430 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002

An Ellipsoidal Calculus Based on Propagation
and Fusion

Lluis Ros, Assumpta Sabater, and Federico Thomas

Abstract—This paper presents an Ellipsoidal Calculus based ¢) can be represented using matrices interpretable as
solely on two basic operations: propagation and fusion. Propaga- weighted covariance matrices;

tion refers to the problem of obtaining an ellipsoid that must satisfy d) are invariant, as a class, under affine transformations.

an affine relation with another ellipsoid, and fusion to that of com- The basi ti traditi I ded to deal with eli
puting the ellipsoid that tightly bounds the intersection of two given € basic operations traditionally needed to deal with ellip-

ellipsoids. These two operations supersede the Minkowski sum and Soidal uncertainty sets have been
difference, affine transformation and intersection tight bounding a) Minkowski sum of ellipsoids;

of e!I|p50|ds_on whlf_:h other ellipsoidal calcu_ll are based. Actually, b) Minkowski difference of ellipsoids:
a Minkowski operation can be seen as a fusion followed by a prop- ) . ) .
agation and an affine transformation as a particular case of propa- <) ?‘ﬁ'ne trahsformat_lons_ of ellipsoids;
gation. Moreover, the presented formulation is numerically stable ~ d) intersection of ellipsoids.

soids and/or affine relations. . . . . .
Examples arising when manipulating uncertain geometric infor- than set theoretic uncertainty manipulation, such as optimiza-

mation in the context of the spatial interpretation of line drawings ~ tion and approximation, identification and experiment plan-

are extensively used as a testbed for the presented calculus. ning, probability and statistics, adaptive control, mathematical
Index Terms—Ellipsoidal bounds, ellipsoidal calculus, set-mem- Morphology, etc. Then, because of their relevance, the term El-
bership uncertainty description. lipsoidal Calculus has been coined to refer to these operations
as a set [9].

This paper first deals with the problem of obtaining an ellip-
soid which satisfies a given affine relation with another ellip-
OST techniques for parameter estimation assume that #wéd, by means of an operation callgtpagationwhich can be
data are corrupted by random noise whose probabiliggen as a generalization of the elementary affine transformation
density function is usually assumed to be gaussian. Real-woslckellipsoids. Then, it tackles the problem of obtaining the ellip-
uncertainties, however, also include nongaussian, nonwhiisid with minimum volume among those resulting from a linear
noise and systematic errors. These uncertainties can easilfcbBvex combination of two possibly degenerate ellipsoids, an
considered in a set theoretic setting which consists in definiageration calledusionwhich provides a suboptimal solution
bounds for the uncertain variables [23]. Fortunately, both setthg-the problem of finding the ellipsoid with minimum volume
oretic and probabilistic techniques can be combined, as describggitaining the intersection of the two ellipsoids defining the
in [7], to cope with situations where the uncertainty is describe@nvex combination. Finally, it shows how the computation of
partly by bounds and partly by probability density functions. Minkowski sums and differences of ellipsoids can be performed
The main problem with the set theoretic description of urby fusions followed by propagations. Altogether, this leads to an
certainty is that, although the initial uncertainty sets have simpdternative Ellipsoidal Calculus, with a reduced number of op-
shapes, the results of principal operations with them have a cogpations, that can supersede previous ones.
plicated shape. This is why some canonical sets, that depend Ofthe presented formulation was motivated by the following

a fixed number of parameters, are introduced for the approgroplem arising when manipulating uncertain geometric fea-
matlon.of uncertainty sets. The proplem that arises here 'S.tEﬁ’es [18], [16]. Suppose that the ellipsoidal uncertainty regions
approximate the results of the operations by means of canonigal ;-iated with the parameter vectarsand y are known

sets with maximal accuracy. Among many possibilities, elligg,q that we also know that both vectors are related through
soids are usually taken as these canonical sets because theYhe vector equatioh(x,y) = 0. Then, any information ox
) - . 1

