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Abstract

Visual procedures especially tailored to the constraints and requirements of a legged
robot are presented. They work for an uncalibrated camera, with pan and autofo-
cus, freely moving towards a stationary target in an unstructured environment that
may contain independently moving objects. The goal is to dynamically analyse the
sequence in order to extract information about the robot motion, the target posi-
tion and the environment structure. The deformations of an active contour fitted to
the target ”permits recovering” the scaled egomotion and time-to-contact with the
target, at frame rate. From which, together with a procedure for the self-calibration
of the principal point, the epipolar lines can be readily derived. These lines speed
up drastically the matching of salient points needed to recover 3D structure, by re-
ducing the search process from 2D to 1D. The 3D reconstruction is performed using
a full perspective camera model, whereas an affine model sufficed for all the pre-
vious stages. Experimental results confirm that the proposed approach constitutes
a promising alternative to the prevailing trend based on the costly computation of
displacement or velocity fields.

Keywords: Sensory-motor integration for visual tasks, contour tracking, qual-
itative navigation, egomotion, time to contact, heading direction, qualitative 3D
reconstruction of image sequences.

1 Introduction

The present work is part of a project aimed at the development of a low-cost
walking robot for exploratory tasks [5,6]. It is a six-legged robot with three
degrees of freedom (dof) per leg, and it is equipped with a compass and a single
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camera with one dof (pan). Once an operator marks a given target on an image
captured by the camera, the robot has to reach the target as autonomously as
possible. Since our robot has deliberately limited resources, we do not look for
very sophisticated procedures aimed at attaining 100% performance success,
but instead we like to reach the best possible compromise between simplicity
and performance.

Note that the accuracy demands are low for this application but, as a coun-
terpart, many constraints are imposed on the process of estimating camera
motion:

monocular vision

compass information

unstructured environment

unknown camera motion

uncalibrated camera

active camera with pan and autofocus

visual control through robot legs and pan of the camera
limited computational resources

medium time demands

The calibration parameters of a camera mounted on a mobile robot are likely
to change over time. Although some intrinsic camera parameters (e.g., pixel
size and aspect ratio) remain constant for long periods of time [35], others
(e.g., image centre and focal length) may change drastically along an image
sequence [10]. The process of calibration with the aid of a calibration pattern
is inapplicable in cases where the camera optical parameters undergo frequent
changes. Different approaches have recently emerged that consist in autocali-
bration of the camera on-line [26] or in designing methods which do not need
the calibration parameters [42]. Among the latter, the procedures developed in
this paper highlight the abilities of a vision system based on an uncalibrated
camera. The same algorithms would supply qualitatively different information
depending on the degree of camera calibration [28].

In this paper, we describe a technique that provides a qualitative estimation
of robot motion, target position and environment structure. Other visual pro-
cesses related to landmark detection and recognition are described elsewhere

, as are the aspects related to locomotion and navigation within the projec
38 th ts related to | tion and navigation within the project
(ref.?).

The procedure here proposed exploits the particular features of our application
to simplify the estimation process, so that it can be performed under the
constraints listed above. The proposed method combines the analysis of active
contours [2] with the geometric constraints between different views of a single
scene, namely the epipolar geometry. An active contour is automatically fitted



Fig. 1. Global scheme.

to the target marked by the operator in the image, from which a shape vector
is extracted for each frame. The solution is based on a direct measure of image
deformation from the analysis of the active contour fitted to the target, which
is assumed to be static.

We describe an analysis of the active contour that allows to compute the
egomotion up to a scale factor and the time-to-contact, which is a qualitative
measure of the distance to the target. In order to extract information about
the scene structure, we propose a solution based on the combination of the
analysis of the active contour with the data provided by point matches between
the different frames. We prove that this combination allows to self- calibrate
the principal point, which is used to compute the heading direction or epipole
from the scaled egomotion. Once the principal point is known, we explain
how the epipolar geometry can be directly extracted from the active contour.
The epipolar constraints guide the matching between salient points in two
different views of the scene. Finally, combining the matched points with the
scaled egomotion, the qualitative 3D scene structure is recovered interpolating
the depth of the matched points and the depth of the points inside the target.
The proposed scheme is summarized in Fig. 1.

