3D Real-Time Head Tracking Fusing Color Histograms and Stereovision
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Abstract and more robust results can be obtained by using multiple

A system that performs the tracking of a human head in processing mod_alities. Birchfield [2] uses i_n_tensity gradi-
3D in real time is presented. The head shape is modeled b)pnts and color histograms to update the position of the head

an ellipse with a trained color histogram of skin and hair over time. D‘?‘Tre'?t al. [3] combine stereo and color via a
samples. The color histogram is dynamically updated basedpattern classification method. In [6] color an stereo are used

on incoming image data in order to accommodate for vary- Lndependently_, |.e._,thmott|0n atn_d cokl)rtgre usled to tdriCk mt_a
ing illumination conditions. On the other hand, the size of nown scenario with stereo trianguation on'y used to esti-

the searched ellipse projected on the image is scaled deMate the 3D location afterwards. A Kalman filter is used to

pending on the depth information gathered from stereo vi- refine the results.

sion. The strength of our method resides on the use of a pre-th \:Ve Eresent an spp:roagh tol :’;D hume;n head tracklngt;
dictive filter to fuse color and depth information, iteratively at achieves a robust and real ime performance operat-

refining the location of the head in 3D and the parameters ing in relatively complex scenarios by combining two tech-
of the head color histogram nigues: the search of skin-like color regions through color

Keywords: data fusion, depth from stereo, color his- histograms, anq the extraction of the scale anq 3D location

tograms. of the head using depth from ster_eo. Thg main d|fferenc¢
between our method and the previously cited approaches is

that we completely characterize the fusion of multiple sen-
sors through the Kalman filter, combining the 3D location

The ability to detect and track human heads on an im- and color parameters in the state estimate.
age sequence is useful in a great number of applications, An overview of our system is given in Section 2. In Sec-
such as human-machine interaction, or face recognition andiion 3 we describe the color and depth modules, and in Sec-
gesture tracking for surveillance systems. When no restric-tion 4, the proposed fusion model is derived. Results and
tions are imposed on the input data, the problem becomes &onclusions are presented in Sections 5 and 6, respectively.
challenging task. Some typical difficulties we have to deal
with, are varying illumination conditions that make face ap-
pearance to change over time, the a priori ignorance of the The system flowchart shown in Fig. 1 comprises three
head scale and pose, occlusions, and complex or unknowmmain modules: color, stereo and Kalman filter. The process
backgrounds that could lead to false head shapes. starts by capturing a pair of synchronized stereo color im-

Many approaches have been proposed for detecting anagges. The left image is fed into the color module, and using
tracking humans. Often, only a single technique is used tothe information of the previous state about the position on
locate human features and to extract them from the rest ofthe image and scale of the head (modeled as an ellipse), it
the image. Yang and Waibel [10] model the skin-color dis- computes the position of the head in the new image. This
tribution as a multivariate normal distribution. To handle search is done by maximizing an intersection function be-
variations in illumination conditions they propose to update tween the color histogram of the new head candidate and
this distribution over time using an EM algorithm. Beymer a model histogram. The later is updated by taking into ac-
and Konolige [1] only use stereo information and template count the color histogram of tHeestcandidate. This is the
matching techniques, to separate human shapes from th&ey operation that makes our algorithm robust under vary-
background, and a Kalman filter to track people. Improved ing illumination conditions.

1. Introduction

2. System overview



Right image buckets. Swain and Ballard [8] propose the following ex-

pression as a measure of histograms intersection:
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lapping between adjacent ellipses, meaning that adjacent
ellipses have common pixels. This redundancy can be
exploited since for each new candidate ellipse, its color
histogram can be computed from the adjacent ellipse by
only subtracting those common pixels of the histogram and
adding the new ones. We have adopted this strategy from

Figure 1. Flowchart for the head tracking system. Birchfield’s work, in order to fulfil real-time results.

The pair of images, the previous computed disparity and  To obtain a model histogram robust to varying illumina-
the position and scale of the ellipse of the best head candition, we have updated it over time with the equation [7]:
date are fed to thiaststereo module. This module performs . , . .
an area-based correlation on a gray-scale version of the im- Mi(i) = (1 = a) M1 () + ()i (1) i=1.N (2)
ages to solve the correspondence problem for the interior of In order to avoid updating with false head candidates,
the ellipse, computing an estimate of the position in 3D of Eq. 2 is applied only when the measure of the model and
the head, focusing the search of the head around the prediceandidate intersection is above an empirically determined
tion done on the previous state. threshold.