a) can be concisely described; provides information ory, at least in part, and vice versa. The
b) provide a satisfactory approximation of convex sets {yoblem is to combine both uncertainty sets to obtain a new set,
most applications; either forx or y, that takes into account that they are mutually
constrained. This problem cannot be solved using ordinary
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Although the affine transformation of ellipsoids is a trivialan ellipsoid with a half-space or a region limited by two par-
problem, the more general one of obtaining an ellipsoid thallel hyperplanes [3]. It has been shown that the Fogel-Huang
satisfies an affine relation with another ellipsoid, in the presigorithm, as modified by Belforte and Bona is mathematically
ence of possible degeneracies, is by no means trivial. Whiésjuivalent to the minimal-volume ellipsoid using this linear pro-
this problem has received little attention in the literature, the ogeamming technique and therefore optimal [14]. Maksarov and
of computing an ellipsoid containing the intersection of two eNorton explored further this approach in [11], where they finally
lipsoids has been investigated at least since the sixties [8].de a function whose single root in the range of interest give
the early eighties, the exact solution to this problem was ontlye minimum volume ellipsoid within the linear convex combi-
known in the particular case in which one of the ellipsoids dexation of two ellipsoids. This technique is used in [22], where
generates into a half-space. The technique proposed in [4] itois shown to provide tighter results than using discretizations,
computing an ellipsoid containing the intersection of two ellipas expected. Nevertheless, the obtained function is not defined
soids consists in computing the tangent plane at a point on ahboth ellipsoids are degenerate, even in the case their inter-
of the two ellipsoids. This plane defines a halfspace that caaction is bounded, and in its expression appears inverses of
be used to approximate the ellipsoid itself. Then, an ellipsoidatrices that depend on the function variable. We here give an
bounding the intersection between this halfspace and the othiernative derivation that concludes with a polynomial whose
ellipsoid roughly approximates the intersection of both ellipsomputation avoids matrix inversions that can lead to numer-
soids. A refinement on this consists in taking an initial ellipsoittal ill-conditionings. Moreover, the degeneracy of both ellip-
large enough to contain the intersection and computing tangsotds is not an impediment to its direct application, provided that
planes on both ellipsoid boundaries to obtain halfspaces that Hreir intersection is bounded, a circumstance that can be easily
iteratively intersected with the result [12]. The process is rehecked beforehand. Nevertheless, both formulations must pro-
peated, possibly with the same set of halfspaces, until no signifide the same result, at least when both ellipsoids are not de-
cant reduction in the volume is observed. This way of improvingenerate. In particular, if one of the ellipsoids degenerates into
the result by recirculating the data of half-space batches, as langgion defined by two parallel hyperplanes, both methods must
as it reduces the volume of the result, has been broadly applExlequivalent to the Fogel-Huang algorithm. We have provided
in the context of set description of uncertainty, but it will not irthis equivalence by algebraic manipulations of our polynomial.
general produce a globally optimal ellipsoid. This motivated th&/e also prove that our expression has a single root in the range
development of the globally optimal minimal-volume algorithnof interest by the more straightforward technique of proving the
described in [14]. Another alternative consists in distributing @nvexity of the volume function.
set of points on both ellipsoid boundaries, and removing thoseThe first attempt to find the minimal-volume ellipsoid con-
from one ellipsoid that are not contained in the other. Then, tkaning the Minkowski sum of two ellipsoids was done in [4],
problem consists in obtaining the smallest ellipsoid containirmt the used derivation was quite complicated. A neater one was
all surviving points, using for example the algorithms describegiven in [11]. We here show how a Minkowski set operation can
in [25] or [21]. This is one of the techniques used in the commeaiways be expressed in terms of a fusion followed by a propa-
cially available software described in [22]. All these approacheagation.
that can be said to be based on discretizations, obviously fail toThis paper is structured as follows. The next section includes
work properly when at least one of the ellipsoids is degeneratike notations, definitions and all the mathematical background

The problem of bounding the intersection of two concentritceeded throughout this paper. Sections Il and 1V are devote the
ellipsoids is much simpler because the optimum is necessaplppagation and fusion operation, respectively. Section V con-
in the family of linear convex combinations of both ellipsoidsains the examples, including Minkowski set operations carried
[8]. This reduces the problem to the minimization of a functioonut by degenerate fusions followed by propagations. Finally,
in a single variable. Even if both ellipsoids are not concentri§ection VI concludes with points that deserve further research.
we can still look for the optimum in this family but then the
result is just a suboptimum that curiously satisfies most of the Il. BACKGROUND
desirable properties for the optimum. Although Schweppe [20] _
already mentioned the interest of finding the best ellipsoid fir Notation

this family in the sense of various criteria including its volumeA, B, ... Matrices.

he provided no way of computing the optimum. This was don&[¢, j] (4, j)-th entry of matrixA.
about ten years later by Fogel and Huang for the volume ahd Identity matrix.

trace criteria, in the case of an ellipsoid an the region defined kyy,... Vectors.

two parallel hyperplanes—which can be seen as a degenetate Transpose oA.

ellipsoid. Belforte and Bona [2] showed that when one of tHe\] Matrix of cofactors ofA.
hyperplanes does not cut the original ellipsoid, the volume & ! Inverse ofA.

the resulting ellipsoid using the Fogel-Huang algorithm can b¥” Right inverse ofA.
reduced by substituting a parallel hyperplane tangent to the ori* Left inverse ofA.

inal ellipsoid for the nonintersecting hyperplane. This proved- Pseudoinverse cA.

that the Fogel-Huang algorithm was not optimal. In the coiN o Orthogonal complement cA.

text of linear programming, an algorithm was developed to obank(A) Rank ofA.
tain a minimum-volume ellipsoid containing the intersection af:(A) Trace of A.



432 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002

det(A)  Determinant ofA. has left inverse if and only if it has full column rank and

(A) Subspace spanned by the rowsAof then its left inverse matrix has full row rank.

()t Orthogonal subspace to that f). 4) If A has full row rank, A" = A*(AA*)~!is a right

NZ Positive square root of. inverse matrix ofA.. And, if A has full column rankA’ =
(A'A)~tAlis aleft inverse matrix of\..

B. Ellipsoids

Definition 2 (Orthogonal Complement).et A be ann x m
A real n-dimensional ellipsoid, centered o, can be con- (m > ») full row rank matrix, then anyn x (m—n) full column
cisely described as rank matrixIN o satisfyingAN = 0 is called an orthogonal

complement ofA.

N, is called the orthogonal complement & because
(N%) = (A)*. Since the columns dN o form a basis of the
er&llJllspace ofA, it can be readily obtained from the singular

value decomposition oA.
Lemmma 1:Let A be a full row rankr x m matrix, then

en(X0, E) = {x € C"[(x — x0)'E(x — Xo) < ~1}. there exist® such tha(g)*1 = (A",Ny).

E can be diagonalized into the fornE = U - Proof: Sincerank({y’NA_):rank(A_r)JFrank(NA):
diag(A1,...,A.) - U, where \y,..., )\, are the eigen- " T ™ — 7 = m, (A",N,) is a nonsingular matrix and
values of E and the columns ofU, uy,...,u,, are the (A", Nj)~!= ) exists. Let us see th# = A. SinceNa
corresponding orthonormal eigenvectors. The principal axes.Q
the ellipsoid are the directions given lwy and its semiaxes
lengths are given by/v/;.