There are many works dealing with the visual guidance of robots in structured
scenes [24,21,36,9]; less works address the visual guidance of wheeled or tracked
robots in slightly structured or non structured environments [14,20,18,11]; but
works tackling the visual guidance of walking robots in unstructured scenes
are very scarce [31,32].

Estimating camera motion and scene structure from a sequence of images has
been the object of intense research within the computer vision community for
some years now [16,8,1,4,37,44,29]. The usual approach to estimate camera
motion and scene structure is based on optic flow. This can be computed in
two ways, either by obtaning the velocity vectors at all image positions, or
by extracting some clearly distinguishable features and tracking them from
frame to frame. Both procedures are computationally costly and its use may



be justified when the structure of the scene needs to be recovered with high
accuracy, but this is not the case in our application.

There are a few works that compute egomotion on the basis of only local
information. Cipolla and Blake (1992) [7] use the area moments of closed
contours to estimate surface orientation and time-to-contact with a target.
Their procedure can be used for qualitative visual navigation, if just the viewer
can make deliberate movements or has stereoscopic vision. For a legged robot
it is practically impossible to change the position and orientation of its body
in a predefined way, as arm robots do with their end-effectors. What a legged
robot can do is to always try to maintain its body in a reference position
(say, horizontally) irrespective of terrain orientation, by means of the so called
”balances” [6], a thing that tracked robots cannot do without extra degrees of
freedom in the camera subsystem.

The paper is structured as follows. The next section characterizes the pro-
jection of a moving curve under an affine camera model. Section 3 presents
the derivation of the shape vector, from which we extract both the egomotion
(Section 4) and the time to contact with the target (Section 5). The combina-
tion of matches with the analysis of the shape vector allows to self-calibrate
the principal point of the camera as described in Section 6. Subsequent com-
putation of the heading direction or epipole is explained in Section 7. Section 8
is devoted to the recovery of the epipolar geometry, which is used to match dif-
ferents views. The combination of the analysis of the contour with the matches
allows to recover a qualitative depth map (Section 9). Finally, the advantages
and limitations of the proposed procedure are discussed in Section 10.

2 Projection of 3D motion on the image plane

A static object in 3D space is used as reference to estimate the camera motion.
We fit a closed curve to its occluding contour in the initial position, which can
be written in parametric form as Dg(s) = (Xo(s), Yo(s), Zo(s))T where s is a
parameter that increases as the curve is traversed. The projection of Dg(s)
on the image plane is called the template, dg(s). When there is a relative
motion between the camera and the object, the reference object presents a
new occluding contour which we denote D(s).

Under a weak perspective situation, i.e. when the object fits in a small field of
view and the depth variation of its points is small compared to their distances
to the camera, then the occluding contour of the object can be assumed to be
a 3D curve that moves rigidly in 3D space. As we are interested in tracking a



distant target, both assumptions hold Therefore
D(s) =RDy(s) + T (1)

where R is the rotation matrix and T is the translation vector corresponding
to the 3D rigid motion.

We calculate the projected curve using an affine camera model. The affine
camera, introduced by Mundy and Zisserman [30], is a generalization of or-
thographic, weak perspective and paraperspective projections. This is an ap-
proximation to the full perspective, equivalent to a weak perspective camera
with unknown internal calibration parameters.

Taking the camera coordinate frame as reference, Z,(s) can be approximated
by the average depth Z; of the contour, and the projected curve on the image
plane has the following expression,

K, 0 By R Bal |9 [
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d(s) = ]; 11 It12 fig3 Yo(s) | + N 0 @)
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where f is the focal length, K, x K, is the pixel size, (ug,vy) is the prin-
cipal point, R;; are the elements of the rotation matrix R, Rg is the third
row of R and T = (1}, T,,7,)". We assume that the calibration parame-
ters f, Ky, K,, ug, vy are unknown, as corresponds to an affine camera model.
However, we explicitly write the calibration parameters in order to highlight
their effect in different measures. We will finally prove that we can provide
the robot with enough information for navigation without apriori knowledge
of the calibration parameters.

