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Abstract 
This work presents an evaluation of three color 
constancy techniques applied to a landmark detection 
system designed for a walking robot, which has to 
operate in unknown and unstructured outdoor 
environments. The first technique is the well-known 
image conversion to a chromaticity space, and the 
second technique is based on successive lighting 
intensity and illuminant color normalizations. Based on 
a differential model of color constancy, we propose the 
third technique, based on color ratios, which unifies the 
processes of color constancy and landmark detection. 
The approach used to detect potential landmarks, which 
is common to all evaluated systems, is based on visual 
saliency concepts using multiscale color opponent 
features to identify salient regions in the images. These 
regions are selected as landmark candidates, and they 
are further characterized by their features for 
identification and recognition. 
 
 
1 Introduction 
In recent years the idea of using legged robots in 
environments where wheeled robots are not suitable is 
assuming increasing importance due to their superiority 
in climbing obstacles and keeping stability in irregular 
terrains, despite their greater complexity. Motivated by 
these characteristics, which are appropriate to our 
applications in outdoor unstructured environments, we 
are currently developing a prototype of a legged mobile 
robot [15]. A fundamental issue in this enterprise is the 
position estimation problem. Since, with the use of 
internal measures, the estimation of position 
accumulates errors as the robot moves, especially for  
 
walking machines in uneven terrains, it is necessary to 
develop location techniques based on some sort of 
external sensory feedback, independent of the traveled 

distance [2]. Similarly as in human and animal 
navigation, we record visual references and use local 
and temporal relationships between these references in 
order to identify places in the world, and to plan and 
execute paths between locations [8]. These references 
are called landmarks, which are distinctive entities that 
the robot can recognize whenever they are in its 
detection range. 

In general the characterization of landmarks in 
unstructured outdoor environments through some set of 
geometric features is not appropriate, in opposition to 
the case of indoor environments, since frequently the 
elements that could be taken as landmarks do not have 
well-defined shape and contours. With this assumption, 
landmark characterizations based on color and texture 
features are more reliable, because they are independent 
from shape. 

One of the key factors that makes the detection and 
recognition of visual landmarks in outdoor 
environments a challenging task is that acquired visual 
information is strongly dependent on lighting geometry 
(direction and intensity of light source) and illuminant 
color (spectral power distribution), which change with 
sun position and atmospheric conditions. In order to 
overcome these adversities, the original Red, Green, and 
Blue (RGB) color components of acquired images are 
often transformed to other color spaces, in an attempt to 
reduce the dependence on lighting geometry and 
illuminant color [4][14]. This desired invariance of 
color representation to general changes in illumination 
is called color constancy. 

In a previous paper [13] we presented a system for 
natural landmark detection in unstructured outdoor 
environments based on the model of human visual 
saliency proposed by Itti, Koch and Niebur [7]. This 
system had already incorporated a simple color 



constancy mechanism, converting the input RGB 
images to chromaticity images. Although this 
mechanism provided some invariance to the detection 
of landmarks under light intensity changes, our 
experimental results indicated that it was necessary to 
search for a color constancy method more stable to the 
broad illumination changes observed in outdoor 
environments. Taking into account that mobile robot 
navigation and location tasks require real-time 
execution, the search for other color constancy methods 
to improve the landmark detection was done 
considering low computational cost as an important 
requirement. It is also worthwhile to remark that here 
the goal is to achieve a stable landmark detection 
system, and not to recognize colors with high accuracy. 

A recent method for color constancy, which takes into 
account both lighting intensity and illuminant color was 
proposed by Finlayson, Schiele and Crowley [4]. By 
combining this color constancy method with color 
histogram comparisons, they achieved good 
effectiveness in object recognition tasks. Because of its 
independence of illuminant models, color patterns, and 
similarity with the chromaticity space from the first 
approach, their method was selected for our system. 
Thus, we fitted it to our landmark detection system as 
an image preprocessor and executed a new sequence of 
experiments. These experiments indicated 
improvements in the stability of landmark detection, but 
at the expense of significant additional computational 
cost, due to the iterative nature of the involved 
computation. Also this method presented the drawback 
of sensitivity to changes in viewpoint and to the 
inclusion of new objects in the scenes, because of its 
dependence on the global color composition of the 
images. 

