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Abstract. Using structural geometric arguments, Whiteley showed that a line drawing is a correct projection
of a spherical polyhedron if and only if it has a cross-section compatible with it. We here enlarge the class of
drawings to which this test applies, including those of polyhedral disks, possibly with perforations. This exten-
sion is helpful, as it makes the test applicable to verify and reconstruct drawings from usual scenes with opaque
objects.

The presented results rely on geometric constructions, thus offering an alternative approach to line drawing
interpretation, complementary to the algebraic-combinatorial treatment given in the classic work by Sugihara.
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1. Introduction

Emulating the human performance in interpreting line
drawings (plane projections of polyhedra) has been one
of the goals of Computer Vision along the past three
decades. A usual motivation behind the extensive work
done in the area is helping to elucidate why humans
are able to reject “impossible figures”, and recover 3D
shapes from correct ones (Fig. 1), despite the reduced
information they offer, without textures on the surfaces,
illumination patterns, or extra views. Among the many
issues to be solved, the following two have emerged as
keystone problems to tackle:

– Realizability. Decide whether a given line drawing is
realizable; that is, whether it is the correct projection
of some 3-dimensional scene of polyhedral objects.

– Reconstruction. If the drawing is correct, obtain the
set of its possible reconstructions; that is, all poly-
hedral scenes that project onto it. Since their number
is infinite, what is asked for here is a parameteriza-
tion of the whole set, in order to later select the most
plausible reconstruction according to additional cri-
teria.

Contributions to these problems range from the pi-
oneering work by Waltz [42], Huffmann [14] and
Clowes [1] in the seventies, to recent advances in con-
sistent edge labelling by Parodi et al. [24, 25], My-
ers and Hancock [23], and Trytten and Tuceryan [41],
going through the Origami World approach by
Kanade [16], the gradient-space techniques by Mack-
worth, Huffman and Draper [9, 15, 20], the structural
geometric methods by Whiteley and Crapo [6, 43, 45]
and the milestone book by Sugihara [39]. Latest devel-
opments include the extension of consistent labelling
algorithms to non-polyhedral objects [2–4, 21], meth-
ods to correct incorrect pictures [13, 32] and general
schemes to deal with uncertainty in the vertex loca-
tions [29,33]. Usual applications of realizability and re-
construction techniques are to polyhedral shape-from-
shading [39, Chapter 10], to 3D solid modeling from
2D free-hand sketches [11, 19] or engineering draw-
ings [7], to compact shape representation [30], or even
to toy design [40], to name a few. Chapter 3 in [28]
offers a survey of the broad literature in the subject.

Overall, it is well known that the realizability prob-
lem was solved by Sugihara in his series of pa-
pers [35–38], where he reduced it to an instance of
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6 Ros and Thomas

Figure 1. Some examples of line drawings. Those in the bottom
row are realizable, while those at the top are not. The realizability
problem is to classify a given line drawing into one of these two
categories. Figure (a) is adapted from Penrose and Penrose [27], (b)
from Draper [8], (c) from Huffman [14], and (d) from Ernst [10].

linear programming. However, a less known fact within
the Computer Vision community, which cannot be di-
rectly inferred from this linear programming approach,
is that for drawings depicting a single spherical polyhe-
dron (showing the projections of all edges, even the hid-
den ones) their realizability can be decided by checking
only the concurrence of groups of three lines derived
from the drawing itself. (By spherical we mean here
that the polyhedron is homeomorphic1 to a sphere.) Al-
though the authors independently realized this in [31],
they later found that the result had already appeared
in [45], due to Whiteley, who even identified a min-
imal number of such concurrence conditions, giving
rise to the so-called cross-section reciprocal test, or
cross-section test for short.2 Using elementary geo-
metric arguments, we here prove that the cross-section
test is not only valid for testing drawings of spher-
ical polyhedra, but also for those of polyhedral sur-
faces homeomorphic to either a disk,3 or to a disk with
perforations, two classes of objects that will be here-
after referred to as polydisks, and perforated polydisks,
respectively.

Figure 2. When a drawing (center) is a projection of an opaque scene (left), all we can reconstruct is a collection of polyhedral surfaces, each
one of them topologically equivalent to a disk, possibly perforated (right).

This constitutes a helpful extension since it makes
the test applicable to drawings of scenes with opaque
objects, which arise in common applications. Indeed,
a necessary input to the test is the topology of the pro-
jected objects [45], or, more precisely, its incidence
structure, as defined below. Given that hidden vertices,
edges and faces are not visible on opaque objects, and
that objects on top may occlude others behind, the
topology of their projections is far from spherical, as
shown in Fig. 2: although the drawing in the middle is
a projection of the scene on the left, all we can recon-
struct is a collection of surfaces such as those on the
right (the visible portions from the center of projection)
where each one of them is clearly homeomorphic to a
polydisk, possibly perforated.

