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tVisual pro
edures espe
ially tailored to the 
onstraints and requirements of a leggedrobot are presented. They work for an un
alibrated 
amera, with pan and autofo-
us, freely moving towards a stationary target in an unstru
tured environment thatmay 
ontain independently moving obje
ts. The goal is to dynami
ally analyse thesequen
e in order to extra
t information about the robot motion, the target posi-tion and the environment stru
ture. The deformations of an a
tive 
ontour �tted tothe target "permits re
overing" the s
aled egomotion and time-to-
onta
t with thetarget, at frame rate. From whi
h, together with a pro
edure for the self-
alibrationof the prin
ipal point, the epipolar lines 
an be readily derived. These lines speedup drasti
ally the mat
hing of salient points needed to re
over 3D stru
ture, by re-du
ing the sear
h pro
ess from 2D to 1D. The 3D re
onstru
tion is performed usinga full perspe
tive 
amera model, whereas an aÆne model suÆ
ed for all the pre-vious stages. Experimental results 
on�rm that the proposed approa
h 
onstitutesa promising alternative to the prevailing trend based on the 
ostly 
omputation ofdispla
ement or velo
ity �elds.Keywords: Sensory-motor integration for visual tasks, 
ontour tra
king, qual-itative navigation, egomotion, time to 
onta
t, heading dire
tion, qualitative 3Dre
onstru
tion of image sequen
es.
1 Introdu
tionThe present work is part of a proje
t aimed at the development of a low-
ostwalking robot for exploratory tasks [5,6℄. It is a six-legged robot with threedegrees of freedom (dof) per leg, and it is equipped with a 
ompass and a singlePreprint submitted to Elsevier Preprint 19 November 1999




amera with one dof (pan). On
e an operator marks a given target on an image
aptured by the 
amera, the robot has to rea
h the target as autonomously aspossible. Sin
e our robot has deliberately limited resour
es, we do not look forvery sophisti
ated pro
edures aimed at attaining 100% performan
e su

ess,but instead we like to rea
h the best possible 
ompromise between simpli
ityand performan
e.Note that the a

ura
y demands are low for this appli
ation but, as a 
oun-terpart, many 
onstraints are imposed on the pro
ess of estimating 
ameramotion:� mono
ular vision� 
ompass information� unstru
tured environment� unknown 
amera motion� un
alibrated 
amera� a
tive 
amera with pan and autofo
us� visual 
ontrol through robot legs and pan of the 
amera� limited 
omputational resour
es� medium time demandsThe 
alibration parameters of a 
amera mounted on a mobile robot are likelyto 
hange over time. Although some intrinsi
 
amera parameters (e.g., pixelsize and aspe
t ratio) remain 
onstant for long periods of time [35℄, others(e.g., image 
entre and fo
al length) may 
hange drasti
ally along an imagesequen
e [10℄. The pro
ess of 
alibration with the aid of a 
alibration patternis inappli
able in 
ases where the 
amera opti
al parameters undergo frequent
hanges. Di�erent approa
hes have re
ently emerged that 
onsist in auto
ali-bration of the 
amera on-line [26℄ or in designing methods whi
h do not needthe 
alibration parameters [42℄. Among the latter, the pro
edures developed inthis paper highlight the abilities of a vision system based on an un
alibrated
amera. The same algorithms would supply qualitatively di�erent informationdepending on the degree of 
amera 
alibration [28℄.In this paper, we des
ribe a te
hnique that provides a qualitative estimationof robot motion, target position and environment stru
ture. Other visual pro-
esses related to landmark dete
tion and re
ognition are des
ribed elsewhere[38℄, as are the aspe
ts related to lo
omotion and navigation within the proje
t(ref.?).The pro
edure here proposed exploits the parti
ular features of our appli
ationto simplify the estimation pro
ess, so that it 
an be performed under the
onstraints listed above. The proposed method 
ombines the analysis of a
tive
ontours [2℄ with the geometri
 
onstraints between di�erent views of a singles
ene, namely the epipolar geometry. An a
tive 
ontour is automati
ally �tted2