Without loss of generality, we can assume that the centre of Dy(s) has X =
Y = 0 components; it is equivalent to assume that the centre of the template
do(s) equals the principal point. Thus, under weak perspective, Rs;Xo(s) +
R3:Yo(s) < Rs3Zy + T, and equation (2) can be rewritten as

K, 0 R R Xo(s R T, u
d(s) = f 11 1t12 o(s) 7, 13 n n 0
0 —-K, Ra3Zo + 1. Ry Ry | | Yo(s) Ry3 T, Up

(3)

In particular, the projection of the template is

f Ku 0 Xo(S) Uo
do - 5 4
D77 0w [v] T Y



Combining equations (3) and (4),
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Now, it is interesting to observe that | do(s) — is the template centered
Vo
on the upper left corner of the image. Thus it can be computed from the
observed template by subtracting the coordinates of its centre.

The difference between the curve at a particular instant and the template is

U
d(s) —do(s) = (L —1I) | do(s) — +p (5)

Vo

where I is the identity matrix,

L - ZZO . Ry —Rm% (6)
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and o, = fK,, a, = —fK,.

This result shows that the rigid motion of a 3D curve (equation (1)) projects
as an affine deformation of the template onto the image plane (equation (5)),
when the curve is viewed underweak perspective.

3 Affine deformation from the analysis of active contours

In this section we explain how the affine deformation of the template in the
image plane can be recovered from the analysis of an active contour fitted to
it.

P
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A contour can be represented as a parametric spline curve, which is common
in Computer Graphics [19], d(s) = (d(s),d,(s))T, where both d,(s) and d,(s)
are B-spline curves. We can write them as a function of their control points,

dx(s) = B(s)Q*  dy(s) = B(s)Q"

where Q! is a column vector of control points for the i-th component and B(s)
is a row vector of B-spline basis functions [19,2].

Putting both expressions together, we obtain a compact expression for d(s)

where U(s) = I® B(s)! and Q is the vector of control points. In particular,
the template can be written as,

Substituting this expression in equation (5), we obtain
d(s) —do(s) = (L-I)U(s)Qo + p

where Qg is the vector of control points of the observed template minus the
coordinates of its centre. Observing that B(s)1 = 1 from the convex hull
property of B-spline curves, and using equation (8), the difference between
d(s) and do(s) can be rewritten as

d(s) —do(s) =
1 0 Qo
p.U(s) +p,U(s) + (L1 — 1)U(s) +
0 1 0
Qo 0 0
+L12U(S) + LQlU(S) + (L22 - l)U(S)
0 Qo QY

Comparing this result with expression (8), we can conclude that the difference
in control points Q — Qg can be written as a linear combination of six vectors.
Therefore, using matrix notation,

Q- Qo= WX

1" ® is the kronecker product.



where W is the shape matrix with the six vectors as columns,

1 0 x 0 0 y
w [ 10019000 |9 ©)
ol "[1] | o| |Qy| |az| | o

and X is a vector with the six parameters of the linear combination, namely
the shape vector,

X = (pxapyJLll —1,L9 — 1, Loy, L12)T

We use the active contour tracker of Blake et al. [3], which is based on the
Kalman filter, to compute the shape vector X along the sequence. The active
contour is forced to lie in the space of affine deformations of the template for
each frame.

4 3D egomotion recovery

As mentioned in the introduction, due to the balances of the legged robot [6],
the optical axis is kept normal to the gravity vector and the rotation of the
camera is reduced to a rotation around the Y axis. Then,

cosyp 0 —siny
R=]0 1 0 (10)
sty 0 cosy
and
Zo cosyp 0

L= — 11
Zocosy +T, | o 1 (11)

1 a, 0| |T, — Zysiny
p = —
Zocosp + T | ay T,

and the shape vector recovered from the tracking of the contour is

T, — Zysi T, Z, 7,
X_ — au( z OSZn,l/))7 au Yy s 0 6081/) - ]_, 0 - 17 07 0
Zocos + T, Zocosy + T, Zycosp + T, Zycosy + T,

(13)




Our purpose now is to compute the 3D motion parameters from the affine
deformation of the curve in the image plane. From the shape vector we directly
obtain,

cosp = ﬁ—; (14)
au% = 5—; + aysiny (15)
au% - % (16)

% = %22 — cost) (17)

4.1  Discussion

These results keep the ambiguities usual in monocular images. Equations (15),
(16), (17) show the effect of the scale-depth ambiguity in the computation of
the translation. There is no way to recover the absolute translation; only the
scaled translation can be computed. Equation (14) keeps the Necker reversal
ambiguity. From cosf only the magnitude of # can be computed. The sign of
the angle cannot be recovered.