With the objective of reducing these dependencies and 
keeping computational cost low relative to the saliency 
detection task, we designed a novel algorithm for visual 
saliency combined with color constancy. The proposed 
algorithm is inspired by the color constancy model 
proposed by Gevers and Smeulders [5], based on the 
color gradients between neighboring pixels. Our 
approach presents the advantage that the color 
constancy is embedded in the visual saliency detector, 
instead of acting as an image preprocessor. 

This paper presents an evaluation of these three 
different approaches to color constancy applied to our 
landmark detection system. First of all, the landmark 
detection system is described. Then, each color 
constancy method is explained, together with its 
connection to the landmark detection system, and the 
respective results are presented. Finally, all methods are 
discussed and compared between themselves. 

Considering that the goal of this work is to compare 
different color constancy approaches applied to 

landmark detection, visual saliency is computed here 
only based on the color information available, 
disregarding other relevant visual cues, like intensities 
and orientations, which play an important role in the 
complete visual saliency system [13]. 

 

2 Landmark detection based on visual 
saliency 

When there is no exact knowledge of what things in the 
environment can be used as landmarks for the location 
of the mobile robot, some criterion is needed to decide 
which regions in the images will be considered as 
potentially good landmarks. Current theories of human 
vision indicate that potential landmark locations could 
be detected by using a visual saliency mechanism [3]. It 
has also been observed that when human perceivers are 
trying to build or recover the description of a scene, 
their attention is focused on specific relevant regions in 
the scene [6], which reinforces the idea of combining 
visual saliency techniques with landmark based location 
tasks for mobile robots. 

In the late 19th century, the German physiologist Ewald 
Hering laid the foundations of the color opponency 
theory, which sustains the existence of three opponent 
color processes in the visual human system, constituted 
of red-green, yellow-blue and intensity (white-black) 
channels [14]. The visual saliencies in an image are 
proportional to the center-surround differences of the 
channels’ responses, computed by comparing visual 
field regions with their respective neighborhoods. For 
example, red stimuli surrounded by green stimuli are 
considered salient, and vice versa. The same concept is 
also valid for blue-yellow and intensity channels. The 
greater the contrast between the center and surround 
regions, the greater the corresponding saliency. We 
adopt the Enroth-Cugell and Robson’s model [3] of 
center-surround opponencies, which considers the effect 
of the light weighted according to the distance to the 
center of the receptive field by a difference of Gaussian 
functions. 

To compute the desired color opponencies, the 
trichromatic input color space is transformed to an 
opponent color space, where it is possible to easily 
determine the red-green and blue-yellow opponencies. 
After this transformation the image is composed of four 
channels, each one corresponding to an opponent color. 
The image is then represented at eight spatial 
resolutions, through the use of four multiscale Gaussian 
pyramids, one for each channel. In these pyramids, each 
level is obtained by a low-pass filtering operation on the 
preceding level, followed by a sub sampling of factor 
two in each dimension. With this structure, the center-
surround differences are computed by single differences 
between corresponding pixels at fine and coarse scales 
within the pyramids [7]. A center region corresponds to 



a pixel at a fine scale, whereas its surround corresponds 
to the respective pixel at a coarser scale. 

An important property of the pyramid implementation is 
that it facilitates opponent computations at different 
resolutions. By comparing centers and surrounds at 
high-resolution levels, e.g., between levels 2 and 5, 
visual saliencies of relative small targets are found, 
while at lower resolution levels, e.g., levels 4 and 7, 
relatively large salient regions are found. With this 
technique, it is possible to detect visual salient objects 
within a wide size range, for example, from small 
stones to big trees. 

The visual saliency system builds a saliency map, which 
represents the distinctness of each point in an image. In 
this map, those points corresponding to salient areas 
have large values, whereas non-salient areas are 
indicated by small values. 