Fig. 1. Global s
heme.to the target marked by the operator in the image, from whi
h a shape ve
toris extra
ted for ea
h frame. The solution is based on a dire
t measure of imagedeformation from the analysis of the a
tive 
ontour �tted to the target, whi
his assumed to be stati
.We des
ribe an analysis of the a
tive 
ontour that allows to 
ompute theegomotion up to a s
ale fa
tor and the time-to-
onta
t, whi
h is a qualitativemeasure of the distan
e to the target. In order to extra
t information aboutthe s
ene stru
ture, we propose a solution based on the 
ombination of theanalysis of the a
tive 
ontour with the data provided by point mat
hes betweenthe di�erent frames. We prove that this 
ombination allows to self- 
alibratethe prin
ipal point, whi
h is used to 
ompute the heading dire
tion or epipolefrom the s
aled egomotion. On
e the prin
ipal point is known, we explainhow the epipolar geometry 
an be dire
tly extra
ted from the a
tive 
ontour.The epipolar 
onstraints guide the mat
hing between salient points in twodi�erent views of the s
ene. Finally, 
ombining the mat
hed points with thes
aled egomotion, the qualitative 3D s
ene stru
ture is re
overed interpolatingthe depth of the mat
hed points and the depth of the points inside the target.The proposed s
heme is summarized in Fig. 1.There are many works dealing with the visual guidan
e of robots in stru
tureds
enes [24,21,36,9℄; less works address the visual guidan
e of wheeled or tra
kedrobots in slightly stru
tured or non stru
tured environments [14,20,18,11℄; butworks ta
kling the visual guidan
e of walking robots in unstru
tured s
enesare very s
ar
e [31,32℄.Estimating 
amera motion and s
ene stru
ture from a sequen
e of images hasbeen the obje
t of intense resear
h within the 
omputer vision 
ommunity forsome years now [16,8,1,4,37,44,29℄. The usual approa
h to estimate 
ameramotion and s
ene stru
ture is based on opti
 
ow. This 
an be 
omputed intwo ways, either by obtaning the velo
ity ve
tors at all image positions, orby extra
ting some 
learly distinguishable features and tra
king them fromframe to frame. Both pro
edures are 
omputationally 
ostly and its use may3



be justi�ed when the stru
ture of the s
ene needs to be re
overed with higha

ura
y, but this is not the 
ase in our appli
ation.There are a few works that 
ompute egomotion on the basis of only lo
alinformation. Cipolla and Blake (1992) [7℄ use the area moments of 
losed
ontours to estimate surfa
e orientation and time-to-
onta
t with a target.Their pro
edure 
an be used for qualitative visual navigation, if just the viewer
an make deliberate movements or has stereos
opi
 vision. For a legged robotit is pra
ti
ally impossible to 
hange the position and orientation of its bodyin a prede�ned way, as arm robots do with their end-e�e
tors. What a leggedrobot 
an do is to always try to maintain its body in a referen
e position(say, horizontally) irrespe
tive of terrain orientation, by means of the so 
alled"balan
es" [6℄, a thing that tra
ked robots 
annot do without extra degrees offreedom in the 
amera subsystem.The paper is stru
tured as follows. The next se
tion 
hara
terizes the pro-je
tion of a moving 
urve under an aÆne 
amera model. Se
tion 3 presentsthe derivation of the shape ve
tor, from whi
h we extra
t both the egomotion(Se
tion 4) and the time to 
onta
t with the target (Se
tion 5). The 
ombina-tion of mat
hes with the analysis of the shape ve
tor allows to self-
alibratethe prin
ipal point of the 
amera as des
ribed in Se
tion 6. Subsequent 
om-putation of the heading dire
tion or epipole is explained in Se
tion 7. Se
tion 8is devoted to the re
overy of the epipolar geometry, whi
h is used to mat
h dif-ferents views. The 
ombination of the analysis of the 
ontour with the mat
hesallows to re
over a qualitative depth map (Se
tion 9). Finally, the advantagesand limitations of the proposed pro
edure are dis
ussed in Se
tion 10.
2 Proje
tion of 3D motion on the image planeA stati
 obje
t in 3D spa
e is used as referen
e to estimate the 
amera motion.We �t a 
losed 
urve to its o

luding 
ontour in the initial position, whi
h 
anbe written in parametri
 form as D0(s) = (X0(s); Y0(s); Z0(s))T where s is aparameter that in
reases as the 
urve is traversed. The proje
tion of D0(s)on the image plane is 
alled the template, d0(s). When there is a relativemotion between the 
amera and the obje
t, the referen
e obje
t presents anew o

luding 
ontour whi
h we denote D(s).Under a weak perspe
tive situation, i.e. when the obje
t �ts in a small �eld ofview and the depth variation of its points is small 
ompared to their distan
esto the 
amera, then the o

luding 
ontour of the obje
t 
an be assumed to bea 3D 
urve that moves rigidly in 3D spa
e. As we are interested in tra
king a4