The volume ofz,, (%0, E) is given by

en(%x0,E) = {x € R"| (x — x0)'E(x —x0) <1} (1)

whereE is a positive-semidefinite symmetric x n matrix.
Imaginary ellipsoids, which may appear when manipulating r
ellipsoids, can analogously be described as

(B
fan orthogonal complement ¢€. (A) = (N4 )Lt = (A).
Therefore, there existsrax » matrix K satisfyingA = KA. In
addition,I = AA" = KAA" = KI = K. Hence A = A. [
Definition 3 (Pseudoinverse)A- is called the pseudoinverse

V., of A if, and only if, AA*A = A, A*AA" = A*, and both,
Vol(en(xo, E)) = Jdeu(E) (@) AA“andA:A, are symmetric.

Pseudoinverse matrices have the following properties.

1) If A is square and nonsingular, thé&i = A~!. Other-
wise, there will be infinitely many-.

2) If A has aright inverse, theA® is a right inverse. Like-

whereV,, is the volume of the unit ball ifk"™.
By definition we will assign a negative volume to imaginary
ellipsoids such that

Vol(e* E)) = —Vol(e, EVN. 3 wise, if A has a left inverse, the:A: is a right in\{ers_e.
ol(er (xo, E)) ol(en(xo. E)) 3) 3) If the systemAx = b has solution, thex = A*bis a
WhenE is singular, i.e., its rank is lower than n — rank(E) solution.

eigenvalues are zero, the corresponding semiaxes lengths terflseudoinverses of ellipsoid matrices can be easily computed
to infinity and so does the volume defined by (2) and (3). In thigom their eigenvectors singMM*): = M(M*M)~2M".
case, (1) is better said to correspond tcedliptical cylinderin
which the affine varietyfx | Ex = Ex, } is defined as itsariety
of centersbecause,, (E, xo) remains invariant ik, is substi-
tuted by any point of this variety. In the particular case in which This section considers the problem of obtaining the set that
rank(E) = 1, (1) represents a region bounded by two parallehust satisfy an affine relation with a given possibly degenerate
hyperplanes, ostrip, whose variety of centers is a hyperplanellipsoid. We constructively show that this set is also an ellip-
located just in the middle of the bounding hyperplanes. soid thus generalizing, using pseudoinverses, the straightfor-
From the diagonalized form &, it can be shown thdE can ward affine transformation of ellipsoids. This problem arises
always be expressed BEs= M - M?, where the columns df1 whenever two parameter vectatsandy are known to be re-
arev/\;u;, u; being the eigenvectors corresponding to nonnukited through a vector equatidr(x,y) = 0. Then, their cor-
eigenvalues. Then, itink(E) = k, M is ann x k full column responding uncertainty regions are obviously related. By lin-
rank matrix. For examplé = n - n* for a strip of width2/|n|.  earizing this equation gk, yo), we obtain

I1l. PROPAGATION

C. Definitions and Properties oh oh
Definition 1 (Right and Left Inverse)AT is a right inverse h(xo, yo) + % (x —0) + Iy (¥ =¥0)=0
matrix of A if, and only if, AA™ = T. Likewise, A’ is a left Gx0.v0) Gx0.70)
inverse matrix ofA if, and only if, A’A = T. which is an affine equation of the typex + Cy +d = 0. Itis
Right and left inverses have the following properties. possible to introduce an uncertainty region associateddvith
1) GivenA, A" andA‘ do not always exist and, if they exist,account for the residuals of the linearization. Nevertheless, for
in general they are not unique. the sake of simplicityl is assumed to be constant in this section.
2) If A is notsingular, thel\! = A" = A1, The general case involves the computation of Minkowski sum

3) A hasrightinverse if and only if it has full row rank. Thenand thus a fusion of ellipsoids which is explained in the next
its right inverse matrix has full column rank. Likewis&, section.
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Changing variablesvzv) = (g)

@ () ) Barva (2) <

x, we get

that is

z'(A")Y'EA"z + 22" (A")'ENaw + w'N4LENaw < 1.
®)

This inequality defines an ellipsoid in the space for con-
stant values of whose centerwy, satisfies(N% EN s )wo +
R™ — R" N4EA"z = 0. Using pseudoinverses, one solution to this
. equation iswg = —(N% EN 4 )*N% EA"z. Then, the ellipsoid
X y|Ax+Cy+d=0 “) given by (5) can be rewritten as

Fig. 1. Geometric interpretation of ellipsoid propagation.

Definition 4 (Ellipsoid Propagation):The propagation of
em (X0, E) through the mapping

is defined as the set (W — wo)'NL EN & (w — wo)

{y e R"|3Ix € g,,(x0,E),Ax + Cy +d = 0} <1-wiNLENsw, — 22/ (A")'ENpwy — z'A"EA"z.

whereA, C arer x m andr x n matrices, respectively, of rank Since it should correspond to a real ellipsoid, its independent
7. term has to be positive, i.e.
For mapping (4) to define a relation betweeandy, A and
C must have the same rank. On the contraryAithad rank 1 — wiN4ENswq — 2z'(A")'ENA wy
smaller, or larger, tha@, it would constrain the coordinates of —z'(A")'EA"z > 0.
¥, Orx, respectively. The assumption thatandC are full row
rank matrices is not restrictive as (4) can always be simplifieubstitutingw, and rearranging terms, we get
by row operations such that the involved matrices have full row

rank. z' ((A")'EA"™ — (A")'EN (N4 EN, )’ NQEA") z< 1.
Letyo be a point satisfyindAxo + Cyo + d = 0. Then, the
equation defining the mapping (4) is equivalent to Then, the propagated ellipsoid matrix is
A(x—x0) =z } ' G = (A")'EA" — (A")'EN4 (NL,ENA) NYEA™,
Clyo—y)=2

. . Finally, we have to propagate (G, 0) throughz = C(y, —
Hence, the mapping (4) can be expressed as the following co}r;}-to obtaine,,(F,yo). Sincez'Gz < 1 if, and only if, (y —

position of mappings: v0)'C'GC(y — yo) < 1 we conclude thaF = C'GC. O
R™ — R — R
IV. FusiOoN
x—z=A(X—-x%0) —~ {y|C(yo—y) = z}.