The computation of center-surround differences at 
different scale combinations (pyramid levels 2-5, 3-6, 
and 4-7) results in partial visual saliency maps. The 
resultant partial maps are combined into a global visual 
saliency map, which has the cues to identify potential 
landmarks. This saliency map is represented at the 
resolution of level 1 of the pyramids, to reduce 
computational cost, since this level has a quarter of the 
number of pixels of level 0, which corresponds to the 
original image size. The image regions corresponding to 
the potential landmarks are subsequently analyzed to 
obtain visual signatures, capable of identifying them as 
an existing or a new landmark, but this is beyond the 
scope of this work. 

 

3 Visual saliency with lighting intensity 
normalization 

The first color constancy method we consider in this 
evaluation is the transformation of the RGB space to 
chromaticity coordinates (rgb) [14]:  

Rr
R G B

=
+ +

 (1) 

Gg
R G B
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Bb
R G B
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 (3) 

The colors represented in rgb coordinates are much 
more stable to lighting changes than those in the RGB 
space, because the light intensity component is removed 
from each pixel. However, they fail to be invariant 
under spectral power distribution changes of the light 
source, because this type of perturbation affects the 
response of the RGB sensors in different proportions. 

Following Itti, Koch, and Niebur [7] we use the 
opponent color space with four color components, red, 

green, blue and yellow (R´, G´, B´, Y´), calculated from 
the rgb chromaticity space as follows, taking only 
positive values: 

( ) / 2R r g b′ = − +  (4) 
( ) / 2G g r b′ = − +  (5) 

' ( ) / 2B b r g= − +  (6) 
( ) / 2Y r g r g b′ = + − − −  (7) 

The resulting opponent color image represented in R´, 
G´, B´, and Y´ coordinates is then processed with the 
visual saliency system described in the preceding 
section. The partial saliency maps obtained from each 
center-surround scale (2-5, 3-6, and 4-7) and opponent 
color combination (R´-G´, G´-R´, Y´-B´, and B´-Y´) are 
normalized according to their maxima and then added to 
form the saliency map. 

There are several other definitions for opponent color 
spaces that could be used instead of the formulation of 
Itti, Koch, and Niebur [7]. For example, Swain and 
Ballard [11] propose similar definitions, although 
without a term considering the absolute difference 
between the R and G components to compute the 
yellow, while others are based on logarithmic 
differences, like that in Finlayson and Barens [1]. 
Finally, some definitions aim to obtain better 
decorrelation between the color components, such as 
those in Otha, Kanade and Sakai [10], Murrieta-Cid, 
Briot and Vandapel [9], and Tan and Kittler [12]. We 
tested all these definitions, and found the adopted 
formulation better than the others for our system. It is 
worthwhile to observe that opponent color spaces tend 
to decorrelate the RGB components, which is a 
desirable characteristic for pattern recognition. 

We have compiled the experimental results for three 
scenarios subject to different real illumination 
conditions in Figures 1-3. The results corresponding to 
the lighting intensity normalization just explained are 
shown in the second columns of such figures. In Figure 
1, it can be observed that the red roof (center left in the 
image), the orange flowers (center right), the brown 
bush (bottom left), and the yellow house (center) are 
indicated as salient, but the dominant green areas appear 
also as salient, which is not desired. Also the gravel 
path is salient, especially in the first image. The stability 
of the results to illumination changes in these images is 
poor. 

In Figure 2, the red house (center), the yellowish bushes 
(bottom left and right), and the trees at the horizon line 
are indicated as salient. These bushes and trees are very 
salient and tend to reduce the relative saliency of the red 
house. Near the center of the second image it can be 
observed a spot of saliency corresponding to a red sign. 
The green areas in these images produce a salient 
background, like in Figure 1, because at a large scale 
(pyramid levels 3-7) they are salient relative to the sky 



and near ground. In these images the stability in 
saliency is also poor, partly because of the inclusion of 
new elements in the observed scenes due to the changes 
in point of view, which affect the relative saliency 
between all the elements in each image. This effect is 
most noticeable in the third image, where the yellow 
bush is the most salient element in the scene. 

