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Abstract. This paper considers the problem of 3D motion recovery
from a sequence of monocular images while zooming. Unlike the com-
mon trend based on point matches, the proposed method relies on the
deformation of an active contour fitted to a reference object. We derive
the relation between the contour deformation and the 3D motion com-
ponents, assuming time-varying focal length and principal point. This
relation allows us to present a method to extract the rotation matrix
and the scaled translation along the optical axis.

1 Introduction

The ability to zoom provides an image definition that eases a range of visual tasks
common in robot vision, such as structure recovery or recognition. However, camera
zooming invalidates most of the current solutions to computer vision problems (e.g.,
tracking or calibration), which assume constant intrinsic camera parameters, and there-
fore demands new approaches [6, 5]. Zooming does not only change the focal length
but also the principal point, due to optical and mechanical misalignments in the lens
system of the camera [4, 17]. The rest of intrinsic camera parameters (e.g., pixel size
and aspect ratio) remain constant for long periods of time [16] and may be assumed
known.

The process of calibration with the aid of a calibration pattern [18, 19] is inapplicable
in real time or in cases where the camera optical parameters undergo frequent changes.
Different approaches have recently emerged for autocalibrating the camera assuming
time-varying internal parameters [17, 14, 1]. They are based only on point matches.
The present work is based on an active contour and aims to recover the 3D motion
parameters.

It is known that the 3D structure and motion can be recovered from a sequence of
images [7, 13]. This requires a measure of the visual motion on the image plane and a
model that relates this motion to the real 3D motion. The bottleneck when trying to
bring this into practice is the computation of visual motion, which requires at least a set
of feature matches between frames. Moreover, common methods for feature matching
perform particularly poorly when zooming. Noting that the cumulative research on
active contours [3, 8, 2] provides an efficient tracking of objects, this work has been
motivated by the idea of building an algorithm for 3D motion recovery upon an active
contour tracker.



Previous works by the authors highlight the feasibility of recovering 3D structure
and motion from the analysis of an active contour fitted to a reference object. This is
shown for different degrees of camera calibration [11, 10] and for uncalibrated cameras
with constant intrinsic parameters [12, 9]. Here we extend the analysis to the case of
time-varying internal calibration parameters due to zooming.

The paper is organized as follows. Section 2 relates the deformation of a contour to
the 3D motion components and the internal calibration parameters. Then, Section 3
describes the process followed to recover the 3D motion components. Section 4 shows
two examples of the experiments conducted to test the method. Finally, we draw some
conclusions in Section 5.

2 Projection of 3D contour on the image plane

An active contour is fitted to the contour D(s) of a reference object (i.e. the target),
which is marked on-line by the operator and may have any shape. It is automatically
tracked along the sequence, and its corresponding shape vector is updated at each frame
[12]. The shape vector provides a direct measure of image deformation that, as we will
show, permits deriving the 3D relative motion between the camera and the target.
Keeping the attention on the small region used as reference, allows one to assume
a simplified camera model for the tracked region, no matter if this model does not fit
the rest of the image. Using a weak-perspective camera model, the projection dg(s)
(hereafter, the template) of the 3D contour D(s) in the initial frame is
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where @), u(()i), U((]i) are the focal length and principal point for frame i, K,, K, denote
the pixel size and Z; is the distance from the camera to the target at the reference
frame.

Assuming rigid motion between frames, the projection of the 3D curve in frame 7 is

_ f(i) K, 0 Ry Ry XO(S) T,
w0 =7z o ) (mn w2 +[5]) +
uf
o)

(2)
_|_

)

where R;; are the elements of the rotation matrix and 7; are the elements of the trans-
lation vector. Combining equations (1) and (2),
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The above equation can be rewritten as

MO u©
d(s) — [ ?z)] =L (dO(S) - L?o)

Yo




where

_ f(z) ZO Ku 0 RH R12 KL,L 0 .
fOZy+T, 10 K, [Ra R B

X
_ 1Y 4 { Ry Rmf;—;]
fO Zy + T, Ryt Ry
and
_ ﬁ 1 Ky 01T (3)
P=50 7,77, | 0 K,||T,|

The difference between the curve at a particular instant and the template is
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where I is the 2 x 2 identity matrix.
Without loss of generality, the center of the template is assumed to be equal to the
principal point, then equation (4) can be rewritten in terms of dj(s) and d'(s), that is,
the projected contours referred to the template’s centroid, as
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where Au £ u?i) u?O) . Equation (5) shows that the changes in the contour at each

vy — U
frame correspond to affine deformations of the template.

