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Abstract

A method for estimating mobile robot egomotion is
presented, which relies on tracking contours in real-
time images acquired with an uncalibrated monocular
video system. After fitting an active contour to an
object in the image, 3D motion is derived from the
affine deformations suffered by the contour in an im-
age sequence. More than one object can be tracked
at the same time yielding some different pose estima-
tions. Then, improvements in pose determination are
archieved by fusing all these different estimations. In-
ertial information is used to obtain better estimates,
as it introduces in the tracking algorithm a measure of
the real velocity. Inertial information is also used to
eliminate some ambiguities arising from the use of a
monocular image sequence. As the algorithms devel-
oped are intended to be used in real-time control sys-
tems, considerations on computation costs are taken
into account.

1 Introduction

Points have been the traditional source of informa-
tion for image-based tracking algorithms. More com-
plex structures such as lines and corners have also
been used. Recently, active contours fitted to image
objects have been proposed as tracking features [7],
especially in applications not requiring a high preci-
sion, as it is the case of robot navigation. Tracking
active contours provides an estimate of robot position
and orientation (”pose”, for short), by relating it to
the changes of the contour projection in the image
plane. A monocular vision system is used and the im-
age projection is modelled using the weak-perspective
camera model.

The algorithm for pose recovery has the following
four steps. First, the active contour has to be ini-
tialised. One common way to represent active con-
tours is by using b-splines [1]. In this work, initial-
isation of the b-spline is manually performed by an
operator. When corners are present, the use of a cor-
ner detector [5] improves the initial adjustment. Au-

tomatic initialisation techniques have been proposed
[3] and tested with good results. Since we are as-
suming weak perspective, only affine deformations of
the initial contour will be allowed by the tracker and,
therefore, the initialisation process is important as it
determines the family of affine deformations that the
contour will be allowed to adjust to.

Second, a tracking algorithm recognises the new
position of the contour in the image and computes the
change in position. A Kalman filter is used to inte-
grate this new measurement with the history of previ-
ous ones. Since an affine deformation of a b-spline can
be parameterised using a shape vector [2], this is used
as the state vector for the filter. The shape vector is
a set of 6 parameters representing the deformation of
the b-spline independently of the complexity and the
number of control points of the b-spline used. Track-
ing one contour provides an estimation of its shape
vector S and its associated covariance matrix ΓS .

The tracking strategy is here enriched by using in-
formation provided by inertial sensors. Tracking at
low velocities is known to be a favourable case, while
tracking usually fails at high velocity rates. Using the
good conditioning of inertial sensors precisely to de-
tect relative high velocities, the tracking algorithm is
improved by introducing the measured dynamics.

Third, from the shape vector S, the 3D camera
pose is computed. It has been proved [6] that it is
possible to obtain rotation and tranlation information
from the shape vector by using SVD decomposition
techniques. Using these techniques, the difference be-
tween the initial and the current pose is computed. It
is worth noting that this is not an incremental method
and, consequently, it does not suffer from the typical
accumulative bias produced by signal integration in
odometry and inertial-based navigation systems.

Finally, by fusing the information provided by
the several contours available in the image, the 3D
robot pose is obtained. Rotations are absolute values,
whereas translations are recovered up to the scaled
depth. Inertial measurements are useful also here to
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solve some ambiguities in the result arising from the
use of a monocular vision system.

The paper is structured as follows. The next sec-
tion makes some considerations to be taken into ac-
count in the redesign of the tracking algorithms to
allow for the simultaneous tracking of several active
contours. Section 3 gives the main ideas to under-
stand the tracking of one contour and how inertial
data is used to improve tracking, and the next section
explains how to extract 3D pose from tracked con-
tours. Section 5 describes how inertial information
helps to solve some ambiguities of the recovered pose.
The results of two experiments are presented in Sec-
tion 6 and, finally, some conclusions and the envisaged
future work are discussed in Section 7.