In Figure 3, the green areas are dominant in the scene 
but they don’t have opponency to other regions of 
similar size, like in previous figures, favorably resulting 
in lower background saliency. The yellow flowers 
(bottom right) are detected as salient, and the reddish 
tree is indicated as salient only in the first and third 
images. In the second image the RGB values of the 
reddish tree are too low to produce reliable chromaticity 
information, and thus the corresponding region is 
dismissed. In these images the stability of saliency is 
good, mainly due to a uniform background. 

These results corroborate the need of looking for a color 
constancy method that, when incorporated in our 
saliency detection system, produces saliency maps more 
stable to illumination changes. The problem of 
including new salient objects, for example due to point 
of view changes, like in Figure 2, could be partially 
avoided considering separately the saliency maps for 
the R-G and Y-B color pairs. 

 

4 Visual saliency with lighting intensity and 
illuminant color normalization 

In order to overcome the unfavorable sensitivity to 
illumination changes shown by the previous 
normalization, Finlayson, Schiele, and Crowley [4] 
proposed an algorithm for color constancy called 
comprehensive color normalization, based on iterating 
two types of successive color normalizations. These 
normalizations are aimed at removing dependence on 
both lighting intensity and illuminant color, in an 
alternate manner. 

The first normalization type is the same as that defined 
by equations (1) through (3), transforming the image to 
chromaticity coordinates. The second normalization 
type transforms each pixel according to the global mean 
value of the color bands: 

1' *
3

rr
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3
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where r , g and b are the mean value of the red, green 
and blue bands in the whole image. 

The color constancy procedure iteratively performs 
these two types of normalization until the dissimilarity 
between two successive resultant images is below an 
acceptance level. It is possible to demonstrate that the 
method converges and provides unique results, 
assuming that the camera sensors have a very narrow 
bandwidth [4]. The resulting normalized image is then 
converted to opponent color space, according to 
equations (4) through (6), and, finally, it is applied as 
input to the same visual saliency system described 
before. 

Experimental results with the visual saliency detection 
system using comprehensive color normalization are 
shown in the third columns of Figures 1, 2, and 3. In 
Figure 1, it can be observed that the red roof (center left 
in the image), the orange flowers (center right), the 
brown bush (bottom left), and the yellow house (center) 
are still indicated as salient, but the dominant green 
areas appear also as salient, which is not desired. The 
gravel path presents more stability and lower saliency 
than in the former experiments with intensity 
normalization. The saliency obtained with 
comprehensive color normalization is outstandingly 
more stable to the considered illumination changes than 
with intensity normalization (second column), although 
there is an excessive saliency of green regions near the 
horizon. 

In Figure 2, the red house (center), the yellowish bushes 
(bottom left and right), and the trees at the horizon line 
are indicated as salient. Here also the bushes and trees 
have high saliency, reducing the relative saliency of the 
red house, particularly in the third image. The spot of 
saliency corresponding to a red sign is also present near 
the center of the second image. In these images the 
saliency stability is enhanced compared to the intensity 
normalization (second column), although the same 
effect as before of masking salient regions due to 
inclusion in the image of more salient elements is 
noticed. Since the comprehensive color normalization 
uses averages of color components over the entire 
image, the inclusion of new salient regions affects the 
stability of saliency even worse than in the case of 
intensity normalization. This effect can be observed in 
the third image where the red house is no longer 
significantly salient. 

In Figure 3 the saliency obtained through 
comprehensive color normalization is stable, but 
without significant improvement over the lighting 
intensity normalization. 

 

 



 
Figure 1: Visual saliency computed for scene “A” for three different illumination conditions (different days and times 

within the day). Each source image (left column) was processed with lighting intensity normalization (second 
column), lighting intensity and illuminant color normalization (third column), and color ratios (fourth column). The 

whiter regions indicate the more salient parts detected. In the source images the following things are indicated: (a) red 
roof, (b) orange flowers, (c) brown bush, and (d) yellow house. 

