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Abstract

Although intersection relations are projectively invariant, most existing intersec-
tion detection tests for arbitrary polyhedra can give different results before and after
a non-singular arbitrary projective transformation of the polyhedra under test.

This paper presents a projectively invariant intersection test for general polyhe-
dra whose only numerical part is the computation of 4 x 4 determinants of homo-
geneous vertex coordinates. Degeneracies are resolved using a technique of symbolic
infinitesimals which also reduces to the computation of 4 x 4 determinants. This
greatly simplifies the implementation of the test in hardware. Moreover, its projec-
tive invariance permits applying it at any point in the graphics pipeline.

Since no auxiliary geometric entities need to be computed, the presented test can
be concisely expressed as a Boolean formula, instead of a procedure.



1 Introduction

Intersection detection is a fundamental geometric operation that arises in many Computer
Graphics and Robotics applications (O’Rouke 1998). It is becoming more important with
the rise of new applications in virtual reality, simulation and physically-based animation
as it lies at the innermost part of algorithms performing collision detection (Jiménez et
al. 2001).

Most collision detection libraries available nowadays require that objects be modeled
in terms of convex polyhedra, since efficient algorithms exist for detecting intersections
between such entities (Mount 1997). Non-convex objects are then dealt with by decom-
posing them into convex polyhedral pieces. A first drawback of this approach is that
the decomposition introduces many ficticious edges and faces that need to be checked
for interference. But a second, more fundamental, drawback is that algorithms based
on such decompositions do not always operate properly on objects obtained as a result
of projective transformations, because the result of applying such transformations on a
convex shape is not necessarily convex (see Figure 1 for examples that will become clear
in Section 2.1).

An alternative object representation used by other collision detection libraries consists
in describing object boundaries as collections of polygonal faces, which are specified by
the coordinates of their vertices ordered always either clockwise or counterclockwise as
seen from the outer side. Interference detection algorithms based on this representation
may also fail to operate properly. The reason is simple: after a reflection, edges oriented
counterclockwise around a face will appear oriented clockwise and vice versa.

Thus, assuming convexity or considering polyhedra boundaries as oriented 2D-manifolds
should be avoided if one looks for a projectively-invariant intersection test. Let us now jus-
tify why projective invariance is important. Any 3D geometric entity undergoes a certain
number of projective transformations before getting represented on the screen, according
to the desired viewpoint and scale, location of the entity in the scene, etc. A projectively
invariant intersection test guarantees that we can perform intersection detection at any
convenient part of this process, which is usually implemented in hardware and commonly
known as ”viewing pipeline”.

In addition to projective invariance, one would like to avoid computing auxiliary geo-
metric entities, such as intersection points or ficticious edges and faces, since this increases
the cost of processing and may introduce round-off errors.

Algorithms for intersection detection between polyhedra are based on interference tests
between lower-dimensional entities. Table I lists all possible pairs of polytopes embedded
in the 1, 2, and 3-dimensional Euclidean space, together with references to the tests
proposed for the corresponding intersection relation.

Depending on the application, particularities of the involved polytopes can be exploited
to attain some degree of simplicity or efficiency. For example, very efficient algorithms
can be designed by constraining polytopes to be simplices (i.e., segments, triangles, and
tetrahedra) and/or flats (i.e., point, lines, and planes) (Niizeki and Yamaguchi 1994;
Yamaguchi and Niizeki 1997; Moller 1997; Held 1997; Yamaguchi 1998).

All the general polyhedron-polyhedron tests reduce to a series of point-polyhedron
and segment-polygon interference tests. One of them (Boyse 1979) further reduces both
latter tests to a series of point-polygon tests. Since the efficient resolution of the point-



polygon problem is an ubiquitous need in many geometric applications, it has received
a lot of attention in the literature (Haines 1994). Effective projectively invariant algo-
rithms, based on the computation of 3 x 3 determinants, have been proposed for this
test (Niizeki and Yamaguchi 1994). Nevertheless, the reduction of polyhedral interference
detection to point-polygon tests requires computing intersection points between edges of
one polyhedron and faces of the other, something which we would like to avoid.

A way to avoid the computation of auxiliary geometric entities is to formulate poly-
hedral interference detection as the evaluation of a Boolean formula that depends only
on the features in the boundary of the polyhedra. Canny (1987) proposed a polyhedron-
polyhedron test of this kind for polyhedra with convex faces, which was generalized by
Thomas and Torras (1994) to handle general polyhedra. This latter test, which reduces
to a Boolean combination of signs of vertex determinants, constitutes the basis of the
present work.

