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Abstract. The application of reinforcement learning techniques in the typically 
complex environments of the autonomous agents is only feasible when some kind of 
generalization among situations is possible in order to reduce the number of 
experiences required for the learning task. Many reinforcement learning techniques 
have been proposed to cope with this problem but they usually do not take advantage 
of all the opportunities of generalization. A new algorithm was proposed in [12] that 
exploits a type of regularity that is denoted as categorizability. Categorizability 
means that from all the relevant features that must be taken into account to decide the 
best action in any situation, only a few of them are actually relevant in each 
particular situation. In this paper the categorization and learning capabilities of the 
algorithm are evaluated using a problem which satisfies to a good extent the 
categorizability property. The categorization achieved by the algorithm in this 
problem is analysed in detail and illustrated with examples. The learning 
performance of the algorithm is compared with those of other reinforcement learning 
algorithms. Some improvements of the original algorithm are introduced. 

 
 
1. Introduction 
 
For an autonomous agent to show intelligent behaviour, it must be able to identify the 
relevant aspects of the environment that allow it to select the most appropriate actions 
according to its goals. In complex environments, the number of aspects that the agent must 
take into account can be very large, and usually, the agent will not have a complete 
knowledge about what is the best possible action in any situation. A key aspect of 
intelligent behaviour is the ability to improve performance through time, or learning by 
experience. The problem of learning to improve performance from experience has been 
formalized in the field of Reinforcement Learning, which constitutes an active area of 
research [5], [14]. 

The main difficulty of reinforcement learning is the number of experiences required 
for learning to take place. In a complex environment, the number of possible states that 
need to be distinguished to select the appropriate action can be very large. If we assume that 
the environment has no structure at all, that is, that the result of an action in a given state 
cannot be predicted from the experience obtained in other states, then, to learn an optimal 
policy, all actions must be executed at least once in each possible state. Since this is 
impossible in most realistic problems, the application of reinforcement learning is only 
feasible when the environment presents enough regularity to allow generalization and 
therefore reduce the amount of experiences needed. 

Many reinforcement learning algorithms have been proposed using different forms 
of generalization. Each generalization technique implicitly assumes and exploits a possible 
kind of regularity that can be present in the environment, and its success depends on the 



 

degree in which the environment shows such regularity or not. Thus, for example, 
clustering techniques try to group a number of similar states that can be considered 
equivalent for the purposes of the agent, and treat them as a single state [2], [4], [6], [8]. 
Feature-based approaches assume that not all observable features are equally important to 
decide the optimal action, and build the clusters of states based on this [10], [11]. Neural 
net approaches assume that the mapping from states to optimal actions is sufficiently 
smooth and can be approximated by linear combination of the values taken in nearly states 
[7]. 

Despite the diversity of strategies proposed, reinforcement learning is still a hard 
task for most realistic problems. However, we observe that the usual generalization 
techniques used in reinforcement learning do not take advantage of all the opportunities of 
generalization: for example, two states are clustered together only if the result of all actions 
is similar for both. The existence of a single action that provides different results implies a 
separation in two clusters, thus preventing the generalization for all those actions that 
produce similar results in both states. The question, then, is: What kinds of regularities can 
be expected in the environment and how to take advantage of them in a reinforcement 
learning algorithm? 

In [12] a categorization and learning algorithm is proposed that exploits a type of 
regularity that is denoted as categorizability. In short, categorizability means that from all 
the features of the environment that must be taken into account to decide the best action in 
any situation, only a relatively small subset of them are actually relevant in each particular 
situation. This does not mean that some features are always irrelevant and can be ignored, 
but that depending on the situation, the effect of each action can be better predicted with 
different subsets of the whole set of features available. The assumption that the number of 
relevant features in each particular situation is much smaller than the total number of 
features that can be relevant in some situation constitutes the basis of the proposed 
categorization algorithm. 