Contrarily to [45], where elaborate structural geo-
metric arguments are used for the proof, our extension
here is obtained via elementary synthetic-geometric ar-
guments. Moreover, the given proof is constructive in
nature: to verify the realizability of a drawing we ex-
plicitly construct a 3D polyhedral surface that correctly
projects onto it. Following this process, one is able to
obtain the parameterized infinity of all possible recon-
structions, thus permitting a potential application of the
result to 3D shape recovery from 2D projections.

In addition, the result and its proof provide alterna-
tive visual proofs to two important known properties of
line drawings. On the one hand, their realizability is a
projective invariant property: if a drawing is realizable,
any projective transformation of itself is realizable too.
On the other hand, when a drawing is realizable, it is
so independently of the type of projection assumed—
either orthogonal, parallel oblique or central.

Finally, it is worth mentioning that, since a cross-
section test is a purely geometric tool, it constitutes
an alternative approach to line drawing interpretation,
complementary to the algebraic-combinatorial treat-
ment of the classic work by Sugihara [39].
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The paper is structured as follows. Section 2 intro-
duces some needed background and terminology. Then,
Section 3 starts reviewing Whiteley’s cross-section test
for spherical polyhedra, and the role of concurrence
conditions to decide their realizability. This serves as
an introduction to later develop the main result of this
paper: the extension of the test to deal with drawings
of polydisks. General scenes may be made of objects
with more complicated topologies and Section 4 shows
how the test still applies on perforated polydisks, but
is merely a set of necessary conditions for realizabil-
ity on polyhedral surfaces “with handles”, which poses
an interesting open problem for future consideration.
Section 5 shows how to graphically construct a cross-
section for some classes of line drawings and, finally,
Section 6 concludes and summarizes several points de-
serving further research.

2. Preliminaries

A line drawing is a 2D diagram made with straight line
segments, called edges, and points where two or more
segments meet, called vertices. Such a diagram divides
the plane into several regions, called its faces. The term
skeleton will be used to refer to the natural graph in-
duced by the vertices and edges of a line drawing.

A polyhedral surface is a piecewise linear and con-
tinuous 2-manifold made with planar polygons, also
called faces, glued in pairs along their edges. We al-
low the existence of any number of closed boundary
curves on these surfaces, thus distinguishing between
boundary edges, with just one incident face, and in-
terior edges, with two incident faces. A polyhedral
surface is trihedral if all vertices except those in the
boundary have exactly three incident faces. A spheri-
cal polyhedron, or polysphere for short, is defined as
a polyhedral surface homeomorphic to a sphere. Also
for short, a polyhedral surface homeomorphic to a disk
will be called a polydisk, and one homeomorphic to a
disk with perforations, a perforated polydisk.

We say that a drawing D is correct, or realizable, if
we can vertically lift its vertices along the imaginary
rays of projection to construct a polyhedral surface that
projects onto D, with distinct planes for every two ad-
jacent faces. Such a polyhedral surface is usually called
a reconstruction, a spatial interpretation or a lifting of
the drawing.

Throughout the paper, we will also assume that the
drawing is given along with its incidence structure,
which determines the combinatorial structure of its spa-

tial interpretations—basically, which vertices will be
incident to which faces. More formally, this structure
is a triple I = (V, F, R), where V is the set of vertices
of the drawing and F is the set of its faces. We put
a face in F for every subset of vertices that must be
kept coplanar in the spatial interpretation. R ⊆ V × F
is the incidence set: there is an incidence pair (v, f )
in R if vertex v must lie on face f in 3-space. The
incidence structure can be computed by applying the
methods by Sugihara in [39, p. 45], after a consistent
labelling of its edges has been obtained. Several tech-
niques exist to obtain consistent labellings, like those
by Huffman [14], Waltz [42], Hancock et al. [12,23] or
Parodi et al. [25, 26], to name a few. Since finding a
consistent edge labelling is an NP-complete prob-
lem [17], the previous assumption, that the drawing
is given with an identified incidence structure, im-
plicitly means in all results below that a consistent
edge-labelling has been performed yet. The realizabil-
ity problem will thus be understood as that of deciding
whether a pair “drawing plus incidence structure” has
some plausible spatial interpretation.