Before discussing this test further, let us briefly mention that Boolean operations on
polyhedral features were studied in the seventies and eighties in the context of boundary
evaluation. Requicha and Voelcker (1982) provide a review of several possible approaches.
Later work in this area has mainly focussed on making these approaches robust, i.e.,
dealing with degeneracies and controlling numerical errors, by either using exact numeric
computation (Fortune 1997) or increasing the reliability of inexact methods (Hoffmann
et al. 1989; Chubarev 1999).

Tests based on the computation of determinant signs can be easily proved to be pro-
jectively invariant. Now, all interference tests for the bidimensional case can be expressed
in terms of 3 x 3 determinant signs, as shown in (Niizeki and Yamaguchi 1994), while the
polyhedron-polyhedron, point-polyhedron and edge-polyhedron interference tests can be
solved by computing 4 x 4 determinant signs (Thomas and Torras 1994).

The problem with these two last works is that, in the former, degenerate situations
were handled on an ad hoc basis, while, in the latter, they were simply not treated.

Degenerate situations in interference tests arise when the two involved polytopes can
be embedded in a space of lower dimension than that in which they coexist. Note that
some tests must always operate on degenerate situations. For example, if a point is within
a polygon in space, it necessarily lies on the polygon plane. Handling all degenerate cases
is somewhat tricky in 2D and gets even less straightforward in 3D.

The elegance of all determinant-based tests is invariably impaired when auxiliary ge-
ometric elements need to be computed or when geometric degeneracies must be handled
in a different ad hoc way. We provide here a way around these difficulties and present a
projectively invariant intersection test for polyhedra where the only numerical part is the
computation of 4 x 4 determinants, including the resolution of degeneracies.

Concerning computational efficiency, note that many basic geometric tests other than
interference detection —such as classification, containment and depth priority tests— can
be performed by computing sets of determinants (Yamaguchi 1988), which has motivated
the search for efficient determinant computations using either hardware —i.e. the triangle
processor and its successor the polygon engine (Yamaguchi 1988)— or software schemes
(Bronnimann and Yvinec 2000).

The paper is structured as follows. Section 2 introduces the required concepts used
throughout this paper and gives a brief description of the functions and predicates associ-



ated with the basic contacts between two polyhedra. In Section 3 the proposed algorithm
for intersection detection is fully described, leaving degenerate situations out of discussion.
How these situations are resolved by simply redefining the basic predicates is explained
in Section 4. Section 5 summarizes the main points, implementation issues and discusses
further research.

2 Preliminaries

Incidence relations are projectively invariant. Actually, the domain of projective geometry
is essentially that of incidence relations. Thus, it seems reasonable to work directly in
projective space by using the well-known homogeneous coordinates. Below, we briefly
review them, and introduce some notation as well as the two basic predicates that will be
the building blocks of our intersection detection test.

2.1 Homogeneous coordinates and projective transformations

A point vy in three-dimensional space will be represented in homogeneous coordinates
(Bloomenthal 1994) by means of a four component nonzero row vector, written as vy =
(x y z w). Any nonzero multiple of this vector A\vy = (Az Ay Az A\w) represents the same
point vy. To obtain the corresponding Cartesian coordinates of this point, we divide each
component by w, unless w = 0. If w = 0, the homogeneous coordinate vector represents
a point at infinity in the direction of the three-dimensional vector (z y z), which is not
representable in ordinary Cartesian coordinates. The set of points with w = 0 is called
the plane at infinity. The w’s are called the weights (or scale factors) of the homogeneous
coordinate vectors. The set containing the three-dimensional space together with its
points at infinity is called the real projective space of dimension 3. Note that anti-podal
infinite points in projective space are identified.

Any non-singular 4 x 4 matrix for which the product of the (4,4) element with the
determinant of the upper left 3 x 3 component of the matrix is nonzero can be seen as
a transformation in projective space which can always be decomposed into a sequence
of scale, shear, rotation, translation, and perspective transformations in Euclidean space
(Thomas 1991). We explicitly exclude singular transformations from our analysis, because
they correspond to projections onto planes and lines. Actually, we are only concerned with
transformations which keep intersections invariant and the projections of two polyhedra
might intersect while they are far apart.

Since our basic geometric elements will be tetrahedra, instead of points, we next
analyze how they are transformed by projective transformations.