In this paper we introduce some improvements of the original algorithm presented in 
[12]. Then, we evaluate the categorization and learning capabilities of the algorithm 
applying it to a simple problem that satisfies to a good extent the categorization property: 
the game of tic-tac-toe.  

The structure of the paper is the following. In section 2 we summarize the 
fundamental aspects of the Categorization and Learning Algorithm. Then, in section 3 some 
improvements of the original algorithm are presented. In Section 4 a brief description of the 
selected problem is made and general outlines about the implementation are given. Section 
5 contains the results obtained and an evolution of the categorization capability analysis of 
the algorithm. Finally, the conclusions of the work are given in section 6. 

 
 

2. Categorization and Learning Algorithm 
 
In this section we summarize the fundamental aspects of the Categorization and Learning 
algorithm (CL algorithm) as presented in [12]. Some improvements we introduced in this 
algorithm will be explained in section 3. 

It is assumed that the world is perceived through a set of n binary feature detectors fi 
i=1...n. We define a partial view of order m, denoted by v(fi1,..., fim), as a virtual feature 
detector that becomes active when its m component feature detectors are simultaneously 
active. The categorization process starts with the initial set of feature detectors (all partial 
views of order 1), and progressively builds partial views of higher order, depending on the 
requirements of the learning task.   



 

For each existing partial view v, and for each action a that is executable when v is 
active, a value qv(a) is maintained estimating the average discounted reward obtained after 
executing a when v is active. 

Two more values are stored for each partial view and action:  
 

� ev(a), the estimated average absolute error of qv(a), that provides a measure of the 
dispersion of the actual q values obtained in the different situations in which the 
partial view was active. Making some simplifying assumptions, we consider that a 
partial view with value qv(a) and error ev(a) predicts that executing action a when v 
is active will result in a q value in the interval Iv(a)=[qv(a) - 2 ev(a),  qv(a) + 2 ev(a)]. 

� iv(a), the confidence index, that registers the number of times action a has been tried 
when v was active and resulted in a value of q according to the prediction. This is 
used to estimate a confidence value for qv(a) and ev(a) using a monotonically 
increasing function with saturation that takes values between 0 and �������where � is 
a parameter of the system, 

 
cv(a) = min{�,  confidence_function(iv(a))}        (1) 

 
The value for which the confidence_function( ) reaches the saturation value � is 
controlled by a parameter�.  
 
 

2.1 Action selection 
 
As in the usual Q-learning algorithm, we must determine, for each situation, the action that 
maximizes the expected q value. The problem in our case is that in a given situation we 
may have many different predictions for the same action: one for each active partial view. 
To address this problem, the relevance �v(a) of partial view v for action a, is defined as 
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The relevance �v(a) takes values in the interval (0,1) and estimates how precisely the 

q value for action a can be predicted by the partial view v. A perfect prediction with ev(a)=0 
corresponds to a relevance �v(a)=1. Since the relevance depends on the error estimation, it 
is also subject to the confidence estimation. Thus, the q prediction for action a will be made 
according to the most relevant partial view for this action, weighted by the confidence. 
Therefore, we define the winner partial view for action a in a given situation V, as the active 
partial view for which the product �v(a) · cv(a)  is maximum.  
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where V is the set of active partial views. In this way, the q prediction for an action in a 
given situation will be obtained from the winner partial view for this action. 

To get an actual q prediction from the winner partial view w, two sources of 
uncertainty must be considered: On the first place, since each partial view predicts that the q 
value is expected to lay in the interval Iw(a), some value in this interval is selected at 
random as initial guess: 
 



 

i_guess(a) =  rand(qw(a) - 2 ew(a),  qw(a) + 2 ew(a))               (4) 
 

On the second place, a noise term is added to account for the uncertainty of the 
values stored in the partial view, as evaluated by the confidence: 
 

guess(a) = cw(a)  i_guess(a) + (1- cw(a) ) rand(qmin, qmax),      (5) 
 
where qmin and qmax are the minimum and maximum q values actually obtained so far in the 
learning process. Once a guess is obtained for each of the actions that are executable in the 
current situation, the action with highest guess is selected for execution. Note that this 
strategy implements an adaptive form of exploration: actions with low confidence always 
have some opportunity to be executed even with low q predictions, but exploratory actions 
have little chances to occur in the situation in which there is a strong confidence on the 
prediction of a high q value for some action. 
 
