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Abstract-Given a set of affine varieties in si, i.e. planes, 
lines, and points, the problem tackled in this paper is that 
of finding all possible configurations for these varieties that 
satisfy a set of painvise euclidean distances between them. 
Many problems in Robotics -such as the forward kinematics 
of parallel manipulators or the contact formation problem 
between polyhedral models can he formulated in this way. 
We propose herein a strategy that consists in finding some 
distances, that are unknown a priori, and whose derivation 
permits solving the pmhlem rather trivially. Finding these dis- 
tances relies on a branch-and-prune technique that iteratively 
eliminates from the space of distances entire regions which 
cannot contain any solution. This elimination is accomplished 
by applying redundant necessary Conditions derived from the 
Theory of Cayley-Menger determinants. The experimental 
results obtained qualify this approach as a promising one. 

I. INTRODUCTION 

The resolution of systems of geometric constraints has 
aroused interest in many areas of Robotics (contact analy- 
sis, assembly planning, forward kinematics of parallel ma- 
nipulators, path planning of closed-loop kinematic chains, 
etc.) and CAD/CAM (constraint-based sketching and de- 
sign, interactive placement of objects, etc.). The solution of 
such problems entails finding object positions and orienta- 
tions that satisfy all established constraints simultaneously. 

Several methods are available for translating a system of 
geometric constraints into a set of algebraic equations to be 
solved. Thus, the general methods developed for finding all 
the roots of such sets of equations can be readily applied 
to this problem. Among all possible alternatives, our group 
has been exploring the interval-based approaches for one 
main reason: they are fully numerical, as opposed to those 
based on elimination theory or computer algebra. We first 
'applied the Hansen algorithm -which uses an extension of 
the Newton method to interval arithmetic, known as inter- 
val Newton method- in conjuntion with some necessary 
conditions, that can he directly drawn from the problem 
itself, to speed up the convergence [3]. Afterwards, we 
applied the subdivision property of Bemstein polynomials 
which, while maintaining the quadratic convergence to the 
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solutions of the Hansen algorithm, avoids the computation 
of derivatives [2]. 

This latter technique boils down to a remarkably simple 
algorithm when the problem can be described only by 
multilinear equations. Since the description of any arbitrary 
geometric constraint problem can he expressed in terms 
of such a set of equations plus a certain number of circle 
equations, we explored the application of only one of these 
equations at a time to reduce the search space [14]. This 
approach combined the success of the iterative application 
of necessary conditions and the simplicity of the multilinear 
equations. It also showed that the application of redundant 
necessary conditions permits delivering fairy small regions 
of the search space containing all the solutions without 
relying on a global consistency test. 

We present here a step further in this progression, where 
we depart strongly from the usual formulation in that our 
variables are now distances instead of degrees of freedom 
linked to artificial reference frames. We still take advantage 
of the application of redundant sets of necessary conditions 
expressed as multilinear equations, hut these conditions are 
now standardized coordinate-free equations derived from 
the Theory of Cayley-Menger determinants. The result is 
a branch-and-prune technique that obtains some distances 
unknown in the original problem, compatible with the 
established geometric constraints, which permit solving it 
rather trivially. 

The paper is structured as follows. In Section 11, Cayley- 
Menger determinants are briefly introduced. Using them, in 
Section 111 it is shown how geometric constraints, such as 
aligment or orthogonality, can be translated into constraints 
involving only distances. Then, the proposed branch-and- 
prune algorithm is detailed in Section IV. Two applications 
of the method in the areas of robot kinematics and geo- 
metric design are presented in Section V, and finally some 
conclusions are drawn in the closing section. 
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11. CAYLEY-MENGER DETERMINANTS 
Let us define the function 

where p l , .  . . ,pn are n points in 9Z3 and r . .  = [ \pi  -pj1I2, 
i.e. the square distance between pi and pj. Obviously, 
rij = rji.  The previous determinant is the general form of 
the Cayley-Menger determinant. It was first used by A. 
Cayley in 1841 [4], but it was not systematically studied 
until 1928, when K. Menger showed how it could be used to 
study convexity and other basic geometric problems [ l l ] .  
Nowadays, this determinant plays a fundamental role in 
the so-called "Distance Geometry," a term coined by L. 
Blumenthal in [ I ]  which refers to the analytical study of the 
Euclidean geometry in terms of invariants without resorting 
to artificial coordinate systems. 