The bas-relief ambiguity is cancelled as we assume that the object is in a
plane parallel to the image plane in the initial frame. Therefore, the angles
are measured taking into account this assumption, and the ambiguity disap-
pears. However, another ambiguity appears , namely the rotation— translation
ambiguity, which is common when trying to compute 3D motion taking the

because rotation about the Y axis and translation along the X axis produce
similar effects as reflected in equation (15). Translation along the X axis is
added to aysiniy, and the two terms can not be split unless one of them is
known.

This ambiguity is the responsible for the invariance of ﬁ—;; to small changes in
Y. As far as the change in ¢ does not cause a sufficient change in perspective,
the projected curve is nearly the same as the one we would have observed
if the camera had translated along X. Fermuller and Aloimonos explain this
ambiguity in [17], they prove that the images of points rotating around the Y
axis of the camera describe hiperbolas whose major axes coincide with the X



axis of the image plane. Therefore, the ambiguity arises specially when a weak
perspective or affine camera model is used. It can only be avoided if the whole
image does not fit in the weak perspective model and a non local processing
is applied (as proposed in [39]), or there are motion parallax effects in the
observed regions [25]. A comparison between these methods is presented in
[37].

Since the method proposed in this paper is based on a local processing, it
is unable to solve the rotation—translation ambiguity. However, this is not a
problem in our application, since the robot is equipped with a compass. Thus,
the data provided by the compass (namely, the ¢ angle) is combined with the
analysis of the contour to provide the 3D egomotion estimation.

If the camera has not any degree of freedom, it is necessary to know «,, = fK,,
in order to recover the scaled-translation. K, can be assumed constant along
the sequence, but f can change with focus or zoom. It seems too demanding to
assume that f can be known. In order to avoid this assumption, the solution
is to provide the camera with one degree of freedom, as we have stated in the
introduction. The camera has to be able to pan. This way, the camera can
compensate the rotation detected by the compass and provide an image free
of rotation. In this case, the shape vector becomes

B ( o, Ty a, T, Zy 2y

-1, ——1,0,0 18
Zo+T, Zy+T, Zy+ T, "Zo+ T, T > (18)

and the 3D egomotion parameters are easily computed from it as,

T  ps

R 19
Zy Lo (19)
1, Py

Qy— = —— 20
Zy Lo (20)

T, 1

I a——— 21

Zy Lo (21)

5 Qualitative measure of distance to the target

We propose a qualitative measure of the distance from the robot to the target
based on the computation of the time to contact. The time to contact (TTC)
is the time needed for the viewer to reach the target if the viewer continues
with the same speed. In fact, it is a measure that has been used by different
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authors for the guidance of wheeled robots [33] or road vehicles [13], assuming
motion on a planar surface.

We estimate the likely time to contact to the target by computing the rate of
expansion of the target in the image while the camera moves towards it. This
calculation can be done without knowledge of neither the size and distance of
the target, nor the speed of the camera towards it.

From equation (21) we can observe that the scaled depth of the target can be
computed as

Zo+T, 1

=—+41 22
A Lo (22)

Let us call this magnitude H; for the contour at frame ¢

H; 23
2 Z[] ( )
where T; is the translation in Z at frame .
The difference between H in consecutive frames is
T.—T..
H,—H;, = T Tzi—l (24)
Zy

Therefore,

1 Ty — 1o -1
H — H; |)— = -2 Tzl 72 9
( 1@; Zo+ T T (25)

where 7 is the time to contact taking the sampling period as time unit.

From this result, we can state that the time to contact can be computed
directly from the shape vector as,
H;

= 26
"TH_, - H, (26)

The implementation of the theory shows that this measure is a useful tool
to predict the collision time. Figure 3 shows the initial image in a sequence
taken while the viewer moves towards a target. In this case the target is the
black square. This experiment was carried out inside a laboratory in order to
estimate the reliability of the results. The sequence was recorded at a constant
velocity of approximately 16cm per time unit, and the target was set at 97cm
from the initial position. Figure 4 shows four samples of the sequence. The
shape vectors for these examples are

11



Fig. 2. Experiment to evaluate the TTC computation.

Fig. 3. First image in a sequence recorded to validate the TTC computa-
tion.