 
2.2 System update 
 
After the execution of an action, a reward r is obtained and a new situation V’ is perceived, 
so that the actual q obtained from the execution of action a can be computed as: 
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where � is the discount factor. This information is used to update the estimated values for 
the executed action of all partial views that were active in the last situation. The qv(a) and 
ev(a) values are updated with identical schemas: 
  

qv(a) =  cv(a) qv(a) + (1 -  cv(a) ) q    (7) 
 

ev(a) =  cv(a) ev(a) + (1 -  cv(a) ) | q - qv(a)|          (8) 
 

Note that the confidence estimation is used as a learning rate parameter, so that 
values with low confidence are shifted towards the observed value faster than values with 
higher confidence.  

Finally, each confidence index iv(a) is increased by one if the actual q value lies in 
the predicted interval Iv(a), and decreased by one in the other case. 

 
 

2.3 Partial view generation 
 
If the prediction of the q value is inaccurate, τ new partial views are created to help 
improving the prediction in the future. A prediction is considered inaccurate when the 
absolute difference between the predicted value qv(a) and q is higher than a user defined 
amount δ.    

New partial views are created by combination of two already existing partial views, 
randomly chosen among those that were active in the last situation. This random selection is 
made preferring the partial views with higher confidence and with better prediction of q. 

To avoid an undesired proliferation of partial views in the system, their number is 
limited to a threshold �, a parameter of the system whose appropriate value depends on  



 

how much categorizable, in the sense we defined above, is the environment. To comply 
with this threshold, it is necessary to remove partial views when its number grows above �. 
There are two different elimination criteria: redundancy and creation error.  

A partial view is considered redundant when its reward predictions are too similar to 
the reward predictions of its parents. This redundancy is measured in the following way: 
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where v1 and v2 are the parent partial views and, 
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Partial views with redundancy higher than a value λ are eliminated from the system.  
On the other hand, the creation error is used to eliminate partial views that are less 

useful for the system. This error indicates how bad the prediction was when the partial view 
was created. If this error is low, the created partial view is considered not so useful. Then, 
the partial views with lowest creation error are eliminated. The criteria used for partial view 
elimination may have an important impact in the performance of the algorithm, and this is 
the object of the improvements introduced in the next section. 
 
 
3. New Partial View Elimination Criteria 
 
3.1 Redundancy 
 
The redundancy computed in equation (9) only considers the redundancy of a partial view 
with its parents, but in general, a partial view can be redundant with any other subset of 
partial views. Thus, the redundancy of a partial view is now calculated using not only its 
parents but also all the partial views composed by a subset of its features: 
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3.2 Utility Index 
 
The criterion of the creation error for the elimination of less useful partial views takes the 
value of the error in the prediction at the time the partial view was created. But, as the 
system evolves, partial views with low creation error may become more useful (or the 
converse) so we need a better criterion to assess the current utility of a partial view. 
Intuitively, the utility of a partial view could be measured taking its relevance. But, to avoid 
the premature elimination of partial views not sufficiently tested, we must keep partial 
views with low confidence. We devised a new criterion to estimate the utility of a partial 
view based on these statements by taking the ratio between the relevance and the 
confidence as a utility indicator of a partial view for an action execution.  
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4. Selected Problem and General Outlines 
 
In order to evaluate the categorization capability of the CL algorithm we use a simple 
problem, the game of tic-tac-toe, that satisfies to a good extent the categorizability property. 
This problem is widely used to exemplify and evaluate generalization and clustering 
techniques [9], [1], [11], [6], and other learning methods [3], [13]. 