' I  

If n = 2, 
(1) 

- 
dPI>PZ) = 2 112. 

I f n = 3 ,  
B ( P ~ , P , , P ~ )  = -16A2,  (2) 

where A is the area of the triangle defined by p I ,  p,. and 
ps. Actually, Eq. (2) is Herron's formula, which permits to 
obtain the area of a triangle in terms of the lengths of its 
edges. 

If n = 4, 

(3) 

PZ. P,, and p4. If =(P,,  PZ, p3, p4) vanishes, P,  P,. P, , and 

- 
=(PI>PZ>P3>P4) = 288 v2, 

where V is the volume of the tetrahedron defined by p 

p4 lie on the same plane. If it gives a negative value, the 
tetrahedron cannot be assembled with the given distances. 
Actually, Eq. (3) is known as Euler's tetrahedron formula. 

I f n > 4 ,  
= ( P I , . .  . ,P") = 0 (4) 

because this determinant essentially gives the volume of a 
simplex in 9Zn-I  but, since this simplex is degenerate in 9X3, 
its volume is zero. Note that equations of this type consti- 
tute necessary conditions that a set of interpoint distances 
must fulfill, if the point configuration they describe must be 
realizable in '3,. 

111. GEOMETRIC CONSTRAINTS 
AS DISTANCE CONSTRAINTS 

Many geometric constraints can be expressed in terms of 
distances (i.e., in a coordinate-free form) by using Cayley- 
Menger determinants. Below, we derive three such con- 
straints: collinear points, orthogonal segments and point- 
line distance. 

- 
4 6 

R g  1 Segment-trapezoid clippmg. 

Three points p l , p 2 ,  and ps are collinear if, and only if, 
=(pl ,pZ,  p,) = 0. This follows from Eq. (Z), since the area 
of the triangle defined by three collinear points is null. 

Two adjacent segments p,pZ and pZp3 are orthogonal if, 
andonly if, E(p,,p,) +B(p,,p,) -B(p, ,p,)  = 0. This is 
a rewriting of Pythagoras' theorem by using Eq. (I) .  

Finally, the distance d between a point pI  and a line 
passing through pz and p3 satisfies the equation 

- 

E ( P I , P , , P ~ ) + ~ ~ Z ~ ~ *  =0, ( 5 )  

which follows from Eq. (2 )  and the fact that, in this case, 
A' = rZ3d2/4. 

Section V will exemplify how kinematic or geometric 
constraint solving problems can be formnlated and solved 
on the basis of distance constraints like those introduced 
above. 

IV. THE ALGORITHM 
The algorithm we present, based on that introduced 

in [14], solves a system of multilinear equations with n 
variables isolating the solutions contained in an initial box 
9 C %",by iteratively cutting off portions of 9 containing 
no root. Both Cayley-Menger determinants and identity 
relations rij = rji are multilinear and, thus, this algorihtm 
can be used to solve systems of Cayley-Menger equations. 
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'he Solver 
Input: A set of multilinear equations 
Output: A set of solution boxes (S) 
Process: 
S t 0  
L t Initial list of boxes 
while not empry(L) 

1 t j r s r  box(L) 
do 

I 

bp 
n, 

s t s i ze (9 )  
ReduceBox(1) 

redundant redundani 
<0.01(0.W) <0.01(0.35) 0.03(0.281 0.03(2.15) 