2 From one to n trackers

One tracker provides, in principle, enough informa-
tion to obtain an estimate of the change in robot pose
from the initial frame. Although the tracking algo-
rithm is designed to be robust to some kinds of par-
tial occlusions, there are some situations where the
tracker gets necessarily lost and fails to recover the
true 3D pose. For example, under an automatic ini-
tialisation scheme, a contour may be fitted to a mov-
ing object. In this case, the estimate would not be the
robot movement, but the relative motion between the
moving object and the vehicle (note that, if the cam-
era is known not to be moving, then the object move-
ment is recovered). An active contour can also be ini-
tialised to fit a very close object, or a robot trajectory
may take objects closer to the camera. In such situ-
ations, perspective effects appear. Affine transforma-
tions are then not enough to encode the deformations
of the contours in the image and errors in the recov-
ered pose become larger. Moreover, due to the camera
model adopted, the depths of the points that form the
contour must be small, as the contour is taken to be
a planar one. Effects of apparent contours[4] in the
image may produce large errors in estimates.

By tracking simultaneously more than one contour
in the image, several pose estimates are obtained. It is
expected that, by fusing all these estimates, improve-
ments in both pose estimation and tracking robustness
will be obtained.

Since all contours deform as a result of the same
camera motion, one could easily think of sharing the
same Kalman filter state between all contours. How-
ever, taking into account the differences in initialisa-
tion, as well as the disruptive phenomena explained
above, it turns out that this is not a good option.
Trackers should be as independent as possible to pro-
vide separate estimates, most of which will hopefully
be free of the disruptions in image projection men-
tioned above. In this way, outliers could be spotted
and a reliable estimate could be derived by fusing the

estimates from the remaining trackers.
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Figure 1: Software design allowing the tracking of
several contours.

Following this idea, the software design is shown
in Figure 1. Each tracker can be seen as a different
sensor.

3 Tracking strategy

The objective of tracking is to follow an object con-
tour along a sequence of images. Due to its repre-
sentation as a b-spline, the contour is divided nat-
urally into sections, each one between two consecu-
tive nodes. For the tracking, some interest points are
defined along each contour section. Passing through
each point and normal to the contour, a line segment
is defined as shown in Figure 2. The search for edge
elements (called “edgels”) is performed only for the
pixels under these normal segments, and the result is
the Kalman measurement step. This allows the sys-
tem to be quick, since only local image processing is
carried out, avoiding the use of high-cost image seg-
mentation algorithms.

Once edge elements along all search segments are
located, the Kalman filter fuses this measured contour
with that predicted from previous history, so that the
resulting shape vector is always an affine deformation
of the initial contour.

The length of the search segments is determined
by the covariance estimated in the preceding frame
by the Kalman filter. This is done by projecting the
covariance matrix into the line normal to the contour
at the given point. If tracking is finding good affine
transformations that explain changes in the image, the
covariance decreases and the search segments shrank.
On the one hand, this is a good strategy as features
are searched more locally and noise in image affects
less the system. But, on the other hand, this solution
is not the best for tracking large changes in image
projection.

Large changes in image position can be produced
by quick movements of the camera, but also by slow
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Figure 2: An image with a contour and its search
segments highlighted.

movements when the object is close to the image
plane. As mentioned above, a weak-perspective model
is used for camera modelling. To fit the model, the
camera field-of-view has to be narrow. In such a situ-
ation, distant objects may produce important changes
in the image also in the case of small movements of
the camera.

For each search segment normal to the contour, the
scale factor is computed as:

SearchScale =
√

NT (HPHT )N

where N are the normal line coordinates, H is the mea-
surement vector and P is the 6 × 6 top corner of the
covariance matrix. Detailed information can be found
in [2].

Note that, as covariance is changing at every frame,
the search scale has to be recalculated also for each
frame. It is also worth noting that this technique pro-
duces different search scales depending on the orienta-
tion of the normal, taking into account the directional
estimation of covariance of the Kalman filter.

Inertial information is added by multiplying the
current covariance submatrix by a matrix representing
systematic deviation.

Pi = P ∗ V

SearchScale =
√

NT (HPiHT )N

where V is the measurement vector for the inertial
sensing system.