Both the 3D head position and a parameterization of the3 2 Depht module
updated model histogram are fused via a Kalman filter to ="~ P

compute a new estimate of the head position and the pa- The stereo module receives a pair of images taken with
rameters modelling the histogram. This estimate is used tog calibrated stereo rig. The other input parameters are the
compute the new disparity, scale and position of the headelliptical interest zone on the left image (estimation of the
on the image, which in turn will be the input parameters to position of the head candidate computed by the color mod-
the next state estimate. ule), and the disparity of the previous state (coming from
the corrected 3D head location).

Restricting the stereo algorithm described in [5] to only
those pixels on the left image that are inside the given el-
Our color module is highly inspired in Birchfield's real- lipse, and_to thpse pixels on the ”ght. 'mage thgt have a

range of disparity centered on the previous disparity value,

time head tracking system [2], where the projection of a we can considerably speed up the search for a stereo match
head in the image plane is modelled by an ellipse. We ini- up to real-time values (over 50 Hz). With this restriction,

tialize the process by detecting a human head on an image, . . .
using the technique described in our previous work [5]. This we make the assumption that the velocity of dlsplaceme_nt
method, executed off-line, gives an initial position and scale in depth of the tracked head will be lower than a certain
of the subject head on the image, and lets us construct yalueVmaz,. o _
model color histogram by filling the buckets of a dicretized Fo_r eaqh p|>ge(u,_v) contame_d in the e_Illpse, we com-
. . Ny pute its disparity with a matching algorithm based on the

color space (B-G,G-R,B+G+R), with the pixels inside the ¢ of the absolute differences:
ellipse. As proposed by Birchfield, to cope with situations
where the subject turns around, we use a bimodal histogram  dispk(u, v) = arg min Z [i(u,v) = In(u +d,v)| (3)
containing skin and hair data samples.

At run time, when a new image is presented, a head
candidate is searched on a local region around the previ-

Histogram
parameterization

Compute disparity, scale
A and position of head on
image, from the output
of the Kalman filter

Updated histogram model

3. Low level modules
3.1. Color module

(u,v)€ep

dy 1 — 0" <d<dyp,+0" (4)

ous position trying to maximize the intersection between
the model histograrivl and the candidate histograth The
size of the candidate ellipse is given by the previous iter-
ation of the stereo moduleC'(i) and M (i) represent the
number of pixels inside theth bucket of the candidate and
model histograms respectively, wiffi the total number of

(5)

whered),_ is the averaged disparity #3_1, (the ellipse in
the previous stateﬁk,l is the value ofd;, _; corrected by
means of the Kalman filter and—, §*} are constants that
define the range of acceptable disparities arczimq.

dip—1 = mean(y yyee,_, (dispr—1(u,v))
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Figure 2. Estimated measurement errors intro-
duced by the stereo module assuming a disparity
error of 1 pixel.

We should note that as the images have been locally rec-

tified, we can exploitin Eq. 3 the use of the epipolar restric-

tion, speeding even more the correspondence problem.
Once the valuelispy(u,v) has been computed for all

the pixels ine;, we can extract the mean disparity, and

provided both camera calibration matrices, the estimation

of the coordinatey = [x,v,2]" of the center of the ellipse

is straightforward. These calibration matrices will also be
used to compute the disparity,
the image, from the location of the head in 3D.

4. Fusion model and tracking

Our fusion model works with a Kalman filter [4, 9] re-

ceiving as inputs the estimation of the 3D head position and
a parameterization of the updated histogram. Its goal is to

combine the information from both modules to correct an
estimate of the actual position of the tracked person mini-
mizing the expected value of the error of this estimate.