X4 =0,0,0.22,0.22,0, 0]
Xz = [0,0,0.56,0.56, 0, 0]
Xc = 1[0,0,1.19,1.19, 0, 0]
Xp =1[0,0,2.69,2.69,0, 0] (27)

Figure 2 depicts the situation in which the experiment is set. Figure 5 plots
the recovered TTC as a function of time. It can be observed that the graphic
decreases linearly as predicted for a uniform motion. We detect a likely
collision with the target when the heading direction points towards the target
and the TTC is under a certain threshold.

6 Self-Calibration of the principal point

In this section we explain how the principal point can be computed from the
analysis of contour deformation combined with a set of point matches.

The relation between the projections of a 3D point on different image planes

12



Fig. 4. Estimation of TTC from the deformation of an active contour. Four
samples of a video sequence taken by a moving observer approaching the target at a
uniform velocity (approzimately 16cm per time unit). An active contour tracks the
target. Its deformations are used to estimate the time to contact (Fig. 5). The next
image in the sequence corresponds to coflgsion.



Fig. 5. Estimated time to contact as a function of time. It can be observed
that the plot decreases linearly as predicted for a uniform motion.

fulfils the following equation in homogeneous notation (see [15] for details)

AT

u® = ARA 'u® + ~

where Z; is the depth of the 3D point. In particular, when the rotation has
been compensated and the image has only the effects of the translation, the
above equation simplifies to,

O!u% + Uo
AT ; T.
(2) — ;(1) G §) 1, i
u“’ =u —|—Zi =u"’ + aUTZ+UO 7, (28)
1
It can be rewritten as
€x
u® =u® 4 €y %

1

where (e, €,) are the components of the epipole. Going back to conventional
notation, we have two linear equations with three unknowns (the components
of the epipole and the relative depth %)

ugcz) — e, — i(ug) _ ug))
Z;
ug(f) =€, — i(ug(f) - ug(ll)) (29)

Each new matching adds two equations and one unknown (the relative depth of
the new 3D point). We take a set of point matches and solve for the unknowns

14



by least mean squares. Once the epipole is known, the principal point can be
computed from equation (30),

T,
Uy = €z — O‘ui
T,
Vg = €y — aui
This computation can be repeated each time we want the principal point up-
dated. Initially, it can be computed off-line. In Section 8 we explain that, once
the epipole is known, the analysis of the contour provides enough informa-
tion to guide the matching between frames, and from the guided matches the

principal point can be updated.

7 Computation of the heading direction. Finding the epipole.

The heading direction is represented in the image plane as the point of in-
tersection between this direction and the image plane. It is equivalent to the
projection of the translation vector on the image plane

e =2 +u

x uT, 0 (30)
e o Iy +v

y v, 0

From equations (19), (20), (21) we have,

T Dz

u_””:i 31

T, T 1= My (31)
T, Py

— = —2Y 32

T, T 1= My (32)

that lead us to the heading direction using the principal point computed in
the preceding section.

8 Matching between frames. Computation of epipolar lines

In this section we explain how the epipolar geometry can be deduced from the
analysis of an active contour. The epipolar geometry is the only relation we
can obtain that describes the matching between two uncalibrated images. We

15



are interested in matching different points of two views of the same scene in
order to recover the depth of these points. Once the depth of a set of points
is known, it can be interpolated to obtain an approximate depth map of the
whole scene.

In the preceding sections, we have been working with a simplified camera
model as we were focusing the processing on the reference object. Now, we
switch to a more general camera model to compute the epipolar geometry
of the whole image. It is important to switch to a full-perspective camera
model because we are interested in extracting the epipolar lines corresponding
to different points in the image. The affine camera is adequate to model the
imaging process of the target, as it is assumed that the target occupies a small
region in the image and the depth variation of its points is small compared to
their distances to the camera. However, this simplified model do not generally
fit the rest of the image, particularly when the scene has objects at different
depths.

A point u™ in the first image corresponds to a 3D point that lies on the
ray that backprojects through u®. Therefore, its corresponding point in the
second image, u®, should lie on the projection of this ray, namely, the epipolar
line of u™. The epipolar lines simplify the correspondence problem because
the search for matches is reduced to a 1D search. All epipolar lines intersect
at the projection of the optical centre of the camera at its first location in the
other camera location, namely the epipole.

