Contour-based 3D motion recovery while zooming
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This paper considers the problem of 3D motion recovery from a sequence of monocular images while zooming.
Unlike the common trend based on point matches, the proposed method relies on the deformation of an active
contour fitted to a reference object. We derive the relation between the contour deformation and the 3D motion
components, assuming time-varying focal length and principal point. This relation allows us to present a method
to extract the rotation matrix and the scaled translation along the optical axis.
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1. INTRODUCTION

The ability to zoom provides an image defi-
nition that eases a range of visual tasks com-
mon in robot vision, such as structure recovery
or recognition. However, camera zooming invali-
dates most of the current solutions to computer
vision problems (e.g., tracking or calibration),
which assume constant intrinsic camera parame-
ters, and therefore demands new approaches [1,2].
Zooming does not only change the focal length
but also the principal point, due to optical and
mechanical misalignments in the lens system of
the camera [3,4]. The rest of intrinsic camera pa-
rameters (e.g., pixel size and aspect ratio) remain
constant for long periods of time [5] and may be
assumed known.

The process of calibration with the aid of a
calibration pattern [6,7] is inapplicable in real
time or in cases where the camera optical pa-
rameters undergo frequent changes. Different ap-
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proaches have recently emerged for autocalibrat-
ing the camera assuming time-varying internal
parameters [4,8,9]. They are based only on point
matches and do not exploit the constraints on the
geometric structure of the scene. Starting in [10],
efforts has been devoted to incorporate geometric
constraints in the reconstruction process [11-14].
The present work is based on an active contour
and explicitly takes into account the particular
geometry of a planar structure.

It is known that the 3D structure and mo-
tion can be recovered from a sequence of images
[15,16]. This requires a measure of the visual mo-
tion on the image plane and a model that relates
this motion to the real 3D motion. The bottle-
neck when trying to bring this into practice is
the computation of visual motion, which requires
at least a set of feature matches between frames.
Moreover, common methods for feature matching
perform particularly poorly when zooming. Not-
ing that the cumulative research on active con-
tours [17-19] provides an efficient tracking of ob-
jects, this work has been motivated by the idea
of building an algorithm for 3D motion recovery
upon an active contour tracker.

Previous works by the authors highlight the



feasibility of recovering 3D structure and motion
from the analysis of an active contour fitted to a
reference object. This is shown for different de-
grees of camera calibration [20,21] and for uncal-
ibrated cameras with constant intrinsic parame-
ters [22,23]. Here we extend the analysis to the
case of time-varying internal calibration parame-
ters due to zooming.

The work described in this paper stems from
a project aimed at the development of a walk-
ing robot for exploratory tasks [24]. Part of this
project is concerned with the design of a visual
system to provide the robot with enough auton-
omy to reach a visual target in natural scenes.
The paper is organized as follows. Section 2 re-
lates the deformation of a contour to the 3D mo-
tion components and the internal calibration pa-
rameters. Then, Section 3 describes the process
followed to recover the 3D motion components.
Section 4 shows two examples of the experiments
conducted to test the method. Finally, we draw
some conclusions in Section 5.

2. TWO-VIEW GEOMETRY OF A PLA-
NAR CONTOUR

An active contour is fitted to the occluding con-
tour Dg(s) of a reference object, which is marked
on-line by the operator and may have any shape.
This occluding contour can be written in para-
metric form as Do(s) = (Xo(s), Yo(s), Zo(s))”
where s is a parameter that increases as the con-
tour is traversed.

When there is a relative motion between the
camera and the object, the reference object
presents a new occluding contour which we de-
note D(s). Under weak perspective conditions,
i.e. when the object fits in a small field of view
and the depth variation of its points is small com-
pared to their distances to the camera, the oc-
cluding contour of the object can be assumed to
be a 3D curve that moves rigidly in 3D space.
As we are interested in tracking a distant target,
both conditions hold. Therefore,

D(s) = RDo(s) + T, (1)

where R is the rotation matrix and T is the trans-
lation vector corresponding to the 3D rigid mo-

tion.

Moreover, the weak perspective conditions al-
low us to assume also a simplified camera model
to analyse the projection of the 3D curve onto the
image plane.

The projection do(s) (called, hereafter, the
template) of the 3D curve in the initial frame,
Do(S), is
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where f®), u((f), vy~ are the focal length and prin-
cipal point for frame i; K,, K, denote the pixel
size, and Zj is the distance from the camera to
the target at the reference frame.

The projection of the 3D curve in a subsequent
frame 1 is
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where R;; are the elements of the rotation matrix
and T; are the elements of the translation vector.
The geometry that relates a view ¢ of the planar

contour with the template is derived by combin-
ing equations (2) and (3),
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The above equation can be rewritten as
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The difference between the curve at a particu-
lar instant and the template is
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where I is the 2 x 2 identity matrix. This equation
can be rewritten as
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ality, the center of the template is assumed to be
equal to the principal point in the initial frame,
then equation (6) can be rewritten in terms of
dg(s) and d'(s), that is, the projected contours
referred to the template’s centroid, as

d’'(s) —dg(s) = (L —T)dg(s) + p + Au. (7)

This result shows that the changes in the contour
at each frame correspond to affine deformations
of the template.

