the authors through their separating axis theorem. Routines for building OBB trees,
as well as for performing fast overlap tests between them can be found in the RAPID in-
terference detection package [35]. OBBs have also been used in [31] where, if interference
between boxes is not discarded, OBBs are further subdivided into voxels and, if needed,
the interference test is finally applied to boundary features of objects.

On the other hand, a hierarchy based on azis-aligned bounding bores (AABB) has the
advantage that the intersection test between each pair of AABB trees is not orientation
dependent, as is the case of OBB trees. In other words, the boxes in AABB trees need to
be projected on the coordinate axes only once, whereas for each pair of boxes of OBB trees
undergoing an intersection test, one box has to be projected onto the axes of the other
one. Furthermore, AABB trees need less memory and are faster to build, and are even
faster to update [81], which makes them specially suitable for deformable models. SOLID
is a collision detection library that uses AABB trees for determining possible collisions in
a scene composed of polygonal objects that may include complex deformable models [83].

Hierarchies of AABBs are also used in the context collision detection between deformable
models in [45], where the problem of self-intersections is also considered. Self-intersections
may be frequent in highly deformable models due to bending and wrinkling. This problem
is treated in [86] where a surface hierarchy that captures the adjacency relationships is
proposed. In [85] this hierarchical representation combined with a simple hierarchy of
bounding boxes is used for handling both self-intersections and collisions between different
objects.

The choice of “discrete orientation polytopes” (k—dops) as bounding volumes was made
in [40] to attain a compromise between the relatively poor tighness of bounding spheres
and AABBs, and the relatively high cost of overlap tests and updates associated with
OBBs and convex hulls. k—dops are bounding volumes that are convex polytopes whose
facets are determined by halfspaces with outward normals coming from a small fixed set
of k orientations. In the implementation reported in [40], their use compares favorably
with RAPID, whose hierarchy is based on oriented volume boxes.

Though not hierarchical, the most common object partitioning representation is the Con-
structive Solid Geometry (CSG) tree and, in [12], a bounding technique tailored to this
representation was proposed. The idea is to represent all objects to be checked for interfer-
ence in one such tree and then iteratively compute simple enclosing volumes (the so called

19



S-bounds) for each node in the tree. The resulting bound at the root node delimits the
part of the objects susceptible of interfering. The technique starts by placing S-bounds of
the primitives at the leaves of the CSG tree. Then, S-bounds are alternatively propagated
upwards and downwards according to the set operations attached to every node in the
tree. Two examples of S-bounds, namely spheres and rectangular parallelepipeds aligned
with the coordinate axes, are used and discussed in [12]. This technique has the advan-
tages of hierarchical representations, as discussed at the beginning of this section, i.e.,
the cut-off of subtrees included in empty bounds, leading to possibly important computa-
tional savings, and the focussing of intersection searching on zones where intersection can
actually occur. Although originally developed for 3D interference detection, the technique
has been extended to extrusions [13].

4.2.2  Bounding dependent on the direction of motion

If any kind of relative motion between two solids is allowed, every part of their boundaries
may intersect. But if a polyhedron can only move in a specific way with respect to the
other one, only certain parts of them can actually collide.

Back-face culling techniques, which have been widely used in Computer Graphics to speed
up the rendering of polyhedra, can also be used in the collision detection context to avoid
unnecessary checking of boundary elements for collision, as shown in [84]. The basic idea
consists of comparing the normal vectors of the faces of the polyhedra with the relative
velocity vectors. A face is culled if its normal has a negative projection on the motion
vector, as can be seen in Fig. 12. On the average, half of the faces of the two polyhedra
are eliminated in this way.

Fig. 12. Only the faces (shown as heavy lines) whose normals have positive projections on the
relative motion vectors (’1)2,1 and 01,2) need to be considered.

Another possibility for feature bounding arises in the context of convex polyhedra subject
to translational motions. Applicability constraints [28] permit detecting those vertex-face
and edge-edge pairs that can actually come into contact (Fig. 13). The vertex-face appli-
cability condition expresses the fact that a vertex can touch a face only if every adjacent
edge projects positively on the face’s normal (taking the vertex as origin of every edge in-
terpreted as a vector). Analogously, the edge-edge applicability condition states that two
edges can touch only if there exists a separating plane between their respective wedges.