In the case of having sensed velocities in a mobile
robot, as in our experiments, the matrix representing
sensed data with the change of reference frame is of
the form:

V =

















1 .. 1
vy

. vx .

. vω .

1
1 .. 1

















As will be shown in the experiments section, the
tracking algorithm improves when using data from in-
ertial sensors to scale the computed covariance.

4 Obtaining 3D pose from shape vector

Under weak-perspective conditions, the rigid mo-
tion of a 3D contour D(s) relative to a reference con-
tour D0(s),

D(s) = RD0(s) + T,

projects on the camera as an affine deformation of
the projection of the reference contour, namely the
template, that can be expressed as:

d(s)− d0(s) = (M − I)d0(s)

where I is the identity matrix,

M =
Z0

R33Z0 + TZ

[

R11 R21

R21 R22

]

, (1)

t =
1

R33Z0 + TZ

[

Z0R13 + Tx
Z0R23 + Ty

]

, (2)

Rij are the elements of the 3D rotation matrix R, Ti

are the elements of the translation vector T and Z0 is
the distance from the template D0(s) to the camera.

Using the Euler notation to represent the rotation
matrix,

R = Rz(φ)Rx(θ)Rz(ψ), (3)

equation (1) can be rewritten as

M = Z0

Tz+R33Z0

Rz|2(φ)Rx|2(θ)Rz|2(ψ) =

= Z0

Tz+R33Z0

Rz|2(φ)
[

1 0
0 cosθ

]

Rz|2(ψ) (4)

and,

MMT = Rz|2(φ)
[

L 0
0 Lcos2θ

]

Rz|2−1
(φ) (5)

where

L =

(

Z0

Tz +R33Z0

)2

This last equation shows that θ can be computed from
the ratio of eigenvalues of MMT, namely (λ1, λ2),

cosθ =

√

λ2

λ1

, (6)

where λ1 is the largest eigenvalue and λ2 the smallest
one. The angle φ can be extracted from the eigen-
vectors of MMT . The eigenvector v1 with largest
eigenvalue equals the first column of Rz|2(φ),

v1 =

[

cosφ

sinφ

]

.
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Isolating Rz|2(ψ) from equation (4),

Rz|2(ψ) = (R33 +
Tz

Z0

)

[

1 0
0 1

cosθ

]

Rz|2(−φ)M,

and observing, from equation (5), that

R33 +
Tz

Z0

=
1√
λ1

,

we can find sinψ and then ψ.
Once the angles ψ, θ, φ are known, the rotation ma-

trix R can be computed as in equation (3).
The scaled translation along Z can be computed as

Tz

Z0

=
1√
λ1

−R33. (7)

The rest of the components of the 3D translation vec-
tor can be computed from t and R using equation
(2),

Tx

Z0

=
tx

f
√
λ1

−R13, (8)

Ty

Z0

=
ty

f
√
λ1

−R23. (9)

5 Estimating 3D pose

¿From each tracker a shape vector and its covari-
ance is obtained. The system pose estimation is com-
puted using all the individual estimations.

The preceding section has defined a method to
translate tracked data from shape vector space into
motion parameters in 3D space. One option to com-
bine all these informations is to use statistical meth-
ods. Statistical fusion [8] is proposed as a first ap-
proach.

Assuming no outliers in the tracked contours, all
the estimates can be combined to obtain a better es-
timation of the pose. We propose the trace of the co-
variance matrix as an approximation of the variance
of each pose parameter. An individual estimation of
pose is obtained from each contour at frame rate.