The epipolar lines are usually computed from the fundamental matrix F, which
is a 3 x 3 matrix that describes the correspondence between two images of
the same scene recorded from different viewpoints [27,40,43]. It relates the
projections u™, u® of a 3D point, in homogeneous notation, as follows,
u@TFu® = . (33)
The F can be split up [27,12,43] as
F=ATT,RA™!

where A is the calibration matrix,

a, 0 wug
A=10 a, v
0 0 1

A~T is the transpose of A~! and [T], is a matrix obtained from the elements

16



of T,

0 -7, T,
[T]* = Tz 0 _Td?
~T, T, 0

When the rotation has been compensated, the epipoles are the same for both
images and they equal the heading direction. In this case, F simplifies to

F=A T[TLA "= AT, = [e®], = [e®], (34)

Using homogeneous notation, a line 1?) passing through a point u(® fulfils the
following equation (an introduction to perspective geometry can be found in

[15])

u®M1® = .

Therefore, from equation (33), the epipolar line can be computed as
1? = Fu®® = A~T[T],A *u® = [AT],u?
And, from equation (34),
1) = [6(@)1],u®)
This epipolar line coincides with the line 1 joining the epipole with u(¥)
1=e® xu® = (AT) x u@ = [AT],u®

Thus, it is proved that the epipolar line in the second image for a point in the
first image is the line joining the epipole with the point in the first image.

The epipolar lines have been computed to be used as a guide for matching
features between frames. Some results are shown in figures 6 to 9. figure If
the disparity between images increases, an algorithm based on point matches
would fail, as it would not be able to find reliable matches. On the contrary, the
method based on contours maintains a right measure of the epipolar geometry.

9 Qualitative 3D scene reconstruction

The 3D structure of the visible environment can be specified by the distance
along the optical axis (the depth) of each point in the image. Some applications

17



Fig. 6. Initial image. The square in the middle of the pattern were taken as target.
The deformation of the contour fitted on it allows to recover the heading direction
and epipolar lines.

Fig. 7. Template used in the experiment to recover the heading direction.
AFEGIR FIG AMB EL CONTORN AJUSTAT !!!!

Fig. 8. Epipolar lines. Epipolar lines relating the image in figure 6 with the image
recorded after a translation in the Z direction. The heading direction is the point of
intersection of all epipolar lines.

may require a description of solid shapes. In this case, there must also be
a transformation from the pointwise description to a solid shape. However,
in this section we restrict our attention to pointwise 3D information and we
interpolate the result to obtain an approximation of the structure of the whole
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Fig. 9. Epipolar lines. Epipolar lines relating image in figure 6 with the image
recorded after a larger translation in the Z direction. The heading direction is the
point toward the epipole, and the epipole is the point of intersection of all epipolar
lines. The results are right even when there is a reduced region of the image in
common with the original one.

scene assuming that the surface is smooth.

Once the principal point is known, the epipole can be extracted from the
analysis of the contour. We use it not only to know the heading direction, but
also to draw the epipolar lines. Thus, matches between frames are more easily
found. Once point matches are achieved, from equations (21) and (29), we can
solve for the scaled depth,

2)\ L. 2)) _1
Zi _(a—w?) % (a—?)
Zo ul — oM u — ufH
T, 1
z _(w=u?) % (o—u?)m;
Zo ug(f) — ug(jl) ug(f) — ug(jl)
The epipole and g—o are the same for all points in the same frame. The mag-

nitude of the depth of a point is,

Zij oL le—u?)]
20 B Zo |u(2)—u(1)|

where e is the epipole.

The above deduction is valid as far as there is a non nul translation in Z. The
analysis of contour deformations allows to detect when the translation in Z is
nul and use a different set of equations to solve for 3D scene structure, in this
case. When there is no translation in Z equation (29) is reduced to,
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Fig. 10. Proposed scheme to recover epipolar geometry and 3D structure.

T.

(2) — o, (1) r
Uy, Uy’ 4 Z,
ug) = ul(ll) + avﬂ

Z;

Using point matches, we can compute the value of au%, av%. If we combine
Ty
Z_07
contour, we get the scaled depth z%

it with the scaled translation (a, avg—’:’)) obtained from the analysis of the

Either if there is a translation in Z or not, the 3D reconstruction is improved
by adding the points inside the target to the set of points for which the depth
is known. From equation (21) we have an approximation of the depth of points
inside the target

— =14+ — (35)

Fig. 10 depicts the proposed scheme. We emphasise the fact that there is an
computed. After this, a very simple scheme allows to extract both the epipolar
geometry and the 3D structure. Once the process has been initialized, the
epipolar geometry is directly extracted from the deformations of the contour.