The following definitions and a related lemma will
be useful in the proof of Theorem 1 below. Let D be
a subset of the plane homeomorphic to a disk. A disk-
partition of D is a collection of regions, each homeo-
morphic to a disk, such that any two regions can only
intersect along their boundaries and the union of all
regions is D. Now, select m regions r1, . . . , rm of a
disk-partition, such that the union D′ = r1 ∪ · · · ∪ rm

is homeomorphic to a disk. We say that another re-
gion r of the disk-partition is continuously adjacent to
D′ if r ∩ D′ is a continuous curve segment with more
than one point. (Note that, under this circumstances,
the union r ∪ D′ must be homeomorphic to a disk too.)
Furthermore, let P be a disk partition of D, a disk-
growing sequence of P is an ordering of the regions in
P into a sequence s so that every region in s is contin-
uously adjacent to the union of all regions preceding it
in s. Then, the following result holds:

Lemma 1. Let D be a subset of the plane homeomor-
phic to a disk, and let P be a disk-partition of D. Then,

for any region r of P there is at least one disk-growing
sequence whose first element is r .

Proof: A disk-growing sequence starting at r can be
easily obtained as follows. (1) Mark r as visited and put
it in a list L , initially empty. (2) Obtain the union D′

of all regions in L . (3) Choose an arbitrary non-visited
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8 Ros and Thomas

Figure 3. (a, b, c) Possible shapes of a region r in contact with
D′. (d) An impossible shape for region r . (e) A possible covering of
the boundary of D′ with infinitely many regions of the type in (b),
recursively placed inside their holes.

region continuously adjacent to D′, mark it as visited,
and add it to the tail of L . (4) Repeat step 2 until no
progress is possible.

At the end of this process, L will certainly contain
all regions in D and, hence, the desired disk-growing
sequence. To prove this, assume contrarily that the al-
gorithm ends, but L does not contain all regions in P .
This means that, upon termination, any region r not in
L that is in contact with D′ is not continuously adjacent
to D′; Otherwise the algorithm could progress through
it. This implies that either,

– r is in contact with D′ at just one point (Fig. 3(a)),
or

– r is in contact with D′ along p disjoint curve seg-
ments, creating p − 1 holes. (Figure 3(b) shows the
case p = 3.) Observe that, while some of these seg-
ments may be isolated points (as in Fig. 3(c)), a hole,
on the contrary, cannot contact the boundary of D′

at a single point only (as in Fig. 3(d)), since r must
be homeomorphic to a disk.

The only way to prevent the algorithm from progressing
is, thus, to cover the boundary of D′ with regions of any

of these two types. This is only possible, though, by
using an infinite number of such regions, as illustrated
in Fig. 3(e), which violates the premise that the number
of regions in P is finite. Hence the lemma.

Remark 1. If D is not a subset of the plane homeomor-
phic to a disk, but is instead a subset of 3-space home-
omorphic to a sphere, then we can analogously define
the concepts of a disk partition of D, and of a disk-
growing sequence for such partition. Then, clearly, the
previous lemma also holds if P is a disk-partition of a
surface D homeomorphic to a sphere.

For the sake of simplicity, we will continue by as-
suming that the drawing, if correct, is produced by or-
thogonally projecting a single polyhedral surface onto
the XY plane. Proposition 3 below will extend the re-
sults to other types of projection, and [28, Section 2.3]
shows how they are readily extended to drawings de-
picting several polydisks, possibly perforated.

3. The Cross-Section Test

Some examples suggest that a drawing’s correctness is
checkeable solely using concurrence conditions. The
truncated tetrahedron in Fig. 4(a) is only correct when
its three edges l, m, and n meet at a common point. The
4-calotte in Fig. 4(b), a configuration of a quadrilateral
face and its four neighboring faces, is only correct when
the three lines l, m, n are concurrent or, equivalently,
when the three bold points are aligned, since they all
lie in the line m of intersection of the planes α and β.
Likewise, the 5-calotte in Fig. 4(c) is only correct when
l, m1, n1, and l, m2, n2 are concurrent too. These are all
necessary conditions for realizability since they hold
in any spatial reconstruction of the drawing (Fig. 4,
center) and projection preserves incidence relations
between points and lines. Although these conditions
are already useful to discard some incorrect draw-
ings (Fig. 4, right), the challenge was to character-
ize a set of concurrence conditions also sufficient for
realizability. Whiteley’s cross-section test, which is
next described, identifies one such set for spherical
polyhedra.