distant target, both assumptions hold ThereforeD(s) = RD0(s) +T (1)where R is the rotation matrix and T is the translation ve
tor 
orrespondingto the 3D rigid motion.We 
al
ulate the proje
ted 
urve using an aÆne 
amera model. The aÆne
amera, introdu
ed by Mundy and Zisserman [30℄, is a generalization of or-thographi
, weak perspe
tive and paraperspe
tive proje
tions. This is an ap-proximation to the full perspe
tive, equivalent to a weak perspe
tive 
amerawith unknown internal 
alibration parameters.Taking the 
amera 
oordinate frame as referen
e, Z0(s) 
an be approximatedby the average depth Z0 of the 
ontour, and the proje
ted 
urve on the imageplane has the following expression,d(s) = 264Ku 00 �Kv375 fR3D0(s) 0BBBBB�264R11 R12 R13R21 R22 R23375 2666664X0(s)Y0(s)Z0
3777775 + 264TxTy3751CCCCCA+ 264u0v0375 (2)where f is the fo
al length, Ku � Kv is the pixel size, (u0; v0) is the prin-
ipal point, Rij are the elements of the rotation matrix R, R3 is the thirdrow of R and T = (Tx; Ty; Tz)T . We assume that the 
alibration parame-ters f;Ku; Kv; u0; v0 are unknown, as 
orresponds to an aÆne 
amera model.However, we expli
itly write the 
alibration parameters in order to highlighttheir e�e
t in di�erent measures. We will �nally prove that we 
an providethe robot with enough information for navigation without apriori knowledgeof the 
alibration parameters.Without loss of generality, we 
an assume that the 
entre of D0(s) has X =Y = 0 
omponents; it is equivalent to assume that the 
entre of the templated0(s) equals the prin
ipal point. Thus, under weak perspe
tive, R31X0(s) +R32Y0(s)� R33Z0 + Tz, and equation (2) 
an be rewritten asd(s) = 264Ku 00 �Kv375 fR33Z0 + Tz 0B�264R11 R12R21 R22375 264X0(s)Y0(s)375+ Z0 264R13R23375 + 264TxTy3751CA+ 264u0v0375(3)In parti
ular, the proje
tion of the template isd0(s) = fZ0 264Ku 00 Kv375 264X0(s)Y0(s)375 + 264u0v0375 (4)5



Combining equations (3) and (4),d(s)� 264u0v0375 = Z0R33Z0 + Tz 264Ku 00 �Kv375 264R11 R12R21 R22375 264 1Ku 00 �1Kv3750B�d0(s)� 264u0v03751CA++ fR33Z0 + Tz 264Ku 00 �Kv3750B�Z0 264R13R23375 + 264TxTy3751CANow, it is interesting to observe that 0B�d0(s)� 264u0v03751CA is the template 
enteredon the upper left 
orner of the image. Thus it 
an be 
omputed from theobserved template by subtra
ting the 
oordinates of its 
entre.The di�eren
e between the 
urve at a parti
ular instant and the template isd(s)� d0(s) = (L� I)0B�d0(s)� 264u0v03751CA+ p (5)where I is the identity matrix,L = Z0R33Z0 + Tz 264 R11 �R12KuKv�R21KvKu R22 375 (6)
p = 1R33Z0 + Tz 264�u 00 �v3750B�Z0 264R13R23375+ 264TxTy3751CA (7)and �u = fKu, �v = �fKv.This result shows that the rigid motion of a 3D 
urve (equation (1)) proje
tsas an aÆne deformation of the template onto the image plane (equation (5)),when the 
urve is viewed underweak perspe
tive.3 AÆne deformation from the analysis of a
tive 
ontoursIn this se
tion we explain how the aÆne deformation of the template in theimage plane 
an be re
overed from the analysis of an a
tive 
ontour �tted toit. 6



A 
ontour 
an be represented as a parametri
 spline 
urve, whi
h is 
ommonin Computer Graphi
s [19℄, d(s) = (dx(s); dy(s))T , where both dx(s) and dy(s)are B-spline 
urves. We 
an write them as a fun
tion of their 
ontrol points,dx(s) = B(s)Qx dy(s) = B(s)Qywhere Qi is a 
olumn ve
tor of 
ontrol points for the i-th 
omponent and B(s)is a row ve
tor of B-spline basis fun
tions [19,2℄.Putting both expressions together, we obtain a 
ompa
t expression for d(s)d(s) = 264B(s)QxB(s)Qy375 = 264B(s) 00 B(s)375 264QxQy375 = U(s)Q (8)where U(s) = I
B(s) 1 and Q is the ve
tor of 
ontrol points. In parti
ular,the template 
an be written as,d0(s) = U(s)Q0Substituting this expression in equation (5), we obtaind(s)� d0(s) = (L� I)U(s)Q0 + pwhere Q0 is the ve
tor of 
ontrol points of the observed template minus the
oordinates of its 
entre. Observing that B(s)1 = 1 from the 
onvex hullproperty of B-spline 
urves, and using equation (8), the di�eren
e betweend(s) and d0(s) 
an be rewritten asd(s)� d0(s) =pxU(s) 26410375 + pyU(s) 26401375 + (L11 � 1)U(s)264Qx00 375++L12U(s) 264Qy00 375+ L21U(s) 264 0Qx0375+ (L22 � 1)U(s) 264 0Qy0375Comparing this result with expression (8), we 
an 
on
lude that the di�eren
ein 
ontrol points Q�Q0 
an be written as a linear 
ombination of six ve
tors.Therefore, using matrix notation,Q�Q0 =WX1 
 is the krone
ker produ
t. 7