7 I8511 3 (14771 65 (2173) 39 (6841) 
21861 2 (671 27 (680) 8 (764) 

until empty(9)  or s i z e ( g ) <  o or size(g))/s > p 
if not empty(9)  then 

if size(W)< o then 

else 
S C S U { 1 }  

Split 9 into two sub-boxes: 1, , a2 
Add 9, and B2 to L 

endif 
endif 

end while 

Fig. 2. The main loop of the equation solver. 

teduceBox(9) 
Input: A box defined as a set of intervals: 

B= ~r.',,*;l,...>l.'.,xl~ 
Output: The same box. hut eventually resized 
ProCes: 

for each equation f of the form f (x) = 6 
V e { v o l . .  . , v k }  (Indices of variables in j) 

for each Y E V 
F = {f(.) Ix E {40>$o} x ... x {4&&}} 

min' t min{f I f  E F, x, = & j  
mad t max{f I f t F,  xu = &} 
minu t min{f I ~ E  F, x, =$j 
m u "  t max{flf E F, x, =$} 
li.apezoid.Clipping(x:, 4, 

min',max',minu, max', 6 
endfor 

endfor 

Fig. 3. The ReduceBox function. f ( x o , .  . . , x k )  refers the evalua- 
tion of the equation f at point (+,, . . . ,+). 

The reduction of a given box is based on the following 
lemma, which is a direct consequence of Theorem 1.1 
in [16]: The point (x,f(x)) E W+', where f is a scalar 
multilinear function and x = ( x  , , . . . , xn )  E 1.: ,.$I x . . . x 
[4,$], is contained in the convex hull of the 2" points 

Assume we want to find all solutions of a multilinear 
equationf(x)=S,forx=(x,,x2)inthebox%=[x~,$] x 
[44] E YI2. Since (x,f(x)) must lie within the convex 
hull of the 2' points {(x,f(x))l x E { x i , $ )  x {4,$}},  
we can compute the convex hull of these points in 9Z3 and 

{(x>f(x))lxk E {4>$1}. 

TABLE I 
THE ALGORITHM'S PERFORMANCEON THE FORWARD 

KINEMATICS OF THE OCTAHEDRAL MANIPULATOR. 

intersect it with the plane f(x) = S to obtain a polygon 
whose rectangular hull gives a better bound for the solu- 
tions. Although this method is inefficient for a high number 
of variables, it can be simplified through the following 
variation: we simply project the hull onto each coordinate 
plane, as depicted in Fig. 1 (top), and intersect each of the 
resulting trapezoids with the f(x) = S line, as shown in 
Fig. I (bottom). Usually, these segment-trapezoid clippings 
reduce the ranges of some variables giving a smaller box 
(the black rectangle in Fig. I-top) but still bounding the 
root locations. The experiments show that, although this 
strategy produces less pruning than the convex hull-plane 
clipping, it results advantageous due to the lower cost of its 
operations. 

Our solver (Figs. 2 and 3) reduces the boxes that bound 
the initial search space by applying the trapezoid-line clip- 
ping just described. If, for a given box, there is no intersec- 
tion between the line and the trapezoid, the box contains 
no solution and we can simply stop the exploration in the 
search space delimited by that box. After the application 
of the clipping process for all equations and variables, 
boxes whose longest side becomes smaller than a given 
threshold are considered solution boxes. In Fig. 2, this 
longest side and the threshold are denoted by size(%) and 
U, respectively. Finally, boxes that cannot he significantly 
reduced (i.e., the reduction ratio of their longest side is 
above a given threshold p )  are split and the two sub-boxes 
are added to the list of boxes still to be processed. The result 
of this process is a set of small boxes S that includes all 
solutions for a given set of equations. 

V. EXPERIMENTS 
The previous algorithm has been implemented in C and 

we next show how it performs in two test cases: solving the 
forward kinematics of octahedr?l manipulators, and finding 
all lines simultaneously tangent to four spheres. 