Consider the following linear combination of the homogeneous coordinates of four
points (say vg, v1, Ve, and v3):

&)

vV = agvg + a1 vy + apvy + azvy = (Vv vavs) Zl . (1)
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When we vary all coefficients so that ag + a1 + as + a3 = 1, and they all remain
positive, v sweeps the tetraedron defined by the convex hull of v;, © = 0,...,3. The
application of a projective transformation, say M, to v leads to:
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It can be checked that when the weights of v/;, i =0, ..., 3, have the same sign (either
positive or negative), the region swept by v is an ordinary tetrahedron. When weights
have different signs, or some of the weights are zero, v’ does not sweep the convex region
defined by v';, i = 0,...,3. When this happens, it is said that we have a homogeneous, or
external, tetrahedron (Niizeki and Yamaguchi 1994). Figure 6 shows the resulting homo-
geneous tetrahedra for all possible combinations of weight signs. Clearly, the projective
transformation of a homogeneous tetrahedron produces another homogeneous tetrahedron
and one can always obtain an arbitrary homogeneous tetrahedron by applying a projective
transformation to an ordinary tetrahedron. As a consequence, after a projective trans-
formation is applied on a bounded convex region, the result may not be either convex,
bounded or singly connected in Euclidean space.

The 4 x 4 determinant | vovyvyvy |, after normalizing all weights to 1, is called the
oriented volume of the tetrahedron defined by vy, v1, v2, and vs3. This volume is positive
iff the vectors vgv1, Uov5, and vyv4 define a right-handed coordinate system and negative
otherwise. Since, according to (2), (v/ov'1v'av'3) = M(vovivevs), then

| VIOV,1V,2V13 |: det(l\/[) | VoV1VaVy | . (3)

This relation will be useful later.

2.2 Topologic relations in polyhedra

If fi stands for face k of a given polyhedron, df; will denote the set of edges around the
face. If e; represents edge j, Oe; will denote the vertices bounding this edge. In both
cases O is called the boundary operator. The coboundary operator is the dual operator
and it will be denoted by 6. The coboundary of a vertex is a set of edges incident at this
vertex and the coboundary of an edge, its adjacent faces.

Consider an edge common to two adjacent faces. The orientation of each of these faces
determines an order for the two end points (vertices) of the edge.

Assuming that the edges of our polyhedra are oriented, an order relationship between
the vertices of its boundary and the faces of its coboundary can be established such that
dej = {07e;,0"e;} and de; = {07¢;,07¢;}, where 0~ and 91 denote the halfbound-
ary operators and ¢~ and 0" the halfcoboundary operators. The adopted convention to
choose halfboundaries and halfcoboundaries, depending on the orientation of the edges,
is irrelevant to our purposes, as will become clear in Section 3.



2.3 Two basic predicates

There are two basic contacts between the elements (faces, edges and vertices) of two
polyhedra in 3D Euclidean space; namely: (a) a face of one polyhedron is in contact with
a vertex of the other polyhedron; and (b) an edge of one polyhedron is in contact with
an edge of the other polyhedron. These contacts are said to be basic because all other
contacts can be expressed as a combination of them (Canny 1987). We next introduce
two functions associated with these two incident relations which should be identically zero
for the incidences to occur.
According to Figure 2a, a type-A function is defined as:

A’Ui,fj = |Vn Vi Vi V1,| (4)

where {v,, v;, v;} is an ordered arbitrary representative set of vertices of face f;. If
vertex v; meets the plane supporting face f;, then A, r, = 0.
Likewise, according to Figure 2b, we define a type-B function as:

Bei,ej - |Vl Vi Vi Vn| (5)

where v, = 0%e;, v, = 0 ¢, v, = 0" ¢;, and v, = 0Te;. According to this definition, if
the line supporting edge e; meets the line supporting edge e;, then B, ., = 0.

The above determinant-based functions are projective relations which indicate that
a point and a plane are incident or two lines are incident. They contain no metrical
information relating distance or angle and thus they are clearly independent from any
metric. Due to this fact, after applying a projective transformation M to our polyhedra,
these functions can be expressed in terms of their original values using (3) as follows:

A'U,i:f’j = det(M) - Avi,f]‘ (6)
and

Beli’elj = det(M) . Bei,6j7 (7)
respectively.

For the moment, we will assume that the above determinant-based functions never
vanish. In other words, we are assuming that no degenerate situations arise (we are
assuming, for example, that both polyhedra are not just touching). Under this assump-
tion, we define the predicate A, y;, associated with function A, s, which is true when
Ay,5; > 0, and false otherwise. Likewise, we define the predicate B, ., associated with
function B,, ., which is true when B,, .. > 0, and false otherwise.