The applicability constraints may be used as a preprocessing step in a collision detection
scheme based on edge-face intersection tests. For each applicable vertex-face pair, only
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Fig. 13. (a) An applicable vertez (V}) - face (F;) pairing. (b) Edges E; and E; are also applicable.

one of the edges adjacent to the vertex has to be tested for interference with the face. Any
other edge-face test with this face can be cut off. In a similar way, edge-edge applicable
pairs bound the number of edge-face tests to be performed. In [47], an efficient algorithm
for bounding edge-face tests using applicability constraints is described. Experimental
results show that the number of tests required is linear in the total number of edges,
the constant of linearity being close to 1. The algorithm is based on a face orientation
graph representation, where face adjacency relations are explicitly depicted. Both this
representation and the bounding algorithm based on it have recently been extended to
deal with non-convex polyhedra [48].

4.2.8  Ezploiting temporal coherence to track closest points

The incremental minimum distance realization technique [52] has already been mentioned
in Subsection 4.1. At a given instant, the boundary elements that realize the minimum
distance must be close to those realizing it at the previous instant (this is known as
geometric and temporal coherence), which are therefore taken as initial points for the
search. In this case, it is not a specific orientation, but a neighborhood criterion which
is used for saving computational effort. Based on this technique, the collision detection
library I_.COLLIDE has been developed and is publicly available on the web [24]. A
library that unifies _COLLIDE and RAPID in the framework of the VRML specification
is described in [44].

The fact that the computation of the distance is not actually needed for reporting collision,
and that it is not necessary to keep track of the pair of closest points unless a collision
actually occurs, is used in [23] to develop Q-COLLIDE, a collision detection library also
available on the web. The separating vector algorithm efficiently determines whether there
exists a separating plane between two convex polyhedra (see Fig. 14). If so, they do not
collide. Otherwise, the situation at the previous instant is examined: an improved version
of the algorithm of Gilbert et al. [34] is applied in order to determine the pair of closest
points (where the pair of supporting vertices given by the separating plane is a good initial
guess for the closest points). As in I.COLLIDE, temporal coherence is exploited, so that
the separating plane can be determined in expected constant time.

The interference test between two hierarchical volume representations having different
defining reference frames can be very costly as to defeat the purpose of having a hierarchy.
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Fig. 14. A. separating vector S; is a vector that satisfies the condition S;-(g;—p;) > 0, for p; and g;
the supporting vertices of two convex polytopes P and @ in the directions S; and —S;, respectively.
This is a sufficient condition for non-interference between P and (). The separating vector may
be regarded as the normal to the separating plane between P and Q. The next such vector to
consider can be obtained by applying Siy1 = S; — 2(r; - S;)ri, where vy = (q; — pi) /(¢ — pi)||- In
the case depicted in the figure, the separating plane, shown in bold dashed line, is obtained after
one iteration. It has normal S1 and contains point (g1 — p1)/2.

Thus, it is important to efficiently update the model as the objects rotate and translate.
To this end, temporal coherence has also been exploited for updating hierachical volume
representations based on k—dops.

4.8 Priorizing collision pairs

We have seen how to focus the search for collisions on relevant portions of the objects.
For highly cluttered workspaces, however, collision checking has to be performed for a
potentially high number of pairs of objects. Thus, for the sake of efficiency, several criteria
to priorize candidates for collision cheking have also been proposed.

The first criterion one may consider is distance, but it is not enough if relative velocities
are not taken into account, as pointed out in [30]. These authors introduce the concept
of awareness, which approximates the earliest time at which two objects may collide, by
considering the distance between them, their instantaneous relative velocity, together with
velocity and acceleration bounds. Ordered according to increasing values of awareness, the
pairs are partitioned into buckets, whose cardinalities are increasing powers of 2. Initially,
an awareness value is computed for every pair to establish the buckets, but only one pair
per bucket is updated at each subsequent time instant. Thus, pairs with lower awareness
values get updated more frequently. Moreover, as their awareness values change, pairs
may percolate from bucket to bucket.

In [60] a heap is used to store object pairs and earliest collision times, so that the pair
on the top is the nearest to collide. This earliest collision time is computed from the dis-
tance between the objects, current velocities and accelerations, and acceleration bounds
assuming ballistic trajectories for the objects. At each instant, integration of the dynamic
state up to the time of collision is carried out for the pair on the top. Collision detection
is performed for this pair, and if no collision actually occurs, the time of impact is re-
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computed and the heap updated. Only the objects whose bounding boxes for their swept
volumes during the time step intersect with other boxes are selected and included in the
heap. The intersections between these n boxes can be done in O(n(1 + log R)), R being
the ratio of largest to smallest box size, as shown in [64].