For simplicity we analyse the case of two
estimations. For each degree of freedom
(tix, tiy, tiz, wix, wiy, wiz), the conditional prob-
ability of the new estimated value, for example tx, is
based on estimations t1x and t2x from two different
trackers, and can be computed using:

tx =

[

σ2
t2x

σ2
t1x
σ2
t2x

]

t1 +

[

σ2
t1x

σ2
t1x
σ2
t2x

]

t2

1

σ2
=

1

σ2
t1x

+
1

σ2
t2x

Approximating all components by the same vari-
ance value is a gross approximation. It is easy to prove

that not all translations and rotations will be sensed
with the same resolution. Translations parallel to the
image plane are better sensed as they produce greater
changes in image than translations normal to the im-
age plane. The same reason explains that rotations
about an axis perpendicular to the image plane are
better sensed than the ones about axes parallel to the
image plane. This can be seen in Figure 3, where a
static camera trackes a moving contour. In this ex-
periment a synthetic image is used in order to avoid
measuring noise from the acquisition system. As pre-
dicted, in translation (Figure 3(a)) depth is worst es-
timated, appearing greater variance. In rotational re-
covered parameters (Figure 3(b)), Z varies more than
X and Y.
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(a) Translation
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Figure 3: 3D pose evaluated in a free-of-motion con-
tour.

Using monocular vision one can observe that dif-
ferent real 3D movements result in the same, or very
similar, projections on the image plane. This is due to
both finite resolution and the well-known projection
ambiguities.

One of these ambiguities is the so called Necker
reversal ambiguity. It is explained in Figure 4. Take
a point rotating a certain angle about a point in a
plane parallel to the image plane. Its projection in the
image will be very similar to that of another point, in
mirror position from the parallel plane, rotating the
same angle but in the opposite direction.

When projection effects are big, the sign of the an-
gle is easy to recover. When these effects diminish, as
it is the case of this work, the direction becomes un-
determined. This can be determined using an inertial
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Figure 4: Necker reversal ambiguity appears when
the perspective effects diminish. There is no ambiguity
in the upper figure. But there is no difference between
the image obtained when A rotates to A′ and the image
recorded when B rotates to B′ in the lower figure.

sensor, as it provides the sign of the movement.
Other ambiguities should be solved, or at least lim-

ited using inertial data. However, it requires more pre-
cise and robust data from the inertial sensors, which
we have not available at the moment.

6 Experiments and results

6.1 Pose estimation with 2 tracked contours

To evaluate the performance of the tracker fusion,
synthetic images are used. In this way, errors pro-
duced by the tracking system can be easily isolated
and the fusion performance can be better evaluated.

A sequence of 100 frames is used simulating a cam-
era rotating about the Z axis. Each successive frame
is rotated by 1 degree, thus the total rotation is 100
degrees.

Different initialisations are used for each contour.
As can be seen in figure 5, for defining right contour
have been used double number of control points rather
than in definition of left one.

Figure 5: Different initialisations used in the exper-
iment.

In figure 6 are shown recovered rotations for both
contours. As rotation in ZXZ Euler representation
is not intuitive, angles are expressed in XYZ form.
Recovered rotation in Z axis is quite well recovered
through sequence of frames. In the case of rotations
about X and Y axes, just noise is recovered as the
camera does not move on these directions.

Effects of different initialisations can be seen in Ta-
ble 1. As more points are used to model the right con-
tour, the standard deviation decreases and becomes
lower than in the left contour, as shown in Table 2.

As tracking performance improves, the computed
covariance also improves, providing a lower mean
value of covariance trace and a lower standard de-
viation. This can be seen in Table 2, meaning that
tracking with more points is more stable.

Using statistical fusion, both estimates can be com-
bined to obtain a better estimate. Results of fusion
are shown in Figure 7. As can be seen, values for
rotation follow real motion. Noise from single estima-
tions is more stable, and covariace is also stable as
the figure is taken at very high zooming rate. This
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Figure 6: Rotation evaluated.

is important, because it shows that covariance can be
used as a quality factor for single pose recovery from
the tracking algorthm.

6.2 Improved tracking with inertial informa-

tion

For this work we use a RobuCab Mobile Robot [9].
It can be used in two modes: car-like navigation and
bi-directional driving. As can be seen in Figure 8, it
is a relatively big mobile vehicle with capacity for up
to four people.