3 The intersection test

Two polyhedra intersect if, and only if, one of the two following situations arises: (1) an
edge of one polyhedron is piercing a face of the other polyhedron; or (2) a vertex of one
polyhedron is inside the other polyhedron. The second situation must be tested to detect
interference when one polyhedron is enclosed entirely within the other one. A necessary
and sufficient condition for the first situation to occur is first obtained.



For an edge e to intersect a face f; it is necessary that its two endpoints lie on different
sides of the plane II, supporting face fi, i.e.

Al9+60af1 ® Aa’eo,ﬁ (8)

is true, ® being the exclusive or operator (XOR, for short) defined as (a ® b) = (a A b) V
(@A D).

Assuming that the Boolean formula (8) is true, let us refer to Figure 6 for further
discussion. Let Iy be a plane containing edge e, which, for convenience, we will assume
to be the plane supporting a face fy, such that f; € dey. The line supporting ey divides
I1, into two half planes, [T, and IIS. Now the number of edges of the face piercing each of
these half planes (which determines whether the edge intersects the face) can be obtained
as follows. Let £T be the set of edges piercing plane Il and pointing upwards and £,
those piercing the same plane and pointing downwards. So that

E=ETUE = {6]' € afr | A,9+ej,f0 ® Aﬂ*ej,fo} . (9)

Then, the function B, ., e; € £, is positive iff the intersection of e; and Il is located
on TI;, and negative iff it is located on ITj. Likewise, the function Bey,c;y €5 € E7, s
positive iff the intersection of e; and Il is located on Il , and negative iff it is located on
I

Thus, the number of edges piercing half plane II] (or half plane II;) is odd iff

® [(A3+6k,f0 A Beo,ek) \4 (Aﬂ*ek,fo A BGO,*ek)] (10)

er€E

is true, where @._, ,a;, =a; ®a; ® -+ ® a,. Note that ® is associative.
According to the definition of the ® operator, expression (10) can be rewritten as:

® (Aa_ek,fo ® Beo,ek) (11)

er€E

Then, using (9), the () operation can be extended from £ to the whole Jf;:

® (A3+6j,f0 ® Aa’ej,fo) N (Aa’ej,fo ® Beo,ej) (12)
6]‘€3f1

Summarizing, the conjunction of (8) and (12) leads to a necessary and sufficient con-
dition for edge e to intersect face f;, which can be expressed as:

(A3+6o,f1 ® Aa‘eo,fl) N ® (A3+ej,f0 ® Af—"‘ej,fo) A (Aa‘ej,fo ® Beoaej) : (13)
e;€0f1

A necessary and sufficient condition to detect whether an edge of one polyhedron is
piercing a face of the other polyhedron can easily be obtained by iterating the application



of Boolean formula (13) for all edges of one polyhedron and all faces of the other, and
vice versa.

Detecting whether a vertex of one polyhedron is inside the other polyhedron (situation
(2) at the beginning of this section) can be reduced to the problem of checking whether
the number of faces pierced by an edge determined by the considered vertex and a point
far enough from the polyhedra is odd or even, thus the treatment is exactly the same
as for the first situation. The predicate that becomes true when vertex vg is inside the
polyhedron P is then:

® (Avo,fi ® A"Uomfi) A ® (A3+3j,f0 ® Aﬁ’ej,fo) N (Aa’ej,fo ® Beo,ej) (14)
fieP e;€0f;

where v, is a point far from both polyhedra, eq is the edge with endpoints vy and v,
and fj is any face containing edge e;. Note that v, can be simply obtained by setting
the weight of vq to 0.

Now notice that, in both (13) and (14), all basic predicates are always combined
through XOR operators. This is the key point to prove that the test is projectively
invariant. Since (a ®b) = (@®b), the outcome of the test is exactly the same if the truth
values of all basic predicates are simultaneously changed. This is all the change that
applying a non-singular projective transformation M may bring about, as follows from
equations (6) and (7), since det(M) will multiply all basic functions, possibly changing the
signs of all basic predicates at once. Therefore, the outcome of the Boolean test remains
invariant after applying any non-singular projective transformation.

Finally, it is worth mentioning that we have not introduced any constraint on the
well-formedness (in terms of connectivity, orientability and non-self-intersection) of our
polyhedra. Actually, the presented test can be applied to self-intersecting polyhedra.