_ - o The ellipsoidal approximation of the exact intersections of
This composition can be seen as a projection followed by @go ellipsoids should be obtained from the minimization of a
extension by simply identifyin®" with the linear subspace of measure that reflects its geometrical size. The measures usually
Rm. defined by the rows ofA, an.d the Imear subspace Bf'  considered for this minimization are: the volume (which corre-
defined by the rows o€, respectively (Fig. 1). ~ sponds to the maximization of the ellipsoid matrix determinant),

Theorem 1 (Propagation)The propagation of ellipsoid the sum of squares of the semiaxes (which corresponds to the
em(Xo, E) through the mappingk € R™ — y € R™ minimization of the trace of the ellipsoid matrix inverse), and
defined by the equatiomx + Cy + d = 0, where the length of the largest semiaxis (which corresponds to maxi-
rank(A) = rank(C) = r < n,m, is the ellipsoide, (yo, F), mization of the smallest eigenvalue of the ellipsoid matrix). For
where yo is a point satisfyingAxo + Cyo +d = 0 and a comparison of the results obtained when bounding the inter-
F = CA")' (E - ENA(NLEN, )"NLE) A™C. section of an ellipsoid and a strip using the trace versus the de-

Proof: First, we ~ propagate em(%0, E)  through terminant criterion the reader is addressed to [5]. We will use
z = A(x — Xo), or equivalentlye,,,(0, E) throughz = Ax,  the volume criterion because it is the one that better reflects the
to obtaine(0, G). intuitive idea of tight bounding.

SinceA has full row rank, according to Lemma 1, there exists Theorem 2:Given two possibly degenerate ellipsoids,
B such that(g)—l = (A",N,), whereA™ = A*(AA") L. en(E1,x1) ar_ldsn(EQ,x;), who;e intersection is a nonempty
Then,e,(0, E) can be expressed as bounded region, the region defined by

r Ax — %) Ei(x —x1) + (1 = A)(x — x3)°
t t t (A )t r A {X| 1 1 1 2
x(A,B)(NtA>E(A,NA)<B x<1.  Fax—x) <1} (6)
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is a real ellipsoids ) (E, x,), which coincides withe,, (Ea, X2) In addition, since the inequality y* = < Az + (1 — Ay
ore,(Eq,x1) for A = 1 or A = 0, respectively; and it is given relating the arithmetic and geometric meanscadndy holds
by for z,y > 0andAX € [0,1],
1 1 A 1-X
E=3X (VdetE; ) (Vd tE)lﬂS\/d VTS
X = AE; + (1 — \)Es e B2 e e
k=1- )\(1 — )\)(Xg — Xl)tEQX_lEl(XQ — Xl) Thus
x0 = X1(AE;x; + (1 — ME»x») 1 S A 1—A
for A € (0, 1). Vi doiE - VAG B, | JderEs
Proof: See Appendix A, wherX is shown to be always Sincef is upper bounded by 1 (becauXés positive-demidef-
invertible forA € (0,1). L inite and hence so E.X'E;), and lower bounded by 0 (be-

The ellipsoid that tightly bounds the intersection otauses)(E,xo) s a real ellipsoid according to the assumptions
en(E1.x1) and e, (E2, x2) will be sought within the set of of Theorem 2), we conclude that
ellipsoids defined by} (E, xo) for A € [0,1]. Although the
result will not necessarily be the optimum, but for those cases Vol (EQ(E Xo)) < AVol(en(E1,x1))
in which both ellipsoids are concentric, this simplification is + (1= A) Vol(e,, (Ez, x2))

supported by the following easy-to-prove topological properties
of X (E, xo): VA € [0, 1], which can be extended to any subinterval of [0, 1]

d because we are working with alinear combination,gfE, , x; )
andEn(EQ, XQ). O

This lemma guarantees the existence of a unique stationary
point of Vol()) (E, xo)) for A € [0, 1]. Now, the effective com-
rputation of the optimum bounding ellipsoid involves the con-
ceptually simple, but algebraically tedious, process of differen-

En(El,Xl) OrEn(EQ,XQ). L. . . .
tiating the resulting volume (i.edet(E)) with respect to\ and
While a) and b) ensure a tight bounding of the intersection,g ttingg the resulttgo zero (i-edet(E)) P

guarantees that the resulting uncertainty set is not going to CONTheorem 3 (Fusion)The fusion of =,(Ei,x:) and
tain uncertainties not included in the original sets. - r AR
. . . . . En(EQ,Xg) IS: En(El,Xl), if En(El,Xl) C En(EQ,Xg), or

Fig. 2 shows the families of linear convex combinations for (Es,%2), if en(E1,x1) C en(Es,x2); otherwise, it is
dlffe_rent couples of eII_|p30|ds and configurations. The graphu{;:i(E7 x0) Where  is the only root in (0, 1) of the following
besides each couple includes a plot of the volume*oiNote : .

