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Abstract

Solving the direct kinematics of parallel spherical

mechanisms with l legs boils down to solving systems

of l�1 second-order multinomials. This paper presents

a recurrent expression for the control points of these

multinomials when expressed in Bernstein form. This

result allows us to propose a technique for solving the

direct kinematics of these mechanisms that takes ad-

vantage of the subdivision and convex hull properties

of polynomials in Bernstein form. Contrary to other

numerical approaches, the one presented here is clearly

less involved and, although it can be classi�ed within

the same category as interval-based techniques, it does

not require any interval arithmetic computation.

1 Introduction

Parallel manipulators are closed-chain mechanisms

with one or more loops where only a certain number

of pairs are actively controlled. Fully parallel mecha-

nisms, in particular, feature two rigid bodies, termed

base and platform, connected by a set of legs. Position

analysis of a parallel manipulator involves a direct and

an inverse kinematic problem. In general, the inverse

problem is trivial, since it asks for the legs' con�gura-

tions when the position and orientation of the platform

are given with respect to the base. On the contrary,

the direct problem, which calls for the position and

orientation of the platform when the con�gurations

of the actively controlled pairs are given, is a di�-

cult problem for which no general procedure has been

found yet and for which closed-form solutions are only

available for certain architectures, sometimes satisfy-

ing a number of geometric conditions [8].

The di�erent architectures for parallel mechanisms

can be analitically studied by a customized strategy

that can be summarized as follows. First, the con�g-

uration of the platform with respect to the base is pa-

rameterized, so that a closure system with a reduced

number of equations and unknowns can be written.

Second, using a suitable elimination procedure a �-

nal polynomial equation in only one unknown is ob-

tained. Unfortunately, both steps heavily rely on the

geometric intuition of the researcher. The roots of the

�nal polynomial lead to the sought solutions by sub-

stitution. Consequently, the order of the polynomial

equation does not necessarily represent the number of

solutions in the real �eld and the real roots do not nec-

essarily correspond to con�gurations within the me-

chanical limits of the mechanism under consideration.

However, despite these drawbacks, this has been the

usual approach to the problem and it has triggered the

hunt for the lowest order polynomial associated with

each architecture.

In this context, current numerical methods have

been laid aside because of their proved di�culty to

�nd all solutions. Our group has been working on

the application of interval-based techniques to pro-

vide a way around this di�culty. In particular, we

have applied interval extensions of Newton methods,

coupled with bisection to ensure convergence, to solve

the inverse kinematic problem of serial manipulators

directly from their Denavit-Hartenberg parameters [1,

2]. The rather di�cult generalization of our algorithm

to multiple loops and its complex implementation |

among other drawbacks| led us to explore other al-

ternatives. Here we develop a general technique to

numerically solve systems of spherical kinematic con-

straints directly from the Denavit-Hartenberg param-

eters of the involved kinematic chains that relies on

the properties of polynomials in Bernstein form.
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Figure 1: Left: The spherical polygon associated with a spherical 4-bar linkage. Center and right: a spherical

polygon before and after normalization.

We begin by introducing, in Section 2, some ba-

sic concepts and notations, upon which a standard

formulation of spherical problems is developed. Sec-

tion 3 states our main theoretical results that pro-

vide the basis for the application of a subdivision-

minimization strategy, described in Section 4, to solve

the direct kinematics problem on arbitrary parallel

spherical mechanisms. We conclude in Section 5.

2 Spherical polygons and closure equa-

tions

A mechanism is called spherical if each of its links

rotates about a same �xed point, say O. Thus, trajec-

tories of points in each link lie on concentric spheres

with O as the center. Only the revolute joint is com-

patible with this movement and its axis must pass

through the �xed point. For convenience, we may

think that all revolute joints lie on the same sphere

S, and that the links are portions of great circles on S

(�g. 1, left). This is how every closed chain of a paral-

lel spherical mechanism de�nes a spherical polygon on

S. For each of these polygons we can derive a closure

equation, as explained next.