where W is the shape matrix with the six ve
tors as 
olumns,W = 0B�26410375 ; 26401375 ; 264Qx00 375 ; 264 0Qy0375 ; 264 0Qx0375 ; 264Qy00 3751CA (9)and X is a ve
tor with the six parameters of the linear 
ombination, namelythe shape ve
tor, X = (px; py; L11 � 1; L22 � 1; L21; L12)TWe use the a
tive 
ontour tra
ker of Blake et al. [3℄, whi
h is based on theKalman �lter, to 
ompute the shape ve
tor X along the sequen
e. The a
tive
ontour is for
ed to lie in the spa
e of aÆne deformations of the template forea
h frame.4 3D egomotion re
overyAs mentioned in the introdu
tion, due to the balan
es of the legged robot [6℄,the opti
al axis is kept normal to the gravity ve
tor and the rotation of the
amera is redu
ed to a rotation around the Y axis. Then,R = 2666664
os 0 �sin 0 1 0sin 0 
os 3777775 (10)and L = Z0Z0
os + Tz 264
os 00 1375 (11)
p = 1Z0
os + Tz 264�u 00 �v375 264Tx � Z0sin Ty 375 (12)and the shape ve
tor re
overed from the tra
king of the 
ontour isX =  �u(Tx � Z0sin )Z0
os + Tz ; �vTyZ0
os + Tz ; Z0Z0
os + Tz 
os � 1; Z0Z0
os + Tz � 1; 0; 0!(13)8



Our purpose now is to 
ompute the 3D motion parameters from the aÆnedeformation of the 
urve in the image plane. From the shape ve
tor we dire
tlyobtain, 
os = L11L22 (14)�uTxZ0 = pxL22 + �usin (15)�v TyZ0 = pyL22 (16)TzZ0 = 1L22 � 
os (17)4.1 Dis
ussionThese results keep the ambiguities usual in mono
ular images. Equations (15),(16), (17) show the e�e
t of the s
ale{depth ambiguity in the 
omputation ofthe translation. There is no way to re
over the absolute translation; only thes
aled translation 
an be 
omputed. Equation (14) keeps the Ne
ker reversalambiguity. From 
os� only the magnitude of � 
an be 
omputed. The sign ofthe angle 
annot be re
overed.The bas-relief ambiguity is 
an
elled as we assume that the obje
t is in aplane parallel to the image plane in the initial frame. Therefore, the anglesare measured taking into a

ount this assumption, and the ambiguity disap-pears. However, another ambiguity appears , namely the rotation{ translationambiguity, whi
h is 
ommon when trying to 
ompute 3D motion taking thereferen
e 
oordinate system on the 
amera ?????????. The ambiguity arisesbe
ause rotation about the Y axis and translation along the X axis produ
esimilar e�e
ts as re
e
ted in equation (15). Translation along the X axis isadded to �usin , and the two terms 
an not be split unless one of them isknown.This ambiguity is the responsible for the invarian
e of L11L22 to small 
hanges in . As far as the 
hange in  does not 
ause a suÆ
ient 
hange in perspe
tive,the proje
ted 
urve is nearly the same as the one we would have observedif the 
amera had translated along X. Fermuller and Aloimonos explain thisambiguity in [17℄, they prove that the images of points rotating around the Yaxis of the 
amera des
ribe hiperbolas whose major axes 
oin
ide with the X9