9.1 Ezperimental results

The proposed algorithm has been tested on several image sequences, and good
results have been obtained. The results were evaluated at a first stage using
indoor scenes, but they have been proved also with real outdoor scenes. In
this paper we provide the qualitative depth map of one of these scenes. Fig.
11 and Fig. 12 show different frames of the scene. An active contour has been
fitted to the target, which is drawn in red.
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Fig. 13 highlights some points of the image, for which the epipolar lines are
drawn in Fig. 14. A set of salient features are automatically detected in Fig. 15.
They are matched with the ones in Fig. 12 using the epipolar lines computed
from the analysis of the active contour. Once the matches are known, the 3D
reconstruction is computed. Fig. 16 shows the 3D reconstruction. This result is
improved when the reconstruction is enriched by adding the estimated depth
of the points inside the target to the depth of the matched salient points. Fig.
17 depicts a view of the final result.

Fig. 11. Target. An active contour (in red) is fitted to the target.

Fig. 12. Target tracking. The target is tracked along the sequence.

10 Concluding Remarks

This paper presents a new approach to provide a walking robot with quali-
tative information to reach a visual target. The work highlights the benefits
of combining the matching of features between frames with the information
derived from an active contour. The proposed method is based on a direct
measure of image deformation from an active contour fitted to a reference ob-
ject. It is essentially different from the common techniques that use velocity or
displacement fields as the unique basis for further computation [22,37,34,41].
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Fig. 13. Image points. The epipolar lines will be computed for the set of salient
points in blue.

Fig. 14. Epipolar lines The epipolar lines (in blue) corresponding to the image
points in figure 13 are drawn.

Fig. 15. Whole set of image points. Set of salient points of the image. Matches
for them between frames are found using the epipolar lines computed from the de-
formation of the active contour.

Several advantages are achieved from focussing the processing on the target.
The first one is speed, the epipolar geometry is recovered at frame rate from
live video using a Silicon Graphics Indy. The second one is the robustness of
the method to independent motions in the scene. It is remarkable to observe
that most of the current methods rely on the assumption of a single indepen-
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Fig. 16. 3D structure recovery from interpolation of depth of matched
points.

Fig. 17. 3D structure recovery adding the depth of the points inside
the target. This reconstruction has been computed interpolating the depth of the
matched points and that of the points inside the target.

dent motion; i.e., they work for scenes containing only one moving object or,
alternatively, a moving camera in an stationary environment [23,43]. The third
one is that the attentional mechanism allows to assume a simplified camera
model for the region used as reference, no matter if this model does not fit the
rest of the image.

The proposed method is based on a combination of an affine camera and a full-
perspective camera. Once the motion parameters have been recovered using
the simplified camera model, the epipolar geometry and scene structure are
computed using a full-perspective camera model. Therefore, we combine the
generality of a full-perspective camera model with the robustness of a scheme
based on linear approximations.

The method is limited to situations in which the target is static and visible
under a weak perspective assumption. In these cases, the methods based only
on point matches are complemented with the information of the contour and
the results improve considerably. Traditional techniques require a initial set of
reliable matches to extract the epipolar geometry and then guide the search
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for additional matches [27,40,43], while the proposed method takes profit out
of the analysis of the contour to avoid the initial unguided search. On the
other hand, a number of the previous works rely on the computation of the
fundamental matrix, which become unstable when the matched points are
coplanar. In this situation, it is better to describe the relation between two
views by a homography instead of a fundamental matrix [15,27]. The key
question is to know when to switch from using the fundamental matrix to
using a homography, and viceversa. The proposed method is invariant to the
distribution of salient points in the image. The epipolar geometry is recovered
directly from the active contour; therefore it does not become unstable when
salient points are coplanar. In addition to that, the analysis of the active
contour allows to estimate a qualitative measure of depth, namely the time to
contact, even when there are no salient points in the scene. The traditional
approach based only on matched points limits the extraction of 3D information
to those scenes in which a set of salient points can be detected.

Further work has been planed to extend the method to use several contours
fitted to different regions in the image. The fusion of the information provided
by different contours would make the process more robust. Moreover, once
a contour is fitted to a region we have proved that its scaled depth can be
computed and used to enrich the 3D reconstruction of the whole scene.
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