The affine parameters are L and r £ p — Au, and are recovered from the shape
of the contour, as follows. An active contour tracker is used to estimate the contour
shape at each frame. This tracker is based on a Kalman filter and provides estimates of
the contour’s shape vector, which contains the affine parameters that relate the current
shape of the contour with the template’s shape (see [12] for details).

Assuming a constant aspect ratio A = %, the L matrix can be rewritten as
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Then, taking A = 1, a simplified matrix Lg can be computed
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3 Extraction of 3D motion parameters

In this section we derive the relation between the affine parameters described above
and the 3D motion components: 3D rotation R and 3D translation T. The rotation
matrix can be written in terms of the Euler angles,

R = R4(¢)Rux(0)Rx(1)) (7)



where R, (1)) and R,(¢) are rotation matrices about the Z axis and Ry (f) is a rotation
matrix about the X axis.

Using the Euler notation to represent the rotation matrix, equation (6) can be
rewritten as
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where R|2 denotes the 2 x 2 submatrix of R. Then,
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This last equation shows that 6 can be computed from the ratio of eigenvalues of L LT,
namely (A1, Az),
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where \; = (}c((o)) ZOZ-}?T~) is the largest eigenvalue. The angle ¢ can be extracted from

the eigenvectors of LyLsT. The eigenvector vy with largest eigenvalue equals the first
column of R,|2(¢),
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At this stage, isolating R, |2(%)) in equation (8),
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and observing that
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we can find siny and then . Once the angles ¥, ), ¢ are known, the rotation matrix

R can be computed as in equation (7).
;From equation (9) the scaled depth is recovered as
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This recovered depth depends on the relation between the focal lengths in consecutive
frames. In robot vision applications one may assume that the robot controls the zooming
factor. Hence, the relation between focal lengths at different time instants may be

assumed known even when the exact focal length is unknown.
From equations (3) and (9),
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Thus, we observe that the recovered scaled translation depends on the difference be-
tween the principal points in consecutive frames.
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4 Experimental results

Previosly to incorporating the technique to the visual system of the robot ARGOS
[15], for which it has been developed, we have performed some experiments in a more
controlled setting. Two examples of the experiments conducted to test the method
in the laboratory are presented. Figure 1 shows an example of the results of the 3D
motion estimation while zooming. An active contour has been fitted to the target (i.e.
the square). A virtual object is drawn in the middle of the image with the estimated 3D
rotation and translation along Z between the camera and the target. As expected, the
estimated 3D rotation is invariant to zooming, while the estimated translation along Z
changes proportionally to the zoom factor.

Figure 2 shows the results obtained for different 3D motions. Again a virtual object
is drawn in the middle of the screen following the motions of the target. We verify that
the proposed method provides qualitatively correct results.

5 Concluding remarks

We have analysed how the deformation of an active contour can be used to extract the
3D motion components while zooming. The basis of the method draws on ideas from
previously published papers by the authors [10, 9], and fills the remaining hole in the
analysis of the deformation of an active contour for different assumptions about the
intrinsic camera parameters.

The theoretical deduction along with the experimental results show that the 3D
rotation matrix can be reliably recovered while zooming. However, as one could expect,
the scaled depth is distorted by the camera zoom. On the other hand, the change in
the principal point due to the zoom affects the recovery of the other two components
of the 3D translation vector. The experiments have been conducted with a monocular
camera, hence the results keep the ambiguities common in this case. However, the
deduction may be easily extended to a stereo rig.
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