Consider a spherical polyhedron in 3-space such as,
for example, the tetrahedron in Fig. 5, top. Now, ob-
tain the intersections of the planes of its faces with an
external plane φ in a general position, not coincident
with any other face plane. The resulting arrangement
of lines is called a cross-section of the polyhedron. It is
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Methods for Polyhedra Shape Recovery 9

Figure 4. To be correct, the drawings on the left must verify the indicated concurrence conditions, since they hold on any of their spatial
interpretations (center). These conditions allow to classify the drawings on the right as incorrect. The incidence structure implicitly considered
in each example is that of its corresponding spatial reconstruction shown in the center.

clear that the edge line e between two faces, say fi and
f j , must be concurrent to the point of intersection of
the lines L fi and L f j of intersection of the planes of fi

and f j with φ, respectively. These trivial concurrence
conditions that hold in 3-space will clearly hold too
when projecting the whole construction onto the plane
φ, because projection preserves collinearity of points
and all incidence relations (Fig. 5, central). Hence, we
have a set of concurrence constraints that are necessary
for a drawing to correctly represent the projection of
a spherical polyhedron: the drawing can only be cor-
rect if we are able to draw a compatible cross-section
diagram, one where these concurrences hold (Fig. 5,
bottom). Whiteley’s theorem states that the converse is
also true: if the concurrences hold, a spherical polyhe-
dron can be reconstructed from the drawing.

We will also prove the following extension for poly-
disks, where the word “compatible” now has a slightly
different meaning: that only the interior edges of the
polydisk must be concurrent to their corresponding
point in the cross-section (leaving the boundary ones
unconstrained). Proposition 3 below will extend its ap-
plicability to perforated polydisks.

Theorem 1 (Cross-section test for polydisks). Let D
be a line drawing of a polydisk. D is realizable if and
only if it has a compatible cross-section such that the
cross-section lines L fi and L f j of every two adjacent
faces fi and f j are non-coincident.

Proof: (⇐) We will prove the “if” part using the
drawing D and its compatible cross-section to explic-
itly construct a polydisk L; one whose face planes gen-
erate the given cross-section when intersected with the
plane of the drawing.

Let us first assume that all faces of D are topologi-
cal disks. (The existence of other face types will pose
no extra difficulty, as shown below.) Now, consider a
subset R of the plane, homeomorphic to a disk, and
embed the skeleton of D in it, so that the regions of
R induced by the embedding are in one-to-one corre-
spondence with the faces of D. The induced regions
define a disk-partition P of R, and Lemma 1 can be
applied to find a disk-growing sequence s of P . The
faces of D can be ordered then, according to the order
in which their corresponding regions of P appear in s.
Let f1, f2, . . . , fn be this ordering.
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10 Ros and Thomas

Figure 5. The cross-section test.

The proof now proceeds using induction on the se-
quence f1, . . . , fn . To start with, take f1 and consider
its cross-section line. A lifting of this face can be fixed
by giving an arbitrary height to any one of its vertices
not in the cross-section line. The cross-section line and
the lifted vertex define the plane of f1, and all edges
and vertices of f1 may then be lifted vertically to lie on
this plane.

Now, as induction hypothesis, we assume that a poly-
disk Lk−1 made up with f1, . . . , fk−1 has already been
correctly lifted to 3-space. We will then prove that fk

can be properly lifted too, to form a lifted polydisk Lk

with k faces.
Observe that, since Lk−1 has been correctly lifted,

the edge-line between any two of its adjacent faces
will meet the point where the cross-section lines of
these two faces intersect. This applies to all interior
edges of Lk−1, but also to those on its boundary that do
not lie on the boundary of L.

Let us now lift fk . Given the way fk was
chosen, it is clear that it will be adjacent to p

Figure 6. Lifting an intermediate face.

faces of Lk−1, say fi1 , . . . , fi p , through q edges
P0 P1, P1 P2, . . . , Pq−1 Pq , and that these edges will be
sequentially linked, forming a continuous polygonal
line. (This is illustrated in Fig. 6, where fk is adjacent
to p = 3 faces of Lk−1, through q = 3 edges.) We will
prove that this polygonal line and the cross-section line
L fk of fk are coplanar, and define a plane α that is dif-
ferent from all planes assigned to the faces fi1 , . . . , fi p .
This will be true even if any one of the faces fi1 , . . . , fi p

is in contact with this polygonal line through more than
one edge.

To see this, note that, as the edge line P0 P1 is incident
with L fk (by induction hypothesis), P0 P1 and L fk are
coplanar. Let us call α the plane they define. Moreover,
the edge line P1 P2 is also coplanar with α, as it contains
two points of this plane: the point where it intersects
with L fk and the point P1 of line P0 P1. The same applies
to line P2 P3 as it is incident with P2 and L fk . Clearly,
the argument can be iterated to prove that all other edges
between fk and faces of Lk−1 are coplanar with α.

With the plane for fk already fixed, all other edges
between fk and faces not in Lk−1 can be fixed too by
lifting them vertically to lie on this plane. For every
such edge, say between faces fk and fi , we must prove
that its line of support meets the point T where the
cross-section lines L fi and L fk meet. Clearly, this line
of support is defined by the intersection of the plane
α and a vertical plane containing the projection of the
edge. But both planes meet T : α meets T because T is
a point of L fk , and the vertical plane meets T because
the projection of the edge meets T in the cross-section.