A similar idea is followed in [51,24,67,54] where temporal coherence is exploited not only
to speed up pairwise intersection detection (as mentioned in Section 4.2.3) but also to
perform less of these pairwise tests. If time steps are small enough, there will be little
change in the positions of the bounding boxes, and, consequently, in the sequence of
intervals that these bounding boxes project onto the coordinate axes. Since bounding box
interference is here determined by the simultaneous overlap of their projected intervals
on the three axes, interval sorting techniques play here a crucial role. One such technique
exploiting temporal coherence permits assessing interval overlap in expected linear time.

Sweep techniques have been extensively used to prune the number of object pairs to be
checked for interference [79]. The idea is to sweep a plane through the scene and test
for interference only those pairs of objects simultaneously intersecting the plane. A new
usage of this technique is to use a 2D sweep to bound collision pairs in 3D. In [42],
4D hyper-trapezoids are used to bound the object along its motion. If one intersection
between two hyper-trapezoids occurs, the corresponding objects are tested for collision.
These intersections are computed from intersections between their faces. The problem is
reduced, by successive projections, to a 2D segment intersection detection problem. The
2D sweep algorithm is described in [5] and runs in O((m + k) logm) time for m segments
that intersect k times. Although for n objects the worst case value of k is O(n?), empirical
evidence shows that the average value of k£ is much lower (0.07%).

5 Conclusions

Collision detection algorithms are of interest especially in the domains of Computer
Graphics and Robotics. As described in Section 2, these algorithms usually rely on static
interference tests, most of which have been developed in the domain of Computational
Geometry. In this paper, we have summarized the basic ideas originated in the three
domains mentioned, in relation to the topic of static and dynamic interference detection.

The dominating trend in Computational Geometry is that of obtaining algorithms with the
best possible worst-case complexity. In the case of convex polyhedra, optimal algorithms
have been developed for intersection and distance computation, which are linear in the
total number of vertices. However, most algorithms developed within this domain have
not been implemented and, therefore, their efficiency in a practical setting is hard to
assess. The detailed complexity of the only known subquadratic algorithm for interference
detection between non-convex polyhedra [66] has very large constant factors, which makes
it unfeasible for practical purposes.

The situation in Robotics is in some sense opposite to the one just described. The key
aspects in this domain are implementation and efficiency in practical settings. In many
cases, the worst-case complexity of the developed algorithms either remains unknown or
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is far from optimal. Comparing algorithms in terms of CPU time is becoming a general
practice. Several algorithms for interference detection between convex polyhedra have
been shown to have a computational cost approximately linear in the total number of
vertices. Usually, non-convex polyhedra are dealt with by decomposing them into convex
pieces.

In Computer Graphics, the emphasis is placed on the possibility of detecting collisions in
real-time, especially in computer animation applications, even if speed is gained at the
cost of losing precision. This is the reason why hierarchical representations are often used
in this domain, since they provide higher precision as one moves down the hierarchy, thus
allowing to adapt output precision to the computing time available.

As for efficiency, a far more challenging application field has appeared recently: haptic
interfaces require update rates of about one kHz, as compared with the 20-30 updates
per second needed in “real-time” graphical applications. Algorithms developed so far [36]
solve the problem of a probe point colliding with virtual objects, but this is clearly not
sufficient as the feeling of one 3D object moving in contact with another object is to be
displayed in a realistic manner.

As we have seen, most collision detection schemes only deal with polyhedral approxima-
tions. Nevertheless, there are some applications where this kind of approximation is not
possible. The task of verifying whether a given tool, in numerically controlled machin-
ing, penetrates beyond a specified threshold the surface of a part to be machined is a
good example. This is a challenging problem for collision detection not only due to the
nature of the tool motion but also because, in this case, a polyhedral approximation is
inadequate. When manufacturing plastic parts using moulds, the different elements of the
mould have to separated to free the manufactured part. This motion has to be planned
and coordinated to avoid collisions between the mould elements and the part itself. This is
another application where collision detection between smooth surfaces would be of inter-
est. Although some research has been performed on robust and interactive computation of
closest features, much remains to be done in the direction of determining contact points
and penetration distances between models with smooth surfaces (see [80] for some re-
sults). As a further step, accurate and efficient detection of contacts between deformable
models is also a research area that will certainly deserve attention in the near future.
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