The affine parameters are L and r £ p + Au.
These are recovered from the shape of the contour
at each frame using an active contour tracker [17,
19], based on a Kalman filter(see [22] for details).

The pixel size and, hence, the aspect ratio are
constant along a sequence, and they are usually
provided with the camera specifications. Assum-
ing a known aspect ratio A = Ilg“', the L matrix
can be rewritten as :
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Then, without loss of generality, A can be as-
sumed equal to one, and a simplified matrix Lg

can be computed
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3. EXTRACTION OF 3D MOTION PA-
RAMETERS

In this section we derive the relation between
the affine parameters described above and the 3D
motion components: 3D rotation R and 3D trans-
lation T. The rotation matrix can be written in
terms of the Euler angles,

where R,(¢) and R,(¢) are rotation matrices
about the Z axis and Rx(0) is a rotation matrix
about the X axis.

Using the Euler notation to represent the rota-
tion matrix, equation (8) can be rewritten as
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where Rz denotes the 2 x 2 submatrix of R.
Then,
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This last equation shows that 6 can be computed
from the ratio of eigenvalues of LgLg”, namely

(A1, A2),
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is the largest eigenvalue.



The angle ¢ can be extracted from the eigen-
vectors of LgLg” . The eigenvector vy with largest
eigenvalue equals the first column of R,|2(¢),
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At this stage, 1 can be deduced by isolating
R.|2(¢) in equation (10),
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Observing, from (12), that
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we can find siny and then 1. Once the angles
1,0, ¢ are known, the rotation matrix R can be
computed as in equation (9).

From equation (13) the scaled depth is recov-
ered as
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This recovered depth depends on the relation be-
tween the focal lengths in consecutive frames. In
robot vision applications, one may assume that
the robot controls the zooming factor. Hence, the
relation between focal lengths at different time
instants may be assumed known even when the
exact focal length is unknown.

The other two components of the translation
vector can be written, from equations (4) and
(12), as
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(K, K,) are known from the pixel size, r is ob-
tained as a tracker output and A; has been de-
duced above as the largest eigenvalue of LgLg” .
Thus, we observe that the recovered scaled trans-
lation depends on the difference between the prin-
cipal points in consecutive frames. This difference
is usually small and depends on the changes in the
focal length [4,11].
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4. EXPERIMENTAL TESTS

Before incorporating the technique to the vi-
sual system of the robot ARGOS [25], for which
it has been developed, we have performed some
experiments in a more controlled setting. Two ex-
amples of the experiments conducted to test the
method in the laboratory are presented. Both use
an uncalibrated camera with freely varying inter-
nal parameters (i.e. focal length and principal
point).

An active contour has been fitted to a printed
square with sharp edges in order to ease the task
of the tracker and evaluate the performance of the
3D motion estimation aside of the tracker. The
estimated motion is graphically represented by a
virtual object drawn in the middle of the image.
The size of the virtual circle draws the estimated
translation along 7, while its orientation depicts
the 3D rotation.

The first experiment aims to show the zoom
invariance of the recovered 3D rotation. Hence,
both the target and the camera remained still
while the zoom factor changed. Figure 1 shows
three different frames of the sequence. As ex-
pected, the estimated 3D rotation is invariant to
zooming, while the estimated translation along 7
changes proportionally to the zoom factor.

Figure 2 draws a sample of the results obtained
for different 3D motions and camera zooming fac-
tors. For practical convenience, the target was
moved in front of the zooming camera instead of
the equivalent situation, in which the target re-
mains still while the camera moves and zooms.
Again a virtual object is drawn in the middle of
the screen following the motions of the target.
The first image (A) is the initial view, which is
taken as the template. The following frames (B
to E) show the recovered motion after different
movements of the target while the camera zooms
in, and finally view (F) shows the estimated 3D
motion when the camera zooms out. We verify
that the proposed method provides qualitatively
correct results.



Figure 1. Invariance of 3D rotation recovery while zooming. The target remains still while the camera
zoom factor changes. The estimated 3D rotation is invariant to zooming, while the estimated translation
along Z changes proportionally to the zoom factor.



Figure 2. 3D motion recovery while zooming. The first image is the initial view, which is taken as the
template. The subsequent images show a virtual object drawing the recovered motion after different target
movements and camera zooms.



5. CONCLUDING REMARKS

We have analysed how the deformation of an
active contour can be used to extract the 3D mo-
tion components while zooming. The basis of the
method draws on ideas from previously published
papers by the authors [21,23], and fills the re-
maining hole in the analysis of the deformation of
an active contour for different assumptions about
the intrinsic camera parameters.

The theoretical deduction along with the exper-
imental results show that the 3D rotation matrix
can be reliably recovered while zooming. How-
ever, as one could expect, the scaled depth is dis-
torted by the camera zoom. On the other hand,
the change in the principal point due to the zoom
affects the recovery of the other two components
of the 3D translation vector. The experiments
have been conducted with a monocular camera,
hence the results keep the ambiguities common in
this case. However, the deduction may be easily
extended to a stereo rig.
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