A. Solving the octahedral manipulator 

An octahedral manipulator is formed by two triangles, 
the base p,p2p3 and the platform p4p5p6, joined by six 

p,p5 (Fig. 4a). The forward kinematics problem is to find 
all poses of the platform (relative to the base) that are 

linearly-actuated legs: pIp5,  pLp6, p2p6. p2p4. p3p4 and 

344 

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on April 15, 2009 at 10:35 from IEEE Xplore.  Restrictions apply.



h 
Ps 

Fig. 4. Points and parameters involved in the test cases. 

compatible with the six specified leg-lengths. No closed- 
form solution is known to this problem, hut numerical 
procedures have been given that involve finding the roots of 
an 8th-degree univariate polynomial, obtained by symbolic 
elimination techniques [ 5 ] ,  [13] .  Using Cayley-Menger 
determinants, though, it is possible to give the following 
simple formulation of the problem, directly solvable by 
the above algorithm. To this end, consider the following 
Cayley-Menger equations: 

- 
=(P1>P3’P4>PS’P6) - = 0, (6) 

Note that, among all involved distances, onlyr1 ,4  and r3,6 
are unknown, and that once the system is solved for them, 
we can determine the spatial position of the three points 
of the platform by trilateration [17 ] ,  since each of these 
points will have a tripod of known lengths with three points 
at a known position, We may now use our algorithm to 
solve these equations. Figs. 5a and 5h show the results for 
two different sets of leg-lengths. In both cases, the base 
and platform triangles are equilateral, of side sqr t (3 )  and 
sqr r (3 ) /2 ,  respectively. Fig. 5a shows the solution boxes 
found when the leg-lengths are set to r1,5 = r2,6 = r3,4 = 
4.25 and r1,6 = r2,4 = r3,5 = 5.75, a case hereafter referred 
to as configuration “a”. Fig. 5b shows the solution boxes 
when all leg-lengths are set tu 4.75, a case hereafter referred 
tu as configuration “b”. Insight into the behaviour of the 
solver may be get by comparing these two outputs with 

=(PI >PZ> P3 .P4>P6) = 0. 

i __ 
1 

.I 

1. 

r3.6 

I ’  

1 

9 \ ‘ 1  

I 

t I  

(g) (h) 

Fig. 5 .  Solving the octahedral manipulator. The numbers in (a), 
(b), (c) and (d) indicate the mount of solution boxes returned 
around each solution point. 

the corresponding plots of the implicit curves of Eqs. (61, 
shown in Figs. 5e and 5f. Note that while in configuration 
“a” the two curves are rather different and intersect only in 
two points, in configuration “b” they are quite close tu one 

345 

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on April 15, 2009 at 10:35 from IEEE Xplore.  Restrictions apply.



another and intersect in six points, with tangency on two of 
them. This proximity explains why our solver gives larger 
clusters of boxes in Fig. 5h than in Fig. 5a. 

We may add redundant equations to the system of 
Eqs. (6). For example, if we add the remaining Cayley- 
Menger equations of five points, 

- 
‘(Pz, P3 1 Pqr Ps, Pg) = 0, 
=(PI - 1 PZ>P4>P5,P6) = 0, 
=(PI >P2>P3> P5,PS) = 0, 
E(P,,P,>P3>P4,P5) = 0: 

- 
(7) 

we end up with a system of six equations in three un- 
knowns. The solution boxes found by the solver are dis- 
played in Figs. 5c and Sd, for configurations “a” and “h”, 
respectively. Comparing Figs. 5a and 5b with Figs. 5c 
and Sd, we clearly see that the use of redundant equations 
produces extra pruning, and that the solutions are bounded 
with higher accuracy. Table I shows the execution time f for 
both configurations’, the number b, of boxes processed by 
the algorithm, and the number ns of solution boxes found. 
These statistics are separately given for the non-redundant 
formulation of Eqs. (6). and for the redundant one involving 
Eqs. (6) and (7). In parentheses, the table also gives I,  b ,  
and n,, for a slightly modified version of the algorithm 
that uses interval arithmetic to compute the vertical sides 
of the trapezoids, instead of evaluating the 2“ control 
points involved. In all cases, the global control parameters 
have been set to 0 = 0.1 and p = 0.9. The table clearly 
shows the positive effect of adding redundant equations: 
although the two configurations are solved in practically 
the same time, in the redundant case fewer boxes have to 
be explored. It is remarkable that, for configuration “a”, the 
redundancy of equations allows to isolate the solutions by 
only exploring three boxes, the minimum required when 
two solutions exist. In configuration “h”, the solver also 
isolates the solutions, hut returns whole clusters of boxes 
for those lying in tangency points (Fig. 5b). This effect 
is nevertheless reduced when adding redundancy, as the 
delivered clusters contain only two boxes each, as shown 
in Fig. 5d. 