4 Dealing with degeneracies

The correctness of the presented parity-count method for detecting intersections between
polyhedra is impaired by degeneracies induced by the problem and the algorithm them-
selves. Algorithm-induced degeneracies can be avoided. For example, those in which the
chosen plane I1, contains a vertex of the face against which it is tested can be avoided by
selecting a different plane. Nevertheless, handling problem-induced degeneracies would
require numerical operations other than 4 x 4 determinants, which would obscure the
initial simplicity of our interference test.

An alternative to handling degeneracies is to remove them by displacing the involved
vertices in a consistent manner. Since we have an algorithm that correctly decides the
intersection of two polyhedra for almost all inputs, the idea is to redefine the problem
that it is supposed to solve to make it work for all inputs. This certaintly seems like a
dubious way of proceeding, but elaborating on this idea it is possible to come up with a
simple way to resolve degeneracies.

Displacing vertices a finite amount would result in a distorsion of our polyhedra. Such
a displacement may render faces nonplanar and might be sensitive to numerical impreci-
sions and round-off errors. To circumvect these shortcomings, we may apply instead an



infinitesimal perturbation that will change the original input instance into a nondegener-
ate one arbitrarily close to it in the Euclidean metric. This is a usual way of dealing with
degeneracies in geometric computations (Seidel 1998; Edelsbrunner and Mucke 1990).
Adopting the deterministic approach described in (Emiris and Canny 1992), we perturb
every point coordinate v; ; to obtain v; j(¢) — where ¢ is an infinitesimal symbolic variable

— as follows:

vii(€) = viy + ().

(15)

Let us assume that at some point of our algorithm we get a vanishing determinant,

say

A= |V2'1V2'2Vi3vi4| =

Vip, 1 Uy ,2
Viy, 1  Viy,2
Vig, 1 Ui3,2
Vig,1 Vig,2

Viy,3
Viy,3
Vi3,3
Viy,3

—_ = =

By perturbing the involved point coordinates, according to (15), we get

Uiy 1 + 6i1
Vip,1 + €19
Vis,1 + 6i3
’01'4,1 + 6i4

Ae) =

Viy,2 + 82.%
Viy,2 + 82'%
Vi3,2 + 82%
Vi4,2 + 82%

Viy,3 + 67;%

-3
Vjy,3 1 €5
Vi3,3 + 67;%

Vig,3 )

3
4

—_ = =

Now, let us define the determinant of a homogeneous perturbation as

iy a2 01
\Ij_z’Qi%igl
s i il 1

3 13 13

e i iy 1

Then, it can be easily checked that

Ae)=A+e[]2

-2

Vig, 1

-3

2 Vig,1 13
€ ) -3
Viz,1 13

-5

Vig,1 24

Viy,2
Vig,2
Viz,2
Viy,2

===

Viy,3
Vis,3
Viz,3
Vig,3

_|_

— =

1
i
13
4

Viq,1
+ Vig,1
Viz,1
Viy,1

Viy,2
Vig,2
Vig,2
Vig,2

— ===

Viy,3
Vis,3
Vig,3
Viy,3

+

_ ==

i1
i
i3
i4

Assuming that ¢ is an arbitrarily small positive number,
a sign for A(e) is to evaluate the terms of the e-expansion (19) in order of increasing
powers of €. The process stops at the first non-vanishing term and reports its sign. It can
be checked that the needed term in expansion (19) depends on the level of degeneracy:
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Viq,1
Vig,1
Vig,1
Vig,1

Viy,3
Viy,3
Viz,3
Viy,3

— ===

Viy,2
Vig,2
Vig,2
Vig,2

(16)
(17)
(18)
i3 1
i3
4ot
iy 1
+20. (19)

the obvious way to obtain



the linear term is needed when the four points lie on a plane, the quadratic term when
they lie on a line, and the cubic one when they are all coincident. Clearly, the adopted
infinitesimal perturbation does not affect the output for inputs without degeneracies and,
since W is always different from zero —because it is a Vandermonde determinant— the
proposed procedure always ends up with a sign in case of degeneracy.

Now, we can redefine functions A,, ; and B, .; (equations 4 and 5) according to (16)
so that the basic predicates A,, r and B, ., —and hence Boolean formulas (13) and (14)-
will now be fully valid in the presence of degeneracies.

Let us end this section with a comment on the outcome of our test for polyhedra in
contact. It must be clear by now that, because of the way degeneracies are dealt with,
the outcome may be arbitrarily that the polyhedra are intersecting or separated. There
is no third possible answer, because the test is binary. However, it should be pointed out
that perturbations of the same vertices to resolve different degeneracies will always be
consistent, due to the deterministic nature of the perturbation.