 

 
Figure 2: Visual saliency computed for scene “B” for four different illumination conditions. Note that there are slight 

changes in perspective between the images. Each source image (left column) was processed with lighting intensity 
normalization (second column), lighting intensity and illuminant color normalization (third column), and color ratios 

(fourth column). The whiter regions indicate the more salient parts detected. In the source images the following things 
are indicated: (e) red house, (f) yellowish bushes, (g) trees, and (h) red sign. The other signs, similar in shape as the 

red one, are white. 
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Figure 3: Visual saliency computed for scene “C” for three different illumination conditions. Each source image (left 
column) was processed with lighting intensity normalization (second column), lighting intensity and illuminant color 

normalization (third column), and color ratios (fourth column). The whiter regions indicate the more salient parts 
detected. In the source images the following things are indicated: (i) yellow flowers, and (j) reddish tree. 

 
 

5 A new approach: visual saliency using color 
ratios 

Gevers and Smeulders [5] show that several color 
representation spaces, like chromaticity rgb, saturation 
S and hue H, the CIE standard set of primary colors 
XYZ, and perceptual uniform spaces U*V*W* and 
L*a*b*, can be invariant to changes in illumination 
intensity, but not to changes in illuminant color. These 
authors propose a new color model, m1m2m3, 
independent of the illuminant color and based on the 
color ratio between neighboring image locations. 
Assuming that the source RGB comes from narrow band 
sensors and that the color of illumination is locally 
constant, they demonstrate that their model is invariant 
to changes in illumination intensity and color, and also 
to changes of viewpoint, object geometry and 
illumination direction. They define the values of 
m1m2m3 for each pixel location as: 

1 2

1 21

x x

x x
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where x1 and x2 are neighboring pixels. The authors 
implement the computation of neighboring pixels ratios 
through the determination of gradients in the 
logarithmic space ln(R/G), ln(R/B) and ln(G/B). The 

maxima of the gradients are detected using a Canny 
edge detector, resulting in a contour image, that presents 
good color constancy properties. 

From the definition of m1, m2 and m3, we derived the 
idea of generalizing the concept of gradient between 
neighboring pixels to that of center-surround 
opposition. Under this approach, the x1 pixels are taken 
to mean center regions and the x2 pixels correspond to 
surround regions. Then, we define the center-surround 
color opponencies based on color ratios: 

c s
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R GRG
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where R, G, B, and Y are red, green, blue and yellow 
center or surround regions, according to the subscript. 
The RG opponency corresponds to a visual field that is 
excited by red stimuli in the center and by green stimuli 
in the surround, and inhibited by red stimuli in the 
surround or green stimuli in the center. The GR 
corresponds to the converse. The same consideration is 
valid for the B and Y color pair. With the use of centers 
and surrounds at different scales, located at coarser or 
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finer levels in the Gaussian pyramids, it is possible to 
compute the color opponencies at multiple scales.  

It is important to observe that in the previous visual 
saliency system the saliencies were proportional to the 
differences between center and surround regions, and 
here they are proportional to the ratios of these regions. 
Like Gevers and Smeulders [5] we use the logarithms of 
the spaces (R/G) and (Y/B), so we can compute the 
opponencies by differences of logarithms across the 
scales, instead of divisions. Additionally, as the 
logarithm of the inverse of an expression is a simple 
inversion of sign, we have only two pyramids for color, 
one for ln(R/G) and the other for ln(Y/B), saving the 
computation of ln(G/R) and ln(B/Y) pyramids. 

The proposed color constancy/visual saliency algorithm, 
based on multiscale color ratio, consists of the 
following steps: 

1. Conversion from input RGB space to opponent 
color space R´G´B´Y´, using equations (4) to (7). 

2. Construction of the ln(R´/G´) and ln(Y´/B´) 
Gaussian pyramids, with 8 scale levels. 

3. Computation of the multiscale color ratios with 
differences of logarithms at pyramid levels 2-5, 
3-6, and 4-7. 

4. Normalization of partial results through 
exponentiation (inverse of logarithm) and 
composition of a resultant saliency map with the 
sum of all partial results. 