The cost of processing each box during the segment- 
trapezoid clipping is 0(2”) ,  where n is the maximum 
number of variables per equation. When using interval 
arithmetic in this process, this cost is reduced to O(n)  but, 
despite this lower complexity, we observe that both f and 
b, increase considerably in this case, as shown in the table. 
This is due to the fact that interval arithmetic yields looser 
hounds for the vertical sides of the trapezoids. 

Finally, this example is useful to illustrate how the 
presented algorithm does not suffer from two common 
problems of classical root-finding procedures. On the one 
hand, it is immune to singularities of the Jacobian of the 

‘Time in seconds. on a Pentium IV PC at 1.8 GHz. 

TABLE11 

THE ALGORITHM’S PERFORMANCE WHEN COMPUTING ALL 
LINES TANOENT TO FOUR SPHERES. 

equations because it does not use derivative information. 
Certainly, this is a typical drawback of Newton-Raphson 
methods. Given a system of equations F(x )  = 0, such 
methods iteratively work on an estimation xi of the solution 
to derive a better estimation x K I  using the recurrence 
xi+1 = xi - D-’ . F ( x i ) ,  where D is the matrix of partial 
derivatives of F ( x ) .  Clearly, when D is close to singular, 
the method may fail to converge. Figs. 5g and 5h show 
iso-contours of the determinant of D for configurations “a” 
and “b’, overlaid with the curves in Figs. 5e and 5f, re- 
spectively. The white areas correspond to points where this 
determinant is lower than One can verify that, using 
the Newton-Raphson routines of MAPLE, for example, it is 
impossible to compute the two solutions where the curves 
in Fig. 5f are tangent, precisely because they lie inside a 
region of near-singularitiness of D. On the other hand, it 
is well-known that the numerical stability of polynomial 
root finding is often surprisingly low [15], 171 and that 
a very small perturbation in just a few coefficients can 
yield solutions completely different from the intended ones. 
Classic solutions to the forward kinematics problem that 
rely on solving a resultant polynomial must carefully deal 
with this issue, specially in configurations of the platform 
near a singularity, where solutions may completely be lost. 
Contrarily, our algorithm is robust in this sense because it 
directly works with the input equations. 

B. All lines tangent to four spheres 

Given four spheres of radii r l  , . . . , r4 in 913, with their 
centers located in pl,. . . p4, we want to find their common 
tangent lines. Equivalently, the problem can be stated as 
finding all possible lines that keep the prescribed distances 
rI ~. . . , r4 to the four points pl,. . . ,p4. This problem was 
first formulated by Larman [91, and later discussed by 
Durand [6], Karger [SI, and Verschelde 1181, and finds sev- 
eral applications in Computer Graphics and Computational 
Geometry. It has been proven that there are at most twelve 
discrete solutions and that this hound is tight. A method to 
find them has been recently given by MacDonald et al. [IO] 
who formulate it as a system of two algebraic equations, 
a cubic and a quanic, in the involved point and vector 
coordinates. After elimination, this yields a seventh degree 
univariate resultant that must be numerically solved. As 
an alternative, one can arrive at the following coordinate- 
free formulation, directly tackleable with the presented 
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constraint solver. 
First, we characterize the tangent line 1 by two points 

on it, say ps and p6, placed a unit distance apart, such 
that ps is the tangent point of I with the first sphere. (See 
Fig. 4b.) With this, and using the right triangle p1psp6. 
we directly see that r,,6 = rl + 1. Finally, we state the 
following distance constraints among all points in S = 
{pl,. . . , p6}, defining a redundant system of ten equations 
in six unknowns: 
C1: Three constraints of the form of Eq. ( 5 )  to force that the dis- 

tance from each of p2,. . . ,p4 to 1 be r 2 , .  . . ,r4, respectively. 
C2: The two Cayley-Menger equations of live points 