If we assign a circulating direction to the sides of

the polygon, the exterior angle between two adjacent

sides is de�ned as the angle measured from the pro-

longation beyond the common vertex of the �rst side

to the second side. Next, consider a spherical polygon

with vertices p1; : : : ; pm, sides �1; : : : ; �m, and exte-

rior angles �1; : : : ; �m (�g. 1, center). For each side,

we de�ne its pole as the point of the sphere lying on a

line through the center O, perpendicular to the plane

of the side. Now, take a system of coordinate axes

centered at O with the x-axis passing through p1 and

its z-axis passing through the pole of side �1. A ro-

tation of �1 radians about the z-axis will move the

x-axis along the side �1 till vertex p2. Next, a rota-

tion of angle �2 about the new x-axis will make the

z-axis pass through the pole of �2. Going on in this

way all around the polygon, the x-axis will return to

p1 and the coordinate system will end up being in its

original position. This may be expressed by means

of a rotation equation stating that the composition of

the successive rotations equals the identity transfor-

mation, that is,

mY

i=1

Rx(�i)Rz(�i) = I: (1)

where Rx(�) and Rz(�) stand for 3�3 orthogonal ma-

trices representing rotations about the x and z axes,

respectively, in the amounts given by their arguments.

Alternatively to this formulation, we can write

mY

i=1

Rx(�i + �)Rz(�=2)Rx(�i + �)Rz(�=2) = I;

which corresponds to the closure equation of a spher-

ical polygon where all its sides have length �=2, thus

involving variable rotations about the same axis (�g. 1,

right). This normalization will simplify our further

algebraic manipulations. Then, Equation (1) can be

rewritten as:

Fn(�) =

nY

i=1

Rx(�i)Z = I; (2)

where Z = Rz(�=2), n = 2m, � = (�1; : : : ; �n), and

�i =

(
� i+1

2

+ �; i even;

� i

2
+ �; i odd:
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Figure 2: The Gosselin platform (left), and the spherical polygons it de�nes (right). While the �i's are actively

controlled, all other variables are passive revolute joints.

The solution set to Fn(�) = I, a system of nine

trigonometric polynomials in n variables, has been ge-

ometrically and topologically characterized in [3].

2.1 An example

Consider the spherical parallel manipulator shown

in �g. 2, sometimes called the Gosselin platform. It

consists of a platform connected to a �xed base via

three kinematic chains, each composed of two interme-

diate links and three revolute joints. Only the revolute

joints connected to the base are actuated. When the

link angles and the angles between the revolute axes on

the base and on the platform are all set to �=2, a spe-

cial geometry is obtained for which a closed-form solu-

tion has been derived [6]. It has been shown that the

direct kinematic problem of three-degree-of-freedom

parallel manipulators has a maximum of 8 solutions

[5, Section 3]. The closed-form solution of the Gos-

selin platform accounts for 8 solutions, as expected,

but 4 of them are singular con�gurations in which the

actuators can be moved arbitrarily without a�ecting

the pose of the platform. In practice, such singular

con�gurations should not be inside the workspace of

the manipulator, which can be accomplished by limit-

ing the range of motion of the active joints.

Two equations are su�cient to study the kinematics
of this manipulator, corresponding to the two loops
indicated in �g. 2, right. With the indicated angles,

these equations are:

6Y
i=1

Rx(�1i )Z = I; for loop 1; (3)

6Y
i=1

Rx(�2i )Z = I; for loop 2: (4)

Note that, due to the special geometry of the manip-

ulator, these are already in the normal form of Equa-

tion (2). The angles of the actuators directly deter-

mine four variables in the previous equations, because

�11 = �+�1, �
1
6 =

�

2
��2, �

2
6 = ���2 and �

2
1 =

3�
2
+�3.

Moreover, from �g. 2 we see that two variables in one

loop are related to others in the second:

�24 = �14 + �=2; �25 = �15: (5)

Thus, substituting (5) in Equations (3) and (4), and
using the fact that

Rx(�1 + �2) = Rx(�2 + �)Z �Rx(�)Z �Rx(�1);

(6)

we �nally get two equations involving six variables,

Rx(� + �1)Z �Rx(�12)Z �Rx(�13)Z �

�Rx(�14)Z �Rx(�
1
5)Z �Rx(

�

2
� �2)Z = I;

Rx(� � �2)Z �Rx(�22)Z �Rx(�23)Z �Rx(�
�

2
)Z �

�Rx(�)Z �Rx(�14)Z �Rx(�15)Z �Rx(
3�

2
+ �3)Z = I:

3
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2.2 Reduction to scalar equations