. . ) o . _Rolynomlal of degre@n — 1:

how in those cases in which both ellipsoids are not intersecting
[Fig. 2(a) and (h)]&* does not sweep a continuous region of k(det X) tr([X](E; — Eg)) — n(det X)2
the plane, becoming imaginary for some values\@nd, as a % (ZXtElxl — 2x Eoxs 4 x4(E2 — E1)%o
consequence, with negative volume. The centef ok, is also R 0 . 0 0
represented as varies. — X Eixi 4+ x3Ep%,) = 0. ™

Definition 5 (Ellipsoid Fusion): The fusion ofe, (K, x1) Proof: The minimization of the volume of(E,x) is
a.nde,?(EAQ, X2), whose intersection is a nonempty bounded ey jivajent to the maximization of the determinanEbfSince
gion, ise;(E, xo) for the value ofA € [0, 1] that minimizes its
volume. _ Xy 1

The fusion of two ellipsoids is only defined if their intersec- det B = det < k ) ok det X
tion is a bounded region. This is so to avoid the minimization
of infinite volumes. Moreover, it does not introduce any loss 5
generality because, in degenerate cases, the fusion can alway§det(E)) 1 <k8(det(X)) nak det(X)) —0

a) theintersection between the boundaries,0E;,x;) an
en(E2,x2) is also on the boundary ef\(E, xo);

b) the intersection of, (E1,x;) ande,(Ez,x2) is always
contained ire (Eq, Xo);

c) er(E,x0) never contains points not included either i

en

be carried out in the subspace orthogonal to the intersection of 9\ o kntl aA )N
the varieties of centers of both ellipsoids followed by an expan- (8)
sion.
Lemmma 2: Vol(e}(E, x0)) is a convex function of\ € It can be checked that
[0,1].

a(det(X)) /0 = tr([X|(E1 — Es))
8k/8A = 2X6E1X1 - 2X6E2X2 + X(t)(EQ — El)XO
— thElxl + XtQEQXQ.

Proof: It follows from Theorem 6 of [1] that

VAG(NE, + (1~ NEz) 2 \/(det Ey)M(det Eo) A,
Substituting in (8) and multiplying byt det(X), (7) is
Hence obtained. Note that both anddet(X) have been proved to be
different from zero in the open interval (0, 1). O
1 1 1 For the sake of conciseness, the polynomial in (7) is given

< . .
krdet(E) ~ (VdetEp)*  (Vdet Eg)l—* in terms ofxg. Then, it apparently requires the inversiordf
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Fig. 2. Fusion examples.

Nevertheless, sincK ! = [X]/det(X) and the second term root is highlighted in thick line in every family. The trajectory

of (7) is multiplied by(det X)? the dividing terms cancel and of the centeix, as A varies is also indicated.

no numerical ill-conditionings are possible. Corollary 1: When the centers of both ellipsoids coincide,
In Fig. 2, the graphs o¥ol(e)(E, x¢)) and of (7) are plotted xo = x; = x», and the problem can be reduced to obtain the

in function of A, for several ellipse families. Clearly, the rootroots of the following polynomial of degree— 1:

of (7) in the interval (0, 1) coincides with the value dfthat

minimizes the volume of2. The ellipse corresponding to this tr([AE; + (1 — MEQ)|(E; — Eg)) = 0.
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must all be concurrent to the same point, the apex of the (imag-
inary) original tetrahedron [Fig. 3(b)]. In fact, for an arbitrary
polyhedron, one has a collection of sucbncurrence condi-
tions, which, if satisfied on the projection, guarantee its correct-
ness [15], [24].

Fig. 4(a) and (c) show one possible way to verify the correct-
ness of this drawing, based on computing an uncertainty region
for the imaginary apex. This is done by first using the propa-
gation operation repeatedly [Fig. 4(a)] to separately derive the
uncertainty regions of

1) a pointx~; aligned withx; andxy;

2) a pointxg aligned withxs andxs;;

3) a pointxgy aligned withxz andxg;

(a) and then, using the fusion operation [Fig. 4(c)] to intersect the

three uncertainties together. If this intersection is nonempty, the

line drawing can be judged as practically correct and we can start

a 3-D reconstruction from it [17]. Otherwise, the six vertices are

too badly placed and we can consider the use of some correction
Proof: If xo = x; = x», k = 1 andE = X. Substituting algorithm to take them over correct locations [16].

in (18), (22) is obtained. O Since three points are aligned if and only if the determinant

Note that the fusion of two degenerate ellipsoids whose vagf their homogeneous coordinates is zero, the uncertainty of a
eties of centers intersect in a single point can be reduced to thisint x,, aligned with two other points; andx; can be easily
case because this point is necessarily the center of the fusedemputed by propagation through the relation
lipsoid.

Corollary 2: If rank(E; )+rank(E;) = rank(E;, E;) = n,
e.(E,xo) is given by det

Fig. 3. (a) An incorrect truncated tetrahedron. To be corregtxs andxg
should coincide, as illustrated in (b).

Ti1 xz 1

Tj1 Tj2 1 =0
Tr1 Tre 1

xo = (E? + E2) ' (E?x; + E2x») e
a relation which we will refer to a8ayigned(x;, x;,%xx) = 0.
Here, the input and output variables are= (z;1, zi2, 21, Zj2)
andy = (xx1, 2a2), respectively. The linearization of this rela-
tion at a point(xo, yo) is ax + by + d = 0, with

E= £E1+uE2
n n

wherep = rank(E,).
Proof: See [19]. O
This corollary is useful to obtain the uncertainty region asso-

ciated with the cartesian productof (E,, x) ande,,,(E,,y), a — Fhalignea . c= Ohaligned
i.e., atight bounding ofe,,(Ex, x) X R™)N (g,,(Ex, x) X R™). X (xqy0) Y xo,yo)
It will be used in the examples below. d = Paligned (X0, Y0) — axo — €yo