axis of the image plane. Therefore, the ambiguity arises spe
ially when a weakperspe
tive or aÆne 
amera model is used. It 
an only be avoided if the wholeimage does not �t in the weak perspe
tive model and a non lo
al pro
essingis applied (as proposed in [39℄), or there are motion parallax e�e
ts in theobserved regions [25℄. A 
omparison between these methods is presented in[37℄.Sin
e the method proposed in this paper is based on a lo
al pro
essing, itis unable to solve the rotation{translation ambiguity. However, this is not aproblem in our appli
ation, sin
e the robot is equipped with a 
ompass. Thus,the data provided by the 
ompass (namely, the  angle) is 
ombined with theanalysis of the 
ontour to provide the 3D egomotion estimation.If the 
amera has not any degree of freedom, it is ne
essary to know �u = fKu,in order to re
over the s
aled-translation. Ku 
an be assumed 
onstant alongthe sequen
e, but f 
an 
hange with fo
us or zoom. It seems too demanding toassume that f 
an be known. In order to avoid this assumption, the solutionis to provide the 
amera with one degree of freedom, as we have stated in theintrodu
tion. The 
amera has to be able to pan. This way, the 
amera 
an
ompensate the rotation dete
ted by the 
ompass and provide an image freeof rotation. In this 
ase, the shape ve
tor be
omesX = � �uTxZ0 + Tz ; �vTyZ0 + Tz ; Z0Z0 + Tz � 1; Z0Z0 + Tz � 1; 0; 0� (18)and the 3D egomotion parameters are easily 
omputed from it as,�uTxZ0 = pxL22 (19)�v TyZ0 = pyL22 (20)TzZ0 = 1L22 � 1 (21)
5 Qualitative measure of distan
e to the targetWe propose a qualitative measure of the distan
e from the robot to the targetbased on the 
omputation of the time to 
onta
t. The time to 
onta
t (TTC)is the time needed for the viewer to rea
h the target if the viewer 
ontinueswith the same speed. In fa
t, it is a measure that has been used by di�erent10



authors for the guidan
e of wheeled robots [33℄ or road vehi
les [13℄, assumingmotion on a planar surfa
e.We estimate the likely time to 
onta
t to the target by 
omputing the rate ofexpansion of the target in the image while the 
amera moves towards it. This
al
ulation 
an be done without knowledge of neither the size and distan
e ofthe target, nor the speed of the 
amera towards it.From equation (21) we 
an observe that the s
aled depth of the target 
an be
omputed as Z0 + TzZ0 = 1L22 + 1 (22)Let us 
all this magnitude Hi for the 
ontour at frame iHi = Z0 + TziZ0 (23)where Tzi is the translation in Z at frame i.The di�eren
e between H in 
onse
utive frames isHi �Hi�1 = Tzi � Tzi�1Z0 (24)Therefore, (Hi �Hi�1) 1Hi = Tzi � Tzi�1Z0 + Tzi = �1� (25)where � is the time to 
onta
t taking the sampling period as time unit.From this result, we 
an state that the time to 
onta
t 
an be 
omputeddire
tly from the shape ve
tor as,� = HiHi�1 �Hi (26)The implementation of the theory shows that this measure is a useful toolto predi
t the 
ollision time. Figure 3 shows the initial image in a sequen
etaken while the viewer moves towards a target. In this 
ase the target is thebla
k square. This experiment was 
arried out inside a laboratory in order toestimate the reliability of the results. The sequen
e was re
orded at a 
onstantvelo
ity of approximately 16
m per time unit, and the target was set at 97
mfrom the initial position. Figure 4 shows four samples of the sequen
e. Theshape ve
tors for these examples are 11



Fig. 2. Experiment to evaluate the TTC 
omputation.

Fig. 3. First image in a sequen
e re
orded to validate the TTC 
omputa-tion.XA = [0; 0; 0:22; 0:22; 0; 0℄XB = [0; 0; 0:56; 0:56; 0; 0℄XC = [0; 0; 1:19; 1:19; 0; 0℄XD = [0; 0; 2:69; 2:69; 0; 0℄ (27)Figure 2 depi
ts the situation in whi
h the experiment is set. Figure 5 plotsthe re
overed TTC as a fun
tion of time. It 
an be observed that the graphi
de
reases linearly as predi
ted for a uniform motion. We dete
t a likely
ollision with the target when the heading dire
tion points towards the targetand the TTC is under a 
ertain threshold.6 Self-Calibration of the prin
ipal pointIn this se
tion we explain how the prin
ipal point 
an be 
omputed from theanalysis of 
ontour deformation 
ombined with a set of point mat
hes.The relation between the proje
tions of a 3D point on di�erent image planes12
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Fig. 4. Estimation of TTC from the deformation of an a
tive 
ontour. Foursamples of a video sequen
e taken by a moving observer approa
hing the target at auniform velo
ity (approximately 16
m per time unit). An a
tive 
ontour tra
ks thetarget. Its deformations are used to estimate the time to 
onta
t (Fig. 5). The nextimage in the sequen
e 
orresponds to 
ollision.13