It remains to prove that the plane α is different from
all the planes given to the faces fi1 , . . . , fi p . But this
is trivially true, as the only way for α to coincide with
one of such planes would be that their corresponding
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Figure 7. A drawing D with a face f not homeomorphic to a disk
(left) and its spatial interpretation (right) regarded as a polysphere S
glued to a polydisk P through face h.

cross-section lines were identical, which is not the case
by the premises of the theorem.

Finally, assume that some face f of D is not home-
omorphic to a disk and has, for example, one hole.
Then, the arrangement of faces interior to that hole
can always be regarded as a polysphere S adhered to
face f —thought of as with no holes now—through an
imaginary face h whose contour coincides with that of
the hole (Fig. 7). Assume for the moment that all faces
of S are homeomorphic to a disk. The drawing D may
then be viewed as a compound object: a polysphere S
glued to a polydisk P through its face h, both objects
with all faces homeomorphic to a disk. A lifting of D
can then be obtained in two stages: (1) Using a disk-
growing sequence forP , we obtain a lifting of the faces
in P . This fixes a plane for face f in 3-space. (2) We
generate a disk-growing sequence for S, starting at f ,
and use it to lift all faces of S to 3-space. The gener-
alization of this process to drawings with recursively
many polyspheres adhered to S, and to faces with more
than one hole is straightforward.

(⇒) Conversely, if the line drawing can be lifted
to a polydisk, then we can construct a cross-section
just by extending the face planes of the lifted polydisk
and intersecting them with the plane of the drawing.
The resulting lines define a compatible cross-section
since, clearly, any interior edge of the spatial polydisk,
when extended, will be incident to the intersection of
the cross-section lines of its two adjacent faces, and
the same concurrence will hold when extending the
projections of these interior edges. �

By following an analogous reasoning, we can come
up with a synthetic-geometric proof of the cross-section
test for spherical polyhedra, as follows.

Theorem 2 (Whiteley, 1991). LetD be a line drawing
of a spherical polyhedron. D is realizable if and only
if it has a compatible cross-section such that the cross-

section lines L fi and L f j of every two adjacent faces
fi and f j are non-coincident.

Proof: We can embed the skeleton ofD onto a sphere,
taking care that the delimited regions on the sphere
are in one-to-one correspondence with the faces of the
drawing. This defines a disk-partition P of the sphere
and, thus, by Remark 1, it is possible to find a disk-
growing sequence of P . Following this sequence, it
is possible to find an ordering of the faces of D, say
f1, . . . , fn , so that the boundary of each fi intersects
the boundary of the union f1 ∪ · · · ∪ fi−1 along a con-
tinuous polygonal segment. The previous proof can be
applied then, using induction on the number of lifted
faces of the sequence f1, . . . , fn .

So far, the cross-section test has only been proved
under orthogonal projection. However, its validity is
easily extended to any type of projection due to the
following known property.

Proposition 1 (Independence of the assumed projec-
tion). A drawing is realizable under orthogonal pro-
jection if and only if it is realizable under any central
or parallel oblique projection.

Proof: A proof for general drawings was given by
Sugihara in [39, Theorem 3.4]. If the drawing is a pro-
jected polydisk, though, this result can be easily de-
duced from the proof of Theorem 1 above. If we follow
it while observing Fig. 6, we see that the same proof
works for central or parallel oblique projection, the only
difference being that the vertices P0, P1, . . . , Pq , are
lifted along lines that meet at the center of projection
in the former case, or at a point at infinity in a direc-
tion oblique to the plane in the latter. Clearly, if the
drawing is a projected polysphere, the same argument
applies.

We close the section by noting that Theorems 1 and 2
also allow a visual proof to another important property
of line drawings.

Proposition 2 (Projective invariance of realizability).
Let D and D∗ be two line drawings with the same in-
cidence structure and such that D∗ has been obtained
from D by applying a non-singular projective transfor-
mation to its vertices and edges. Then, D is realizable
if and only if D∗ is realizable.
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12 Ros and Thomas

Proof: This was proved by Whiteley and Crapo [5,
43] for more general drawings. However, if D is a pro-
jected polydisk or polysphere, this can be readily seen a
consequence of Theorems 1 and 2. Indeed, since non-
singular projective transformations of the plane map
lines to lines and points of intersection of two lines
to the points of intersection of the transformed two
lines [18, page 92], if a drawing D has a compatible
cross-section, the transformed drawing D∗ will also
have one, obtained by transforming the lines of the
original.