Corollary 3: When one of the ellipsoids is a strip, (7) reduces dhajignea
to a second order polynomial for which the sought root can be™ g (@52 = Tha, Tkl = Tj1, T2 — Tiz, Tit ~ Th1)
explicitly computed. ONaligned

Proof: See Appendix B for a proof of this corollary, where — gy — (wiz = wj2, w51 = win).

the result is also shown to be equivalent to the formula used by
the ellipsoid algorithm. O Theinputellipsoid fox is easily derived by computing an ellip-

soidal bound for the cartesian product of the uncertainty disks
V. EXAMPLES for x; andx;, via the fusion operation (see Corollary 2 above).
As expected, in each of the three propagations the output el-
A. ATruncated Tetrahedron lipsoid for y is a strip, as shown in Fig. 4(a). Finally, these
Consider the line drawing in thick lines of Fig. 3(a). Suppodiree strips can be fused together to obtain the apex uncertainty
it has been obtained from a picture of a plane-faced object witfig. 4(c)]. This fusion is performed in two steps.

an image processing system that, using a vertex extraction algo4) A first fusion involving the vertical and one of the oblique

rithm, has located, . . . , xg within a disk of radius three pixels strips in Fig. 4(a), to derive the nonshaded ellipse in
around each of the following positions: Fig. 4(c).
2) A second fusion of this ellipse with the other oblique strip
x1 =(0,0) x2=(160,0) x3=(80,120) in Fig. 4(a), to obtain the shaded ellipse in Fig. 4(c).
x4 = (20,20) x5 = (140,10) xg = (80,110). A second way of computing the apex uncertainty is shown in

Fig. 4(b) and (d). Here, we use the fact that the apex point must
Note that for this drawing to be a correct projection of a trurie on the intersection of any pair of the three edge-liRex,,
cated tetrahedron, the three edge-ligkg%;, X2X5, andX3zXs XX;, andxszXg. Thus, we can select any two of these lines, say
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12 12
101 101
8- 8
6 6
4 4
2 21
01 01

0 2 4 6 8 10 12 14 16
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124 121
10«\ 101
8 y 8
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4] 41
21 24
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0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Fig. 4. (a) and (b) Vertex uncertainties propagated to the apex. Whereas in (a), every strip is derived from the uncertainties of two verticegganteahe al
condition; in (b), every ellipse is obtained from the uncertainties of four vertices and two alignment conditions. (c) Shaded in grey: fusiatpsfithéagt (d)
fusion of the ellipses in (b).

X;X; andx,x; and derive an ellipsoid for the apex,,.. by relations (3) than output variables (2) and that these relations
propagation through the relations would mutually constrain the input variables, .. ., xg, thus
violating the premises of Theorem 1.

haligned (Xi7 Xj Xapex) =0 }

haligned (xka X, xapex) =0 B. A HeXahedron

Doing this for the three possible pairs we obtain the three el-The fact that a drawing must accomplish a set of concurrence
lipses in Fig. 4(b). As before, their intersection is easily bourmbnditions can be used not only to decide its correctness, but also
by fusion in two steps [Fig. 4(d)]: first fusing two of the ellipsego infer the positions of some vertices, once the uncertainties of
to obtain the shown nonshaded ellipse, and then fusing it witkhers are known. The following example illustrates this use.
the remaining ellipse to obtain the shaded region. Consider the projection of a hexahedron in thick lines of

Comparing Fig. 4(c) and (d) we note that the second methBdy. 5(a). For this hexahedron to be correct, one can see that the
is advantageous: the final uncertainty is quite smaller becadeowing sets of three lines must each intersect at a common
in each propagation we take two (rather than one) relations ingoint

account.
At this point, one could think that a third method would out- {X1X2, X3X1, XoX10
perform the two previous ones: it seems that a single propaga- {X5%g, XXz, XoX10}

tion through these three relations

{XaXe, X2Xs, XoX10 |
haligned (xla X4, xapex) =0
haligned(x27 X5, xapex) =0
haligned(x37 X6, Xapex) =0

since these concurrences hold in any spatial reconstruction of
the object [Fig. 5(a)] and they are preserved after projection.
Using these conditions and reasoning on Fig. 5(a), we can
would avoid the need of the fusion step and even give a tightasily see that the position &f is constrained to lie on a line
bound for the apex. However, note that we would here have maheoughx, andxg, once we know the locations af, . . ., xs.
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(h)

Fig. 5. Uncertainty regions fat,, xg, andxio, given the input uncertainties af,, . . . , x5 (depicted as small shaded disks around these vertices). Taking into
account the concurrence conditions in (b), we get the strips and ellipses in (e) and (g), depending on how these concurrences are specifigll ($siadghbdéex
conditions in (d), we get the strips and ellipses in (f) and (h).
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Thus, using propagation, we can deduce an ellipsoidal uncgr= Px, whereP is anm x n matrix all of whose entries are

tainty for x; assuming thaks, ..., xg are known to lie within zero, except fo®[é1,¢1],...,P[im, i), that are set to one.

a disk of radius eight pixels around each of these locations Hence the projection of an ellipsoid onto these coordinates, is
achieved by applying Theorem 1 with = P, C = —I and

x; = (282, -506), x» = (369, —451) d=o0

x3 = (359, —263), x4 = (400, —344) The results of such projections are shown in Fig. 5(e). As ex-
x5 = (717,-102), x¢ = (656, —246) pected, we obtain a strip for the uncertaintyxgf and two par-