Fig. 5. Estimated time to 
onta
t as a fun
tion of time. It 
an be observedthat the plot de
reases linearly as predi
ted for a uniform motion.ful�ls the following equation in homogeneous notation (see [15℄ for details)u(2) = ARA�1u(1) + ATZiwhere Zi is the depth of the 3D point. In parti
ular, when the rotation hasbeen 
ompensated and the image has only the e�e
ts of the translation, theabove equation simpli�es to,u(2) = u(1) + ATZi = u(1) + 2666664�u TxTz + u0�v TyTz + v01 3777775 TzZi (28)It 
an be rewritten as u(2) = u(1) + 2666664exey1 3777775 TzZiwhere (ex; ey) are the 
omponents of the epipole. Going ba
k to 
onventionalnotation, we have two linear equations with three unknowns (the 
omponentsof the epipole and the relative depth ZiTz )u(2)x = ex � ZiTz (u(2)x � u(1)x )u(2)y = ey � ZiTz (u(2)y � u(1)y ) (29)Ea
h new mat
hing adds two equations and one unknown (the relative depth ofthe new 3D point). We take a set of point mat
hes and solve for the unknowns14



by least mean squares. On
e the epipole is known, the prin
ipal point 
an be
omputed from equation (30),u0 = ex � �uTxTzv0 = ey � �vTyTzThis 
omputation 
an be repeated ea
h time we want the prin
ipal point up-dated. Initially, it 
an be 
omputed o�-line. In Se
tion 8 we explain that, on
ethe epipole is known, the analysis of the 
ontour provides enough informa-tion to guide the mat
hing between frames, and from the guided mat
hes theprin
ipal point 
an be updated.7 Computation of the heading dire
tion. Finding the epipole.The heading dire
tion is represented in the image plane as the point of in-terse
tion between this dire
tion and the image plane. It is equivalent to theproje
tion of the translation ve
tor on the image plane264exey375 = 264�u TxTz + u0�v TyTz + v0375 (30)From equations (19), (20), (21) we have,�uTxTz = px1�M22 (31)�vTyTz = py1�M22 (32)that lead us to the heading dire
tion using the prin
ipal point 
omputed inthe pre
eding se
tion.8 Mat
hing between frames. Computation of epipolar linesIn this se
tion we explain how the epipolar geometry 
an be dedu
ed from theanalysis of an a
tive 
ontour. The epipolar geometry is the only relation we
an obtain that des
ribes the mat
hing between two un
alibrated images. We15



are interested in mat
hing di�erent points of two views of the same s
ene inorder to re
over the depth of these points. On
e the depth of a set of pointsis known, it 
an be interpolated to obtain an approximate depth map of thewhole s
ene.In the pre
eding se
tions, we have been working with a simpli�ed 
ameramodel as we were fo
using the pro
essing on the referen
e obje
t. Now, weswit
h to a more general 
amera model to 
ompute the epipolar geometryof the whole image. It is important to swit
h to a full{perspe
tive 
ameramodel be
ause we are interested in extra
ting the epipolar lines 
orrespondingto di�erent points in the image. The aÆne 
amera is adequate to model theimaging pro
ess of the target, as it is assumed that the target o

upies a smallregion in the image and the depth variation of its points is small 
ompared totheir distan
es to the 
amera. However, this simpli�ed model do not generally�t the rest of the image, parti
ularly when the s
ene has obje
ts at di�erentdepths.A point u(1) in the �rst image 
orresponds to a 3D point that lies on theray that ba
kproje
ts through u(1). Therefore, its 
orresponding point in these
ond image, u(2), should lie on the proje
tion of this ray, namely, the epipolarline of u(1). The epipolar lines simplify the 
orresponden
e problem be
ausethe sear
h for mat
hes is redu
ed to a 1D sear
h. All epipolar lines interse
tat the proje
tion of the opti
al 
entre of the 
amera at its �rst lo
ation in theother 
amera lo
ation, namely the epipole.The epipolar lines are usually 
omputed from the fundamental matrixF, whi
his a 3 � 3 matrix that des
ribes the 
orresponden
e between two images ofthe same s
ene re
orded from di�erent viewpoints [27,40,43℄. It relates theproje
tions u(1);u(2) of a 3D point, in homogeneous notation, as follows,u(2)TFu(1) = 0: (33)The F 
an be split up [27,12,43℄ asF = A�T[T℄�RA�1where A is the 
alibration matrix,A = 2666664�u 0 u00 �v v00 0 1 3777775A�T is the transpose of A�1 and [T℄� is a matrix obtained from the elements16