4. Realizability for Other Topologies

So far, the sufficiency of the cross-section test has been
proved for drawings of polyhedral surfaces homeo-
morphic to a disk (Theorem 1) or a sphere (Theo-
rem 2). Can we extend the test to surfaces with other
topologies? The following considerations will depict
its full range of applicability. They are summarized in
Table 1.

First, there is no trouble in dealing with self-
intersecting surfaces, or with self-intersecting faces
(Fig. 8) if the underlying incidence structure still has
the topology of a disk or a sphere. Thus, as long as

Table 1. Applicability of cross-sections for several topologies.

Figure 8. (a) A line drawing whose incidence structure has the
topology of a sphere. (b and c) Two spatial reconstructions of
(a), one of them with self-intersections. (d) A self-intersecting
face.

these intersections do not produce any new faces, ver-
tices, or edges, all of the proofs above will be valid for
these objects. From now on, hence, we will concentrate
on the topology of the combinatorial structure, rather
than that of the spatial object itself.

At a topologic level, an orientable surface S can be
fully characterized by two quantities: the number µ of
its closed boundary curves, and the maximum number
p of closed cuts that do not separate it into parts—
also called the genus of S. In fact, a necessary and
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Figure 9. The cross-section test is invalid for objects other than
polyspheres and polydisks. (a) If the polyhedral surface has perfo-
rations, then there will be some face fk not continuously adjacent
to a previously lifted polydisk Lk−1. (b) An incorrect drawing of a
perforated polydisk, with a compatible cross-section.

sufficient condition for two orientable surfaces to be
homeomorphic is that these two numbers shall be the
same for both surfaces [18, p. 106].

Note that, if Cµ,p denotes the class of all orientable
homeomorphic surfaces with genus p and µ bound-
aries, what we have done so far is to prove the validity
of the cross-section test for surfaces in the classes C0,0

and C1,0.
For polyhedral surfaces in Cµ,0, µ ≥ 2 (perforated

polydisks), the cross-section test cannot be directly ap-
plied. For such objects, the proof of Theorem 1 would
fail, as their drawings cannot be lifted by iteratively
adding faces that are continuously adjacent to a previ-
ously lifted polydisk. This can be seen with the help
of Fig. 9(a), for a topologic disk with one perforation.
As a specific counterexample, consider three pairwise
adjacent faces with a triangular perforation (Fig. 9(b)):
this drawing always has a compatible cross-section, but
it is not realizable unless the three interior edges, l, m
and n, are concurrent. A useful modification, however,
allows the use of cross-sections even in such cases.

Proposition 3 (Cross-section test for perforated poly-
disks). If D1 is a drawing of a perforated polydisk P,

we can triangulate every perforation to produce a new
drawing D2 whose incidence structure has the topol-
ogy of a disk. Then, D1 is realizable if and only if D2

is realizable.

Proof: If D1 is realizable, it has at least one lifting
L1, and a lifting of D2 can be found by spatialy trian-
gulating the perforations of L1. Conversely, a lifting of
D1 can be found from one of D2 by removing the tri-
angles that cover the perforations. This argument also

shows that, actually, there is a one-to-one correspon-
dence between the liftings of D1 and those of D2.

In sum, the cross-section test can be used for objects
in the class Cµ,0, µ ≥ 2, as long as they are converted to
the class C1,0, by the triangulation of µ−1 boundaries.

No synthetic geometric test using cross-sections has
been found for the rest of topologic objects with at least
one handle (Cµ,p, µ ≥ 0, p ≥ 1). Actually, Crapo and
Whiteley prove in [6] that the cross-section test is not
valid for checking drawings of a prismatic torus, made
up of three triangular prisms glued together in pairs
through their bases. They show it can have a compati-
ble cross-section that does not correspond to a correct
spatial lifting of this torus.

5. Graphical Construction of Cross-Sections

Although the existence of a compatible cross-section
is a necessary and sufficient condition for realizabil-
ity, we still need some process to find all compatible
cross-sections or show that none exists. For drawings
of trihedral polyspheres or polydisks we give a method
in Section 5.1 below, called the incremental construc-
tion. As explained in Section 5.2, this construction can
also be used on perforated trihedral polydisks, pro-
vided that their inner boundaries have no more than
four “relevant” edges. This and the trihedrality limita-
tion make these methods unapplicable on general draw-
ings, posing some open problems that will be discussed
in Section 5.3.