X7 = (756,—665), xg = (672, —533) allel strips, one foxg and the other fok;,. We obtain strips

rather than ellipsoids faxg andx;o because the chosen set of
For this, we need a relation stating the concurrence of thréations only constrains these points to lie on a line through the
lines, which we next derive. A line through two poinks,and  intersection points of lineg;X, andx3xs, on the one hand, and
x;, can be characterized by iRliicker coordinatesi.e., the X3Xg andX7Xs, on the other. However, the formulation is rich

three 2x 2 minors of the 2 3 matrix enough to derive fully bounded ellipses foy andx;o. Namely,
we need only express the same concurrences differently, propa-
<$i1 Ti2 1) . gating the same input ellipsoid through the relations
Tj1 Tj2 1

haligned(xlv X2, X9) =0

Moreover, one can see that three lines are concurrent if, and only hatigned(X3, X4, Xg) = 0
aligne ’ i -

if, their Plucker coordinate vectors are linearly dependent. Thus,

hali ned(X5 X6 XIO) =0 (10)
the three linex;x;, X3 x; andx,,x,, are concurrent whenever N Y
g TR memn Raligned (X7, X8, X10) = 0
Ti1T52 — L2451 Ti1 — Ty Tiz — Tj2 hconcurrent (X47X6X27X8X97 X10) =0
det | wmze —@iern @ —au w2 -2 | =0 yging the same vectossandy of input and output variables.
Tmlln2 = Im2Tnl  Tml = Inl  Im2 = Tn2 The resulting uncertainties are depicted in Fig. 5(g).

a condition which we will compactly refer to as _Furthermore, if instead of a strip we need a fully bounded

ellipse forx;, we can always use the fact that the hexahedron

hconcurrent (Xi, X5, Xk, X1, Xim, Xpn) = 0. must accomplish the additional concurrence condition shown in

. o . L ) Fig. 5(c) and (d), so that we can add the relation
The linearization of this relation isx + by + d = 0, with

hconcurrent (X37 X5, X1,X7,X9g, xlo) =0

ahconcurrent ahconcurrent
a=——— , C= ————
Ix (x0,¥0) dy (x0,¥0) to the above relations (9) and (10) and perform the corre-
d = heoncurrent (X0, ¥0) — aXo — €¥o. sponding propagations again. The results are shown in Fig. 5(f)

) o ) and (h), respectively, where the ellipse faris nondegenerate
The partial derivatives oficoncurrent( - ) have simple expres- anymore.

sions. For exampléfconcurrent /9241 IS equal to

e (Zje — Ti2) + zu(ZTee — Tj2)  Tre — o2
det
xrnl(ij - xn2) + xnl(xnﬂ - ij) LTm2 — Tn2

) C. Minkowski Set Operations

Let us suppose that we want to compute the uncertainty region

) _ ] associated witle = x + y, wherex € ¢,(E;,x¢) andy €
Then, the uncertainty of, can be derived by computing the, (E2,¥0). 2 = x +y can be expressed as

cartesian product of the uncertaintiesxof, . . . , xg and prop-

agating the resulting ellipsoid through the linearization of the (LT)v—-2z=0 (12)
relations
Peoncurrent (X1, X2, X3, X4, X9, X10) = 0 wherev = (X). Then, the first step is to compute the uncer-
) ) ) ) )
heoncurrent (X5, X6, X7, X8, X9, X10) = 0 (9) tainty region associated with. This can actually be seen as the
hconcurrent (X4, X6, X2, Xg, Xg, X10) = 0 fusion of two elliptical cylinders ifR?”. Then, using Corollary
. 2, it is straightforward to prove that
taking
v=(X,¥) € gop(Eg,Vv
X:($217-T227~~~7-T8173782)7 ( Y) ? ( 0 0)
Yy = (3511,3512,3519,3529,351 10, X2 10) whereE, = (El/2 0 ) andvg = (XO,YO)-

0 Es/2
as input and output variables, respectively. Note that, since thdt simply remains t(f/propagateZn(EO,vo) through (11),
output is six-dimensional, we get the uncertaintiesxgfxy to obtain the Minkowski sum of,,(E;,x¢) and e, (Ez, yo).
andx;, combined together. Thus we need to project this high@tso, note that the Minkowski difference betwegi(E;, xo)
dimensional ellipsoid onto the planes;zi2,x91292, and ande,(E2,yo) is just the Minkowski sum ot (E;,x,) and
Z101%10 2, 10 Obtain two-dimensional uncertainty regions foe,,(Ez, —yo).

each point. Fortunately, such a projection can be seen as &his has been implemented and several examples are shown
special case of propagation: note that the projection of a pointFig. 6. Every example displays two ellipsoids and compares
x € R™ ontom coordinates, say;,,...,x; , iS the point their exact Minkowski sum with the ellipsoid bound obtained
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Fig. 6. (a)—(c) Minkowski sums of nondegenerate ellipsoids. (d)—(f) Minkowski sums of degenerate ellipsoids.