of T, [T℄� = 2666664 0 �Tz TyTz 0 �Tx�Ty Tx 0 3777775When the rotation has been 
ompensated, the epipoles are the same for bothimages and they equal the heading dire
tion. In this 
ase, F simpli�es toF = A�T[T℄�A�1 = [AT℄� = [e(2)℄� = [e(1)℄� (34)Using homogeneous notation, a line l(2) passing through a point u(2) ful�ls thefollowing equation (an introdu
tion to perspe
tive geometry 
an be found in[15℄) u(2)Tl(2) = 0:Therefore, from equation (33), the epipolar line 
an be 
omputed asl(2) = Fu(1) = A�T[T℄�A�1u(1) = [AT℄�u(1)And, from equation (34), l(2) = [e(2)℄�u(1)This epipolar line 
oin
ides with the line l joining the epipole with u(1)l = e(2) � u(1) = (AT)� u(1) = [AT℄�u(1)Thus, it is proved that the epipolar line in the se
ond image for a point in the�rst image is the line joining the epipole with the point in the �rst image.The epipolar lines have been 
omputed to be used as a guide for mat
hingfeatures between frames. Some results are shown in �gures 6 to 9. �gure Ifthe disparity between images in
reases, an algorithm based on point mat
heswould fail, as it would not be able to �nd reliable mat
hes. On the 
ontrary, themethod based on 
ontours maintains a right measure of the epipolar geometry.
9 Qualitative 3D s
ene re
onstru
tionThe 3D stru
ture of the visible environment 
an be spe
i�ed by the distan
ealong the opti
al axis (the depth) of ea
h point in the image. Some appli
ations17



Fig. 6. Initial image. The square in the middle of the pattern were taken as target.The deformation of the 
ontour �tted on it allows to re
over the heading dire
tionand epipolar lines.

Fig. 7. Template used in the experiment to re
over the heading dire
tion.AFEGIR FIG AMB EL CONTORN AJUSTAT !!!!

Fig. 8. Epipolar lines. Epipolar lines relating the image in �gure 6 with the imagere
orded after a translation in the Z dire
tion. The heading dire
tion is the point ofinterse
tion of all epipolar lines.may require a des
ription of solid shapes. In this 
ase, there must also bea transformation from the pointwise des
ription to a solid shape. However,in this se
tion we restri
t our attention to pointwise 3D information and weinterpolate the result to obtain an approximation of the stru
ture of the whole18



Fig. 9. Epipolar lines. Epipolar lines relating image in �gure 6 with the imagere
orded after a larger translation in the Z dire
tion. The heading dire
tion is thepoint toward the epipole, and the epipole is the point of interse
tion of all epipolarlines. The results are right even when there is a redu
ed region of the image in
ommon with the original one.s
ene assuming that the surfa
e is smooth.On
e the prin
ipal point is known, the epipole 
an be extra
ted from theanalysis of the 
ontour. We use it not only to know the heading dire
tion, butalso to draw the epipolar lines. Thus, mat
hes between frames are more easilyfound. On
e point mat
hes are a
hieved, from equations (21) and (29), we 
ansolve for the s
aled depth,ZiZ0 = �ex � u(2)x � TzZ0u(2)x � u(1)x = �ex � u(2)x � 1L22u(2)x � u(1)xZiZ0 = �ey � u(2)y � TzZ0u(2)y � u(1)y = �ey � u(2)y � 1L22u(2)y � u(1)yThe epipole and TzZ0 are the same for all points in the same frame. The mag-nitude of the depth of a point is,jZiZ0 j = jTzZ0 j je� u(2)jju(2) � u(1)jwhere e is the epipole.The above dedu
tion is valid as far as there is a non nul translation in Z. Theanalysis of 
ontour deformations allows to dete
t when the translation in Z isnul and use a di�erent set of equations to solve for 3D s
ene stru
ture, in this
ase. When there is no translation in Z equation (29) is redu
ed to,19



Fig. 10. Proposed s
heme to re
over epipolar geometry and 3D stru
ture.u(2)x = u(1)x + �uTxZiu(2)y = u(1)y + �vTyZiUsing point mat
hes, we 
an 
ompute the value of �u TxZ , �v TyZ . If we 
ombineit with the s
aled translation (�u TxZ0 , �v TyZ0 ) obtained from the analysis of the
ontour, we get the s
aled depth ZZ0 .Either if there is a translation in Z or not, the 3D re
onstru
tion is improvedby adding the points inside the target to the set of points for whi
h the depthis known. From equation (21) we have an approximation of the depth of pointsinside the target Z0 + TzZ0 = 1 + 1L22 (35)Fig. 10 depi
ts the proposed s
heme. We emphasise the fa
t that there is an
omputed. After this, a very simple s
heme allows to extra
t both the epipolargeometry and the 3D stru
ture. On
e the pro
ess has been initialized, theepipolar geometry is dire
tly extra
ted from the deformations of the 
ontour.9.1 Experimental resultsThe proposed algorithm has been tested on several image sequen
es, and goodresults have been obtained. The results were evaluated at a �rst stage usingindoor s
enes, but they have been proved also with real outdoor s
enes. Inthis paper we provide the qualitative depth map of one of these s
enes. Fig.11 and Fig. 12 show di�erent frames of the s
ene. An a
tive 
ontour has been�tted to the target, whi
h is drawn in red.20



Fig. 13 highlights some points of the image, for whi
h the epipolar lines aredrawn in Fig. 14. A set of salient features are automati
ally dete
ted in Fig. 15.They are mat
hed with the ones in Fig. 12 using the epipolar lines 
omputedfrom the analysis of the a
tive 
ontour. On
e the mat
hes are known, the 3Dre
onstru
tion is 
omputed. Fig. 16 shows the 3D re
onstru
tion. This result isimproved when the re
onstru
tion is enri
hed by adding the estimated depthof the points inside the target to the depth of the mat
hed salient points. Fig.17 depi
ts a view of the �nal result.