Due to the fact that Fn(�) =
�
fn
ij
(�)
�
1�i;j�3

is a

product of orthogonal matrices equated to the iden-

tity, it can be reduced to the following single trigono-

metric equation:

fn11(�) + fn22(�)� 2 = 0: (7)

Now, fn
ij
(�) can be converted into a rational poly-

nomial fn
ij
(t) in a new variable, t = (t1; : : : ; tn), using

the tangent-half-angle substitution, that is, by intro-

ducing the substitutions sin(�i) =
2ti
1+t2

i

and cos(�i) =

1�ti
2

1+t2
i

. Then, if we multiply the resulting rational poly-

nomials by qn(t) =
Q

n

i=1(1 + t2
i
), we obtain the poly-

nomials fn
ij
(t) = qn(t)f

n

ij
(t) (we adhere to the nota-

tion introduced in [7]). Therefore, Equation (2) can

be expressed as:

fn11(t) + fn22(t)� 2qn(t) = 0: (8)

For an arbitrary function in n variables, say

g(t) = g(t1; : : : ; tn), we de�ne g�(t) = g(t�) =

g(tn; t1; : : : ; tn�1). Then, if we denote F�

n
(�) =�

fn
ij

�(�)
�
1�i;j�3

, we have that

F�

n
(�) = (Rx(�n)Z)Fn(�)(Rx(�n)Z)

t
:

Now, the element (1; 1) of F�

n
, i.e. fn11

�(�),

is equal to the element (1; 1) of the product

(Rx(�n)Z)Fn(�)(Rx(�n)Z)
t
, that can be checked to

be fn22(�). In other words, Equation (8) can be rewrit-

ten as:

fn11(t) + fn11(t
�)� 2qn(t) = 0: (9)

Once the ranges of motions for the passive joints are

given, the singularity of the tangent-half-angle substi-

tution at � can be avoided by shifting them a given

amount using the relation (6), provided that these

ranges are lower than 2�.

3 The closure equations in Bernstein

form

Let M = (m1; : : : ;mn) and I = (i1; : : : ; in). The

notation 0 � I � M indicates that 0 � ik � mk,

for k = 1; : : : ; n. It is well known that R
M

[t], the

set of polynomials in the variables t1; : : : ; tn of degree

� mi in ti, is a vector space. Also, the Bernstein

multinomials fBI;M (t)g
0�I�M

de�ned as BI;M (t) =

bi1;m1
(t1) � � � bin;mn

(tn) (where bi;m denotes the ith

Bernstein polynomial of degree m) forms a basis of

R
M

[t], called the multivariate Bernstein basis. There-

fore, any polynomial f(t) 2 RM [t] can be written

as f(t) =
P

M

I=0 cI(f)BI;M (t). (For simplicity, we

write BI(t) instead of BI;M (t).) This expression is

the Bernstein form of f(t) and the coe�cients cI(f)

are called its control points.

In our case, we are interested in the Bernstein form

of the polynomial f = fn11+fn11
�

�2qn 2 RM [t], where

M = (2; : : : ; 2) 2 Rn . It is easy to prove that cI(f) =

cI(f
n

11) + cI(f
n

11

�

)� 2cI(qn).

Proposition 1. The control points of qn(t) are

cI(qn) = 2�(I), where �(I) is the number of elements

of I equal to 2.

Proof. It can be checked that q(ti) =

b0;2(ti) + b1;2(ti) + 2b2;2(ti), therefore

the polynomial qn can be expressed as:

qn(t) =
Q

n

i=1
[b0;2(ti) + b1;2(ti) + 2b2;2(ti)] =P

M

I=0 2
�(I)BI(t).

Since it can be easily shown to be cI(f
n

11

�

) =

cI�(f
n

11), where I
� = (in; i1; : : : ; in�1), we only have to

calculate the control points cI(f
n

11), but �rst we need

the following proposition:

Proposition 2. fn11 and fn13 satisfy the recursion:

fn11(�1; : : : ; �n) = �fn�211 (�1; : : : ; �n�2) cos(�n)+

+fn�113 (�1; : : : ; �n�1) sin(�n)

fn13(�1; : : : ; �n) = fn�211 (�1; : : : ; �n�2) sin(�n)+

+fn�113 (�1; : : : ; �n�1) cos(�n):

Proof. The proof can be carried out by elementary

algebraic manipulations of the matrix products in (2).