5.1. Trihedral Polysheres and Polydisks

To obtain the incremental construction, first note that,
when lifting a correct drawing, one can always choose
the heights of four vertices independently; namely,
those of the two vertices of an interior edge e, and
the height of one vertex in each of the adjacent faces of
e. Thus, these two faces can receive arbitrary planes,
provided that their intersection line projects onto their
edge. This means that, when constructing a cross-
section, the lines of two adjacent faces can be chosen
with arbitrary orientation, as long as they are differ-
ent and concurrent to a same point on their common
edge line. For drawings of trihedral polyspheres and
polydisks these two initial lines completely determine
the rest of the cross-section. We see this in Fig. 10(a),
where, after fixing the lines L f1 and L f2 for faces f1 and
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Figure 10. Testing a trihedral drawing with pencil and straightedge.

f2, L f3 can be automatically deduced as it must con-
tain P and Q, the points where the edge lines between
f3 and f1, and f3 and f2 meet with the cross-section
lines of f1 and f2, respectively. We can obtain lines
for the other faces iterating this process, and construct
the whole cross-section. If at some point a concurrence
condition does not hold, we conclude that the drawing
is incorrect. If we complete the construction, then it
is correct by Theorems 1 or 2. Clearly, this algorithm
takes a linear time in the number of faces, since it adds
one cross-section line at a time, and each line is deter-
mined by two previously obtained points. This proves
the following.

Proposition 4. Let D be a line drawing of a trihe-
dral polysphere or a polydisk, with an incidence struc-
ture identified on it. Then, the realizability of D can be
checked with pencil and straightedge in linear time in
the number of faces.

Figure 10(b) illustrates the incremental construction
on a truncated tetrahedron. We consider the outer tri-
angle as a face too and, hence, the incidence structure
is that of a spherical polyhedron. We start fixing L f1

and L f2 , with arbitrary orientation, making them con-
current to the edge line between faces f1 and f2. The
rest of lines are then fixed in this order: L f3 , L f4 , L f5 .

5.2. Trihedral Perforated Polydisks

As shown in Section 4, when we have perforations, we
can simply triangulate them and apply Theorem 1 to

the newly derived drawing. Nevertheless, after adding
the triangles, the new drawing will not be fully trihe-
dral, thus making the incremental construction proba-
bly unsuitable to obtain its possible cross-sections. The
following considerations, though, delimit some cases
where it is still a valid tool.

Let D be a line drawing of a trihedral polydisk with
perforations. A 2-valent vertex of D is one that is in-
cident to exactly one face, thus having two incident
edges. We realize that every 2-valent vertex lying on
the boundary of a perforation can be safely removed,
and its two adjacent vertices directly linked by an edge,
without altering the realizability of D (Fig. 11(a)). We
will say that D has been regularized when all 2-valent
vertices of this kind have been removed, and will de-
note by Reg(D) the resulting new drawing. Clearly, D
is realizable if and only if Reg(D) is, as every lifting of
D can be easily converted to one of Reg(D), and vice
versa. The following holds:

Proposition 5. If D is a drawing of a perforated
polydisk, and each perforation of Reg(D) has three or
four boundary edges, then the correctness of D can be
checked with the incremental construction.

Proof: To check the realizability of D we pro-
ceed as follows. First, we simplify the perforations
as much as possible by regularizing D. Then, the
idea is to construct a “trihedral roof” over each per-
foration of Reg(D), until we get a new drawing
with the topology of a trihedral polydisk. We act
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Figure 11. Testing perforated polydisks.

differently, depending on the number of edges of these
perforations:

– If we have a triangular perforation, we proceed as in
Fig. 11(b). We cover the perforation by extending its
three faces, f1, f2 and f3, until the common point
of intersection of the edge lines e1, e2 and e3. If
these lines do not meet at a common point we can
reject the drawing as incorrect. If they meet, we get
a transformed drawing that is realizable if and only
if the original one is.

– If we have a quadrilateral perforation, we proceed
as in Fig. 11(c). The point P of intersection of the
faces f1, f2 and f3 must lie on the intersection of the
edge lines e1 and e2. Analogously the point where
f1, f3 and f4 meet is Q, on the intersection of e3

and e4. Clearly, P Q is the line of intersection of f1

with f3. The perforation is covered by extending f1,
f2, f3 and f4 until they hit the dotted lines. Again,
the resulting drawing is realizable if and only if the
original one is.

Once all perforations have been covered using these
two transformations, we end up with a drawing of a
trihedral polydisk and, thus, by Proposition 4, it can be
checked with the incremental construction.

Unfortunately, the construction of trihedral roofs is
not possible on perforations with more than four bound-
ary edges, because the intersection lines between pairs
of faces in these roofs cannot be determined from the
edge lines incident to the perforation. In the pentago-
nal perforation of Fig. 11(d), for example, one point
of the intersection line between faces f1 and f3 is P ,
where e1 and e2 meet. To determine another point on
this roof line we would need an additional face simul-
taneously adjacent to f1 and f3, as it happenened with
f4 in Fig. 11(c), but none is available.