5 Conclusions

We have presented a projectively invariant intersection test for polyhedra where the only
numerical part is the computation of 4 x 4 determinants, including the resolution of
degeneracies. Since no auxiliary geometric entities need to be computed at any point, it
can be summarized as a Boolean formula, instead of a procedure. Actually, it can be seen
as a generalisation of the parity-count method for the point-polygon test (Haines 1994).

Algorithmic efficiency and implementation issues have deliberately been left out of
discussion, but they deserve some final comments.

Assuming that both the number of vertices and the number of faces of the polyhedra
to be checked for intersection are approximately half the number of edges, it can be easily
checked that the brute force implementation of the presented intersection test would
require the computation of 21mn determinants in the worst case, where m and n are
the number of edges in the two polyhedra. Since many determinants share the same
operations, this fact could be taken into account to obtain a tight complexity bound.
Common operations can be detected by reducing determinants to cross and dot products
as in (Thomas and Torras 1994). Then, the dominating quadratic term for multiplications
can be shown to be 4.5mn and that for additions 8.5mn. Nevertheless, the associated
coding complexity makes this option impracticable, so that the combination of the brute
force algorithm and the technique described in (Bronnimann and Yvinec 2000) for the
computation of determinants, or its direct implementation in hardware, remain as the
best choices.

Interference detection libraries can be thought of as consisting of two main ingredients:
a basic intersection test, and strategies to confine the application of this test to the relevant
objects and object parts. This paper is devoted to the former, but we like to mention that
the latter can be used to reduce the number of edge-face pairs to be tested and, therefore,
the resulting computational cost. Strategies such as enclosing boxes, space partitioning,
hierarchies of bounding volumes, spatial coherence, and orientation bounding are reviewed
by Lin and Gottschalk (1998) and Jiménez et al. (2001).

A commom problem in intersection detection algorithms is their coding complexity:

11



much effort is devoted to handling degenerate situations correctly. This leads to a lack of
robustness. Our algorithm is simple because degenerate situations are handled naturally
using the same formalism. This simplicity and homogeneity leads to quick implementa-
tions.

Finally, we conjecture that deciding whether two polytopes of arbitrary dimensions
intersect can be carried out by analyzing determinant sign sets of their homogeneous
vertex coordinates in the smallest space containing both polytopes. This is clearly a
point that deserves further research.
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Tables

Table I: Pairs of polytopes of different dimensions embedded in 1, 2, and 3-dimensional space.
If their relative configuration allows them to be embedded in a lower-dimensional
linear subspace, a degeneracy arises (simple, if the difference between the dimension
of the ambient space and that of the subspace is one, and double, if this difference
is two).



[ Dimension 1 [ 2 [ 3
Embedded polytopes | point point point
segment segment segment
polygon polygon
polyhedron

Intersection tests

(segment, point)

(segment, segment)

(segment, point)*
(Paeth 1990)
(segment, segment)
(Prasad 1991;
Antonio 1992;
Niizeki and Yamaguchi 1994;
O’Rouke 1998)
(polygon, point)
(Haines 1994;
Horn 1989;
Niizeki and Yamaguchi 1994;
O’Rouke 1998)
(polygon, segment)
(polygon, polygon)

(segment, point)**

(segment, segment)*

(polygon, point)*

(polygon, segment)
(polygon, polygon)
(polyhedron, point)
(Kalay 1982;
Lane 1984;
Pinto-Carvalho 1994;
Thomas and Torras 1994;
O’Rouke 1998)
(polyhedron, segment)
(Thomas and Torras 1994)
(polyhedron, polygon)
(polyhedron, polyhedron)
(Boyse 1979;
Canny 1987;
Thomas and Torras 1994)

Numerical part

2 X 2 determinants
(signed length of
projective segments)

3 X 3 determinants
(signed areas of

projective triangles)

4 X 4 determinants
(signed volumes of

projective tetrahedra)

* Simple degeneracy

** Double degeneracy

Table I




Figures

Figure 1: Homogeneous tetrahedra (Niizeki and Yamaguchi 1994)

Figure 2: The two basic contacts between polyhedra and their associated tetrahedra in dotted
lines

Figure 3: Detecting whether edge e intersects the shaded face fi. In this case €T = {es, e4}
and £ = {ey, e3, €5, €6}
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