4.1. System Modelization

The process is governed by the following stochastic dif-
ference equation:
(6)

X = Xgp—1 + W

Thestate vector, = [p;,, py,» o1 (C)]" includes the head
position py, [Tk, Yk, zx]" In a world reference frame,
the meanu, = w1k, 2k, usr]' Of the updated model his-
togram}, inthe (B — G,G — R, B+ G + R) color space,
and the value (C}.) corresponding to the intersection be-
tween the candidate histograrfy and the model histogram
before updating)/;.—;. The state vector is then represented

by: Xk = [Tk Yk» 2y Wik H2ks M3k, Dk (Cr)]T (7)
The random variablev in Eq. 6 is aprocess noise vec-
tor representing the uncertainty in the estimatexabver
any time intervak — 1 andk. Itis assumed thai(w) ~
N(0,Q). Theprocess noise covariance mati§} is typi-

cally set to a constant value, and we choose it to be a di-

agonal matrix, with each eleme@(i, %), representing the
uncertainty in the value of;, (i) given its previous estimate
xk—1(2). The criteria for their adjustment are the following:

1. Variance in head motianThe movement of the head in
each iteration is a random process, so the uncertainty
in the values opy, should represent the maximum dis-
placement that we expect for the head in each axis.

. Variance in histogram meaf he limit in the standard
deviation of the histogram meas,, depends on the
level of dicretization used to divide our color space to
build the color histogram.

. Variance in Swin Ballard’s distancelf the value is
normalized we can set the standard deviatiop(df}, )
to unity.

The use of a Kalman filter requires also a measurement

model: 2, = Xg + Vi (8)

The measurement vectef, contains the value of the state
vectorx;, corrupted by anoise vectowy, representing any
random error in the measurement, along with unmodeled
nonlinearities on the observation model. It is assumed that
p(vi) ~ N(0,Ry). Unlike the estimation of matrixQ,

we want themeasurement noise covariance mafty =
E{e(zy)e(z;)" } to change in terms o to express the
decrement in accuracy of depth estimation that suffers any

scale and head projection orstereo systemas the distance increases (see Fig. 2). We wish

the variablest;, v, and z, to have a growing error with
respect to depth, and model this error with the 3rd-order
polynomial:

0,00.1'% + 0,01.1'% + ap2Tt + aops
a10?/13; + a11y;2€ + a12yr + a13
020213 + 0212129 + a222k + ao3
where each row fits one of the curves shown in Fig. 2. With
this assumption we do not violate the basic restriction of
the Kalman filter, that needs to be applied ouaimodal
Gaussian densities. We are just modifying the standard de-
viation of the population representing the measured value,
but the probability distribution function remains unimodal
and Gaussian.

The other two functione(u,,) ande(¢x(C)) are set to
constant values with off-line measurements of their devia-
tion when computing the color histograms of a static head
over time.

One may think that we could use the Kalman filter to
update the whole histogram, i.e., to include Eq. 2 in the
Kalman filter. But this, would imply high values in the di-
mension of vectorg, z and matriceR andQ, tampering
with the possibility of a real-time solution.

4.2. Tracking algorithm

e(pr) = 9)

In this section we give the basic details of our iterative
tracking algorithm. Assume an initial estimate of #rgor
covariance matrixP, and the initial state vector estimate
X, at time staté we have computed the measurement vec-
tor z;, (approximation to the model given in Eq. 8), provided
the previous state vectay, ;. The steps to predict and cor-
rect the value ok, are the following:
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Figure 3. Results of our tracking system
1. Predict a priori estimates of the state vector, = 6. Conclusions

X1 and error covariance matri®,;, = P, + Q.

. UpdateR, using Eq. 9.

3. Compute the Kalman gaii;, = P, (P, + Ry) '

. Update the state estimate with measurenagnti.e,
xp =%, + Kp(Zp — %5)

5.

For more details on the statitistical theory behind the
Kalman filter, the reader is referred to [4, 9].

Update the error covariand@;, = (I — K;)P}

5. Experiments

We have presented a method that robustly tracks a hu-
man head basing its strength on the fusion of information
from color and depth using a Kalman filter. This lets the
position of the head in 3D and a parameterization of the
color histogram of the head to be iteratively updated in such
a way that the covariance of the error is minimized. With
this method we are able to undergo real time people tracking
in complex situations such as in unstructured backgrounds,
varying illumination conditions and with rotations of the
person head.
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