by the process above. The exact Minkowski sum of two ellipsasd new operations—such as propagation—are now possible.
e2(E1,%x0) andes(E», yo) can be obtained by first translatingPropagation has been defined as the operation of computing an
£2(Eq,x;) to the origin, then overlaying copies 8f(E»,yo) ellipsoid that satisfies an affine relation of the foix + Cy +
around its contour, with fixed orientation, and finally translating = 0 with another ellipsoid. We have limited our formulation
the whole figure an amount, + yo. The envelope of the re- to those cases in which andC have the same rank, otherwise
sulting family of ellipses is the desired Minkowski sum. Usingonstraints on the coordinatessobry are introduced. This is
this geometric construction we see in Fig. 6 that the Minkowskihy a fusion could be seen as a propagation where these ranks
set operation of our calculus obtains quite good approximatioae different. This observation would allow us to introduce an
(in shaded grey) as compared to the exact sum (the envelop&lipsoidal Calculus solely based on a single operation: a propa-
the shown ellipse families). In the sequence of the first row wgation without limitations on the ranks of the involved matrices.
see how the ellipsoidal and exact sums evolve, as the two €his point deserves further attention. Secondly, although it is
lipses flatten to approximate a segment. In the second row we@nsidered a solved problem [9], [10], [13], further investiga-
show Minkowski sums of degenerate ellipsoids. Fig. 6(d) showien could also be carried out on the issue of inner approxima-
the sum of an ellipse with a vertical strip of semiaxis lengttions, i.e., lower ellipsoidal bounds on the data. Since we know
0.5, which results in a wider vertical strip of semiaxis lengtthe exact result of a propagation, we only need to concentrate
1.59. Fig. 6(e) depicts the sum of two strips of semiaxis lengtiurselves on getting such bounds for the fusion operation, as a
0.2, symmetrically placed about thyeaxis. The result is a strip Minkowski sum or difference is just a combination of these two
of semiaxis length 0.4 that coincides with the exact Minkowskiperations.
sum of the original sets. Finally, Fig. 6(f) shows the Minkowski Bounded-error data naturally lead to set estimates which
sum of two oblique strips which returns the whole plane as eare an attractive alternative to point estimates, as derived
pected. when using stochastic characterizations. The size of these set
estimates will obviously depend on the quality of the data
collected. Among all feasible experiments, one may therefore
be interested in selecting the one which can be expected to
The class of nondegenerate ellipsoids is closed under theralnimize this size in some sense. This problem of experiment
lowed operations by ordinary ellipsoidal calculi. We have showdesign has received a considerable amount of attention in
in this paper that the inclusion of degeneracies enlarge the classtatistical context and it has also been considered in the

VI. CONCLUSION
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bounded-error context. Nevertheless, up to our knowledggtip and an arbitrary nondegenerate ellipsoid, sgiE+ , x1 ),
its application to active sensing in Robotics, while certainlg ¢,,(E, xo), where
deserving some attention, remains unexplored.

Finally, it is also worth to mention that an implementation
in Maple of the presented Ellipsoidal Calculus as well as ex-
amples, including those in this paper, can be downloaded from™
http://lwww.iri.upc.es/people/ros/ellipsoids.html. (14)

L(E, + onn)
Xo :X1+N(E1+Nn Ol 'nn n‘(xz — x1)
t

14 p— p(x2 — %) 'mn*(E; + gnn®) " 1E; (x2 — x1)

for i € [0, >0). Note that we here use a different parameteriza-

APPENDIX A tion but, by setting, = (1 — A)/A andr = (k/)\), the one in
The set in (6) can be rewritten as Theorem 3 is recovered.
Moreover, according to Theorem 4, the optimum bounding
x'(AE; + (1 — M)E2)x — 2x"(AE;1x; ellipsoid within this family is obtained for a value pfsatisfying

— <1— —(1-— .
+ (1 )\)EQXQ) s 1 )\X1E1X1 (1 )\)XQEQXQ (12) tr([El + unnt](El _ nnt)) det(E(El + unnt)

Then, its centerxg, is a solution of —nc'E([E; + pnn'|nnf[E; + ymn']|E c
tr([E "Inn')c'nn'[E Eic=0
Xx = AE1x; + (1 — A)Exxp + ptr([Ey + pnn’lnn’)c’'nn’[E; + pnn']E;c .
whereX = (AE; + (1 — A)Es),

We now prove thalX can be inverted becauset(\E; +
(1 — A)E») never vanish in the open interval (0, 1). Since bot
ellipsoids intersect in a bounded regioapk(Ey, E2) = n.  4(naa’ — 1) + o(4(1 — ac!) + 2n(a — o )?)

Now, let us assume thabnk(E,, E;) = n butrank(AE; + — o (n+ 1)(aa’)2 =0 (16)
(1+ ME2) < n. Then, there existg # 0 such that N

wherec = x> — x3. A quite involved and tedious algebraic
Wanipulation allows us to express (15) as

where
()\El + (1 - )\)EQ)X = »
t 7= (a+a’)2+4u
Multiplying it by x*, we get _ n'x; g
P ’ @ V/ntE;'n
)\XtEjLX =—(1-2AX XtEQX. (13) o = 8 —n'x,
Y Ve,

Since, for values o in the open interval (0, 1), the Ihs of (13) & and« can be interpreted as the Mahalanobis distances in-

is greater or equal to zero and its rhs lower or equal to zerodiiced byE; from x; to the hyperplanem‘x = 5 and3’ =

is only satisfied if, and only if, simultaneousl; x = 0 and m'x, respectively.

E,x = 0. That is, (g )X = 0. Hence, sincd&; andE, are Since (16) is a second order polynomiabirits solutions are
2

symmetric matrlcesank(

N2 _ !
') = rank(E;, E;) < 7, contrary g Moz )+ 21— ad)xp
E, (n+ 1)(a—a)?
our assumption.

Now, (12) can be rewritten dx —x¢)'X(x—x0) < k where Where

Xo = X' (AE1x1 + (1 — A)Eaxo) p= \/4(1 —a?)(1 - a'?) +n2(a® — %)
and Only the negative value fgr corresponds to a positive value
E=1-AxE1x; — (1 — Mx5E»x2 + x5 Xx%0 for 41. Thus, the obtained solution fpr once substituted in (14),
_ ) ) leads to the equations used by the ellipsoid method for bounding
or, equivalently, after further algebraic tedium the intersection of an ellipsoid and a strip, as summarized in [3].
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