Fig. 11. Target. An a
tive 
ontour (in red) is �tted to the target.

Fig. 12. Target tra
king. The target is tra
ked along the sequen
e.10 Con
luding RemarksThis paper presents a new approa
h to provide a walking robot with quali-tative information to rea
h a visual target. The work highlights the bene�tsof 
ombining the mat
hing of features between frames with the informationderived from an a
tive 
ontour. The proposed method is based on a dire
tmeasure of image deformation from an a
tive 
ontour �tted to a referen
e ob-je
t. It is essentially di�erent from the 
ommon te
hniques that use velo
ity ordispla
ement �elds as the unique basis for further 
omputation [22,37,34,41℄.21



Fig. 13. Image points. The epipolar lines will be 
omputed for the set of salientpoints in blue.

Fig. 14. Epipolar lines The epipolar lines (in blue) 
orresponding to the imagepoints in �gure 13 are drawn.

Fig. 15. Whole set of image points. Set of salient points of the image. Mat
hesfor them between frames are found using the epipolar lines 
omputed from the de-formation of the a
tive 
ontour.Several advantages are a
hieved from fo
ussing the pro
essing on the target.The �rst one is speed, the epipolar geometry is re
overed at frame rate fromlive video using a Sili
on Graphi
s Indy. The se
ond one is the robustness ofthe method to independent motions in the s
ene. It is remarkable to observethat most of the 
urrent methods rely on the assumption of a single indepen-22



Fig. 16. 3D stru
ture re
overy from interpolation of depth of mat
hedpoints.

Fig. 17. 3D stru
ture re
overy adding the depth of the points insidethe target. This re
onstru
tion has been 
omputed interpolating the depth of themat
hed points and that of the points inside the target.dent motion; i.e., they work for s
enes 
ontaining only one moving obje
t or,alternatively, a moving 
amera in an stationary environment [23,43℄. The thirdone is that the attentional me
hanism allows to assume a simpli�ed 
ameramodel for the region used as referen
e, no matter if this model does not �t therest of the image.The proposed method is based on a 
ombination of an aÆne 
amera and a full-perspe
tive 
amera. On
e the motion parameters have been re
overed usingthe simpli�ed 
amera model, the epipolar geometry and s
ene stru
ture are
omputed using a full-perspe
tive 
amera model. Therefore, we 
ombine thegenerality of a full-perspe
tive 
amera model with the robustness of a s
hemebased on linear approximations.The method is limited to situations in whi
h the target is stati
 and visibleunder a weak perspe
tive assumption. In these 
ases, the methods based onlyon point mat
hes are 
omplemented with the information of the 
ontour andthe results improve 
onsiderably. Traditional te
hniques require a initial set ofreliable mat
hes to extra
t the epipolar geometry and then guide the sear
h23



for additional mat
hes [27,40,43℄, while the proposed method takes pro�t outof the analysis of the 
ontour to avoid the initial unguided sear
h. On theother hand, a number of the previous works rely on the 
omputation of thefundamental matrix, whi
h be
ome unstable when the mat
hed points are
oplanar. In this situation, it is better to des
ribe the relation between twoviews by a homography instead of a fundamental matrix [15,27℄. The keyquestion is to know when to swit
h from using the fundamental matrix tousing a homography, and vi
eversa. The proposed method is invariant to thedistribution of salient points in the image. The epipolar geometry is re
overeddire
tly from the a
tive 
ontour; therefore it does not be
ome unstable whensalient points are 
oplanar. In addition to that, the analysis of the a
tive
ontour allows to estimate a qualitative measure of depth, namely the time to
onta
t, even when there are no salient points in the s
ene. The traditionalapproa
h based only on mat
hed points limits the extra
tion of 3D informationto those s
enes in whi
h a set of salient points 
an be dete
ted.Further work has been planed to extend the method to use several 
ontours�tted to di�erent regions in the image. The fusion of the information providedby di�erent 
ontours would make the pro
ess more robust. Moreover, on
ea 
ontour is �tted to a region we have proved that its s
aled depth 
an be
omputed and used to enri
h the 3D re
onstru
tion of the whole s
ene.A
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