For simplicity of the control system, the car-like
driving option is used, but better results should be
obtained under bi-direction driving mode as the max-
imum turning angle would increase. In this vehicle we
mount a monocular vision system with the described
6 d.o.f. tracking system. A Gyrostar inertial sen-
sor, from Murata, is used to measure rotations about
the Y axis. To measure X and Z linear accelerations,
an ADXL dual accelerometer from Analog Devices is
used. All these sensors are connected to a dedicated
board with an AVR processor used to make A/D con-
versions, pwm decoding and time integration. It has
also a thermometer for thermal data correction. This
’intelligent’ sensor provides not only changes in veloc-

Left Rx Ry

Mean : −0.0684203 0.0397576
Std− dev : 0.1296382 0.1086573
Right

Mean : −0.0434605 0.0356667
Std− dev : 0.0676008 0.0679300

Table 1: Statistics for recovered XYZ rotation.

Left Right

Mean : 20.917314 10.782572
Std− dev : 0.0001930 0.0000838

Table 2: Statistics for covariance

ity, but also mean velocity and position. Drift, typi-
cal in this kind of computations, is reset periodically
with the information obtained by fusion of the other
sensors. This board shares memory with a MPC555
board, which is connected through a CAN bus to the
control and vision processing PC. All the system runs
under a real-time Linux kernel in a pentium 233 MHz
industrial box. Figure 9 shows the hardware compo-
nents and their interconnections.

The shape vector we use models all plane deforma-
tions resulting from 3D motions. It could be changed
in this experiment in order to model only 3 d.o.f.
movements[6]. However, as the robot real movements
are in 6 parameter space, mainly due to floor rugosity
and vehicle dampers, the whole shape vector is used.

In this experiment the robot is in autonomous driv-
ing mode, following a filoguided path. In this way, the
trajectory can be easily repeated, thus allowing us to
perform several experiments with very similar condi-
tions. The path followed consists of a straight line
segment, a curve and another straight line.

First, algorithm without inertial information is
used. On the first straight segment, the contour is
well followed, but as can be seen in Figure 10(a), when
turning takes place and the contour moves quicker in
the image plane, it loses the real object and the co-
variance increases.

Second, the algorithm adding inertial information
to the tracker is used. In this experiment, tracking
does not lose the objective and finishes the sequence

Rx Ry Rz Cov

Mean : −0.10025 0.08014 0.83616 15.0597
Std− dev : 0.04602 0.05938 0.49167 0.00013
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Figure 7: Fusion result.

giving good recovered pose values. As can be seen in
the covariance representation in Figure 10(b), covari-
ance increases at the beginning of the turning, but
decreases quickly, showing that tracking has fixed the
objective despite its quick translation accross the im-
age.

As can be easily seen, if we use more images trying
to track the contour while moving towards it, the con-
tour leaves the image range. Another contour should
be initialised in order to be able to continue egomotion
recovery in such situation.

7 Conclusions

This article presents a new approach to enrich vi-
sual tracking of active contours with information pro-
vided by inertial sensors. First, the tracking strategy
has been modified to include inertial data. In this
way, contour search in the new frame by taking into
account its position in the preceding frame is made
more robust, thus allowing tracking at higher veloci-
ties of the video data.

The paper also presents a framework to extend the
method to be able to use multiple contours and shows
the way to estimate the 3D pose from several tracked
contours. A preliminary approach to fuse different

Figure 8: Mobile robot used in the experiment.

MPC555
Control Board

MPC555
Control Board

Real time
PC Control

CAN Bus

AVR
Sensor board

Figure 9: Interconnection of system sensors and pro-
cessing units.

estimations has been presented. Taking advantage of
the inertial sensing of the rotation sign, the Necker
reversal ambiguity has been solved.

Initial experiments have been performed to prove
correctness in some reduced situations. Further work
should include the change of the fusion strategy to
take into account directional information in the covari-
ance matrix. Improvements in the quality of the data
obtained from inertial sensors will allow to reduce, or
eliminate some other ambiguitites in the pose recov-
ery algorithm. Experiments using whole information
provided by the inertial sensor set should be also per-
formed. As pose recovery is up to 6 dof, experiments
with complete 3D movements will be useful to test the
feasibility of egomotion recovery algorithms.
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