The opponent used in the training task was created with a temporal difference 
algorithm with state-value update [14], making an average of one exploratory move in each 
match and with a learning rate of 0.05. It was trained using 100.000 matches playing against 
itself. Then the playing policy learned is used as a fixed opponent to train the other 
reinforcement learning algorithms. 

The reward value considered is 100 for a win, -100 for a lose, 50 for a draw, and 0 
in non terminal situations. 

The set of binary feature detectors consists of 3 features detectors for each cell of the 
board: X(i,j), O(i,j) and empty(i,j), where i�{1,2,3} indicates the number of row, and 
j�{1,2,3} the number of column. Each of these features becomes active when the 
corresponding cell contains the value X, O or is empty, respectively. Actions are also 
represented as an X or an O in a particular position (i,j).  

To exemplify the categorizability of the tic-tac-toe game note that in the states 
shown in Fig. 1 only features X(1,1) and X(2,2) are relevant to determine that the match is 
won by playing an X in position (3,3).  
 
 

X O O  X   

O X    X O 

X    O   

 
Figure 1. Two different situations in the game of tic-tac-toe categorizable with the same partial view. 

 
A point to remark is that the action selection is performed only over available 

actions. Thus, if one cell is occupied with an X or O then it is not considered as a possible 
place to move. Finally, the CL algorithm is trained playing with X’s and always plays in the 
first place. 

After some empirical experiments, the following set of training parameters for the 
CL algorithm was selected: �=0.99, �=50, �= 50, �=0.90, �=500, �=0.90 and 	=3. 
 
 
5. Results 
 
Fig. 2 shows the average rewards obtained with the CL algorithm along 30.000 training 
matches before and after the modifications explained in section 3. As we can observe in 
Fig. 2 a), the average reward trend shows some instability in the learning process. After 
performing the mentioned changes a new training process was done obtaining the results 
shown in Fig. 2 b). As observed, the learning process is much more stable.  
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Figure 2. Average reward obtained during the learning task: a) with “Creation error” elimination criterion, 

and b) with “Utility index” elimination criterion. 
 
 
5.1 Comparison with Q-Learning 
 
Fig. 3 shows the average reward trends over 30.000 matches of CL algorithm and Q-
Learning algorithm [15]. For Q-Learning, a learning rate of 0.05, a discounted coefficient of 
0.9 and an average of one exploratory move per match were used.  
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Figure 3. Performance comparison between Q-Learning and CL algorithms. 
 

We observe that, at the beginning of the training, the CL algorithm fails to 
categorize the tic-tac-toe environment using the initial partial views, composed of only one 
feature. Then, new partial views were generated improving categorization and consequently 
increasing the average reward. After the convergence is reached, the CL algorithm performs 
better than Q-Learning. Nevertheless, differences in the exploration methods influence this 
final average reward value.  

In order to obtain a better comparison of the algorithm performance, 100 matches 
are played against the training opponent using both learned sets. No exploration is made 
except the first move that is made in a random position. Table 1 shows the obtained results. 

 
 



 

Table 1. Results of 100 matches played against the training opponent 
 

 Cat. & Learning Q-Learning 
Won 100 85 
Drawn 0 15 
Lost 0 0 

 
CL algorithm won all the matches while Q-Learning drew 15 of them. With this 

opponent, CL algorithm learned a better game policy than Q-Learning. 
It is remarkable that Q-Learning experimented and stored about 6.000 states against 

the 500 partial views stored by the CL algorithm. 
 