5.3. General Drawings

The incremental construction is possible on drawings
of trihedral polydisks and trihedral polyspheres pre-
cisely because they have a determined cross-section,
one where after the initial choice of two lines, the re-
maining ones are fully determined. In fact, it would be
useful to characterize the whole class of drawings with
determined cross-sections, to delimit the full range of
applicability of the incremental construction. Note that
this class is not only restricted to drawings of trihedral
polydisks and polyspheres. The reader can check, for
example, that the two projected polyspheres in Fig. 12
also exhibit this property, but they have vertices with
more than three incident faces. To our knowledge, this
characterization has not been pursued yet and remains
an interesting open problem.

Moreover, if we try to apply the incremental con-
struction on a general drawing, it may happen that an
intermediate line remains undetermined. If this is the

Figure 12. Non-trihedral drawings with determined cross-sections.
Both drawings must be thought of as “projected polyspheres”, that
is, with the outer contour forming a face too. While (a) is realizable
independently of the (x, y) positions assigned to its vertices, (b) is
not.
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case, we can always choose one among all possible po-
sitions for this line, and continue with the construction.
If we are able to complete a cross-section, the drawing
is certainly correct. If we do not succeed, though, we
cannot reject it as incorrect, since other locations for
the undetermined lines might still yield a compatible
cross-section. Obviously, we could try all possibilities
in a generate-and-test fashion with backtracking, but
this is clearly non-viable. Unfortunately, no general
method has been devised yet to generate all compat-
ible cross-sections, or otherwise show that none exists,
using pencil and straightedge alone. This constitutes
an additional challenging open problem (if solvable at
all).

6. Conclusions

Traditionally, the Machine Vision approach to line
drawing interpretation has been mainly algebraic. Al-
though computer scientists have discovered graphi-
cal techniques like the dual diagrams of the gradient-
space approach [9, 15, 20], these have not been fully
exploited or sometimes left aside, arguing that they only
provide necessary (but not sufficient) conditions for re-
alizability. However, a careful investigation of results
from related areas of Geometry has revealed the exis-
tence of complete and purely geometric tests to decide
the correctness of whole families of drawings. The goal
of this paper has been to further exploit this geomet-
ric side to obtain not only necessary, but also sufficient
conditions for drawings of scenes with opaque polye-
hdra or, more generally, for drawings whose incidence
structure is that of a polyhedral disk, possibly with one
or more perforations.

These results can be extended in a number of ways.
On the one hand, we note that the cross-section is
just one among several known reciprocal diagrams.
Other related diagrams have been found and used for
the same purposes. For example, the dual diagram of
the gradient-space approach is actually the same as
Maxwell’s reciprocal [22], and the known fact that
Maxwell’s reciprocal can be transformed to the cross-
section through a plane polarity [45] indicates that all
these diagrams are essentially the same, up to pro-
jective transformations. It would be helpful to clar-
ify all the equivalences with a unifying aim in mind,
since the readers usually have the impression that
many authors use the same concepts under a differ-
ent language, when following the classical literature
[9, 15, 16, 20].

On the other hand, the main drawback of cross-
sections is that no general method has been given yet
to construct a cross-section or otherwise show that
none exists, using a pencil and a straightedge alone.
Although we have shown an incremental construction
that works for trihedral drawings, a general tool still
remains unknown. Its development, or a proof of its
non-existence, are challenging open problems for fur-
ther consideration.

Finally, it is worth mentioning that on perspective
drawings of objects with several families of parallel
edges, knowing the locations of the vanishing points
of such edges may provide additional information to
partially or fully constrain the position and orientation
of all lines in a cross-section—and, by extension, limit
the number of possible spatial interpretations. In fact,
although working out the details is out of the scope of
the present paper, it is not difficult to prove that the hori-
zon lines of the face planes of the projected object in a
drawing must be parallel to their corresponding cross-
section lines, and that a projected edge between two
faces fi and f j must not only be concurrent to the inter-
section of the cross-section lines L fi and L f j , but also
to the point where the horizon lines of fi and f j meet.
To fully unravel this connection seems a worthwhile
task, given the availability of fast methods that detect
the vanishing point positions (and hence the horizon
lines) in perspective images [34]. This point currently
concentrates part of our research efforts.
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Notes

1. “Homeomorphic” means “topologically equivalent”.
2. Actually, Whiteley already conjectured the test to be valid in [44].
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3. Throughout the paper, the term “disk” refers to a “closed disk”,
i.e., the set of points (x, y) of the plane such that x2 + y2 ≤ 1.
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