~ ( P ~ ~ P ~ ~ P , , P ~ , P ~ )  = 0. and 2(p,,p2.p3,p4,p6) = 0. 
each involving three unknowns. 

C3: The remaining four Cayley-Mengcr equations of five points 
of S, three involving four unknowns, and one involving six 
unknowns. 

C 4  The unique Cayley-Menger equation of the six  points in S, 
with six unknowns. 

One can now use the solver to treat them all together, hut 
it is illustrative to successively apply it to larger subsets of 
these equations instead, and see the outputs. Let us study 
the case where all inter-center distances are &, and all 
radii are 1.45, for which 12 solutions exist [IO]. If we start 
by setting U = 0.1 and we just consider the five constraints 
in C1 and C2, we obtain the one-dimensional continuum 
of solutions depicted in Fig. 6a. The continuum disappears 
when we solve C1, C2 and C3 together, as seen in Fig. 6h, 
giving rise to very large clusters of solution boxes. These 
can be further reduced if the last constraint C4 is taken 
into account, to get the box clusters in Fig. 6c. At this 
point we have exhausted all possible distance constraints 
between the selected points and we cannot further reduce 
the clusters, unless we ask a higher accuracy to the solver. 
If we do this, by setting U = 0.01. we get the small clusters 
in Fig. 6d, each corresponding to one of the 12 solutions 
of the problem. (Actually, two pairs of clusters appear 
overlaid, but they can he seen separated by choosing a 
proper projection.) 

Table I1 gives the values o f t ,  b ,  and n, for the last two 
experiments. The 0 = 0.1 and 0 = 0.01 columns corre- 
spond, respectively, to the computation of Figs. 6c and 6d. 
Both experiments have been done with p = 0.99. We note 
that the time to compute the solutions does not increase 
substantially, despite the fact that U has been decreased 
by one order of magnitude in the second experiment. Fur- 
thermore, although a higher number of boxes is processed 
for 0 = 0.01, the final number of solution boxes remains 
practically the same as for U = 0.1. This is not casual. 
One can see that, from a certain point, after asking higher 
and higher accuracies to the solver. the number of boxes - 

Fig. 6. Output for the second test case. The lengths of the axes in 
(b), (c) and (d) correspond to the shaded area in (a). 

around each solution point will practically remain constant. 
This phenomenon, known as the cluster effect, was already 
observed in [IZ], and its avoidance constitutes part of our 
current research. 
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VI. CONCLUSIONS 
We have presented a general algorithm for solving sys- 

tems of geometric constraints. The algorithm is complete 
in the sense that it does not lose any solution. The com- 
bination of il branch-and-prune technique with the use of 
coordinate-free standardized constraints has proven effec- 
tive to achieve this. 

According to our experiments, the addition of redundant 
constraints speeds up, in general, the resolution process 
and reduces the number of final boxes delivered. Although 
not illustrated by the presented examples, the addition of 
redundant variables, on the contrary, usually introduces a 
trade-off between the number of final boxes and execution 
times: as the number of redundant variables is increased, 
the solver needs longer execution times hut, in return, it 
obtains a lower number of final boxes. 

The algorithm as it stands leaves many choices open, as 
it is usually the case in constraint-based search (variable 
ordering, constraint selection, redundacy dosage, etc.). This 
offers a range of possibilities to speed up the resolution 
process, which we will tackle in future research by devising 
good heuristics for the choice points above. 
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