 

5.2 Partial Views Generated 
 
Fig. 4 shows some partial views generated with the CL algorithm. Each board only shows 
the features of the partial view marked with gray and the corresponding qv, ev and iv values 
associated to each possible action. 

 a) b) c) 
- - - 

- X X 

- - -  

- - - 

- X - 

X - -  

- O - 

- O - 

- - -  
   

a qv(a) ev(a) iv(a) 
(1,1) 52,8 7,9 50 
(1,2) 49,6 0,4 20 
(1,3) 89,2 8,4 50 
(2,1) 100,0 0,0 50 
(2,2) - - - 
(2,3) - - - 
(3,1) 84,3 19,3 50 
(3,2) 47,9 13,1 50 
(3,3) 75,7 27,5 50  

a qv(a) ev(a) iv(a) 
(1,1) 75,7 41,9 50 
(1,2) 61,2 25,5 50 
(1,3) 100,0 0,0 50 
(2,1) 78,3 24,3 49 
(2,2) - - - 
(2,3) 24,7 69,9 50 
(3,1) - - - 
(3,2) 11,9 50,6 50 
(3,3) 71,6 15,5 49  

a qv(a) ev(a) iv(a) 
(1,1) -100 0,0 21 
(1,2) - - - 
(1,3) -100 0,0 16 
(2,1) -100 0,0 48 
(2,2) - - - 
(2,3) -100 0,0 25 
(3,1) -100 0,0 50 
(3,2) 56,6 22,7 50 
(3,3) -100 0,0 30  

 
Figure 4. Generated partial views of order 2 and their associated action values. 

 
It is clear that these generated partial views contain only relevant features. Note that 

in Fig. 3 a) and b) the actions that win the match are those with highest qv(a) (in fact the 
maximum possible), lowest ev(a) (highest relevance) and high confidence. Fig. 4 c) shows 
that the algorithm also learns to avoid a lose as we can see in the values associated to action 
X(3,2). 

The learned set contains 90 partial views of order 2, 131 of order 3, 138 of order 4, 
79 of order 5, 23 of order 6, 9 of order 7, and 3 of order 8, in addition to the 27 initial 
partial views of order 1. It is remarkable that the mean number of features per partial view 
is 3.5, against the 9 features present in each situation. 

 
 

5.3 Evaluation of the Categorization Capability 
 
In order to evaluate the categorization capability of the CL algorithm, two complete 
matches against the training opponent are presented in Fig. 5. In these tests no exploration 
is made except for the initial moves, which are made at random positions. The CL 
algorithm plays with X‘s and each board represents a state of the game. When it is the turn 
of the CL algorithm the winner partial view for the selected action is marked in light gray. 
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Figure 5. Two tic-tac-toe matches against the training opponent using the learned set of partial views.  

 
We see that the winner partial views at terminal situations clearly contain relevant 

features, and the actions selected are those that win the match. In early states of the game 
there are other partial views whose relevance is not obvious to select the action. 
Nevertheless, they contain the relevant features to play with this particular opponent and 
take advantage of its imperfections. 

Note that in both terminal situations the same partial view is used to select the action 
demonstrating the categorization achieved by the algorithm. 
 
 
6. Conclusion  
 
The CL algorithm was created with the aim of taking advantage from the categorizability 
properties of a complex environment to improve the learning task.  

From Fig. 3 and Table 1 we observed that the CL algorithm is capable to learn an 
adequate policy for the selected problem with a performance superior to the Q-learning 
algorithm. Note from table 1 that the learned policy approaches better the optimal one, 
always winning the game. Additionally, The CL algorithm learned to play using only 500 
partial views, against the 6.000 states needed in Q-Learning for the same learning task. It is 
also remarkable that the mean order of these partial views is 3.5 features against the 9 
features present in each situation. These last two facts imply a great improvement in the 
computing performance reducing the amount of memory needed to store and process the 
learning data. 

From these points we can conclude that the CL algorithm is capable to take 
advantage of the categorizatibility of an environment to improve the learning task. 

Additionally, despite the simplicity of the selected problem, the results obtained 
suggest that the CL algorithm could be suitable to be applied in a more complex 
categorizable environment. As a future work we would like to apply this algorithm in such a 
complex environment, more precisely to face the problem of locomotion control of legged 
robots. 
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