 
In the implementation of this algorithm the ln(R´/G´) 
and ln(Y´/B´) are computed as ln( )́ ln( )́R G−  and 
ln( )́ ln( )́Y B− . Indeterminations are avoided by taking  
ln(0)=0. The partial saliency maps obtained from each 
center-surround scale (2-5, 3-6, and 4-7) and opponent 
color combination (R´-G´, G´-R´, Y´-B´, and B´-Y´) are 
normalized through exponentiation before combining 
them to form the saliency map. Since this operation is 
the inverse of the logarithm applied to the source signal, 
it restores the linear proportion between the partial 
maps. 

Experimental results obtained with the multiscale color 
ratio algorithm are shown in the fourth columns of 
Figures 1, 2, and 3. In Figure 1, a better stability than 
using the former approaches is observed, although in 
the second and third images remains some instability 
from the greenish-yellowish trees and the yellowish 
gravel path. 

In Figure 2 the results are also more stable than the 
intensity normalization and comprehensive color 
normalization ones, with the exception of the first 
image, where the yellowish bushes are not indicated as 
salient. In Figure 3 the results are also stable, although 
the reddish tree is not indicated as salient in the third 

image. This effect is due to the fact that the saliency of 
the yellow flowers is approximately ten times higher 
than the saliency of the tree. This masking effect could 
be avoided by considering separately the saliency maps 
of R´-G´ and Y´-B´ opponencies. 

 

6 Performance comparison 
As a benchmark evaluation, we applied the three 
techniques to a source RGB image of 512x384 pixels, 
using a PC computer, with an AMD Athlon 800MHz 
processor, 128Mb DRAM, under Windows 98, 
averaging 100 successive executions of each approach. 
Table 1 shows the execution times obtained, where 
saliency detection with our multiscale color ratio 
method presents lower execution time than the other 
approaches. 

Table 2 shows the distribution of computing time 
between the most important tasks carried out by the 
proposed algorithm. The computation of center-
surround differences is only 8% of the total execution 
time, because these differences are computed at the 
scale of the centers, instead of at the source image scale. 
For example, for a 512x384-pixel image, the center-
surround differences between levels 3 and 7 are 
computed using the dimensions of the center image at 
the level 3 of the pyramids, i.e., 64x48 pixels. 

It can be observed that the task of initializing data 
structures represents a significant computational effort 
in the processing of visual saliencies. The better 
performance of the multiscale color ratio algorithm 
compared to the others is due to the fewer float 
operations necessary to compute the saliency, although 
the introduction of the logarithm operation is significant 
in the overall execution time. 

 

Table 1: Execution times for computing visual saliency 
with the three different approaches. 

Approach Seconds 
Intensity normalization 0.86 
Comprehensive color normalization 1.19 
Multiscale color ratio 0.77 

 
Table 2: Distribution of execution time between 

 the tasks performed within the multiscale 
 color ratio approach. 

Task Fraction of total 
execution time 

Conversion RGB to R’G’B’Y’ 0.21 
Logarithm of R’G’B’Y’ 0.22 
Pyramids ln(R’/G’), ln(Y’/B’) 0.23 
Center-surround differences 0.08 



Other tasks 0.26 

7 Conclusions 
In this paper we have compared three approaches to 
color constancy as applied to a landmark detection 
system based on opponent-color saliency. 

The first approach, lighting intensity normalization 
through the transformation of color from RGB to 
chromaticity space, has the drawback of producing a 
loss of some information, since it projects colors onto a 
lower dimensional space. More specifically, since each 
of the normalized colors is linearly dependent, only two 
of the normalized colors (e.g., r and g) are enough to 
represent the rgb space. Although this method is simple, 
it has shown an undesirable sensitivity to shadows and 
changes in the illuminant color. 

The comprehensive color normalization has proven to 
be more stable to illumination changes than the lighting 
intensity normalization, but presents higher 
computational cost and also produces undesired 
changes in the detected salient regions. The color 
constancy is affected by the global color measures in 
the image, and so the method is sensitive to the 
inclusion/exclusion of objects in the scenes. 

We conclude that, for the target application, our method 
is more suitable than the other, because it presents 
stable results with better correspondence of saliency to 
the image regions that that we want to use as landmarks 
in outdoor environments. This characteristic is obtained 
with an efficient algorithm, which presents a slight 
improvement in performance compared to the other 
approaches. 
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