Corollary 1. fn11 and fn13 satisfy the recursion:

fn11(t1; : : : ; tn) = fn�211 (t1; : : : ; tn�2)g1(tn�1; tn)+

+fn�113 (t1; : : : ; tn�1)h1(tn)

fn13(t1; : : : ; tn) = fn�211 (t1; : : : ; tn�2)g2(tn�1; tn)�

�fn�113 (t1; : : : ; tn�1)h2(tn);

where, h1(tn) = 2tn, h2(tn) = t2
n
� 1, g1(tn�1; tn) =

(t2
n�1 +1)h2(tn), and g2(tn�1; tn) = (t2

n�1 +1)h1(tn).

Corollary 2. The control points of fn11 and f
n

13 satisfy
the recursion:

c(i1;::: ;in)(f
n

11) = c(i1;::: ;in�2)(f
n�2
11 )c(in�1;in)(g1) +

c(i1;::: ;in�1)(f
n�1
13 )cin(h1)

c(i1;::: ;in)(f
n

13) = c(i1;::: ;in�2)(f
n�2
11 )c(in�1;in)(g2)�

c(i1;::: ;in�1)(f
n�1
13 )cin(h2);

4
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where the control points of h1, h2, g1, and g2 di�erent
from zero are:

c(0;0)(g1) = c(0;1)(g1) = c(1;0)(g1) = c(1;1)(g1) = �1;

c(2;0)(g1) = c(2;1)(g1) = �2;

c(0;1)(g2) = c(1;1)(g2) = 1;

c(0;2)(g2) = c(1;2)(g2) = c(2;1)(g2) = 2;

c(2;2)(g2) = 4;

c1(h1) = 1;

c2(h1) = 2;

c0(h2) = �1;

c1(h2) = �1:

Finally, we have that the Bernstein form of Equa-
tion (9) is:

MX
I=0

h
cI (fn11) + cI� (fn11)� 2

�(I)+1
i
BI(t) = 0; (10)

where cI(f
n

11) and cI�(f
n

11) can be computed using

Corollary 2.

So far, for simplicity, we have treated all �i as

variables, thus yielding 3n control points in Equa-

tion (10). In practice though, many variables corre-

spond to known angles of the mechanism and hence

only a reduced set of control points is actually needed.

For example, for the Gosselin platform each equa-

tion has four variables. Then, we have to compute

34 = 81 control points to write term in the form of

Equation (10). That is, altogether, 162 control points

will fully describe the mechanism.

4 A subdivision-minimization strategy

Remind that a closure equation is obtained for ev-

ery couple of legs. Then, note that the number of

independent closure equations we can derive is l � 1

for a mechanism with l legs. Nevertheless, to simplify

the presentation, let us assume that we are working

with only one closure equation, i.e., we need to com-

pute the solutions to just one equation of the form

given by (9). The generalization will appear obvious

at the end.

We are going to apply a method that allows search-

ing for those roots of a Bernstein-form polynomial

in n variables that lie in the unit box [0; 1]n of Rn .

Since the variables ti in Equation (10) take values in

their range, we �rst apply an a�ne parameter trans-

formation to it so that the initial box is converted

into the unit box. This scaling yields a new poly-

nomial in Bernstein form with a new set of control

points [4, Sec. 15.7]. Let us write it as f(x) =P
M

I=0wIBI(x), where x stands for (x1; : : : ; xn), and

let us construct the function F : Rn �! R
n+1 de�ned

as F (x) = (x; f(x)). Trivially, �nding the roots of

f(x) is equivalent to detecting all points of the form

(x; 0) in the graph of F (x). However, the latter for-

mulation is advantageous. First, the graph of F (x)

is an algebraic variety in R
n+1 whose points can be

parameterized with polynomials in Bernstein form as

F (x) =

MX

I=0

vIBI(x); (11)

where vI = (i1=m1; i2=m2; : : : ; in=mn; wI), which are

called the control points of F (x) [9].
Now, the root-�nding procedure can make use of

two important properties of the Bernstein form of
F (x). The �rst one is the so-called convex hull prop-
erty: when x 2 [0; 1]n, F (x) is totally contained within
the convex hull of its control points vI . This follows
immediately from the values taken by the Bernstein
polynomials BI in the unit box. They all are non-
negative and sum to 1 [4], and hence the linear combi-

nation of control points vI in
P

M

I=0 vIBI(x) is actually
a convex combination when x 2 [0; 1]n. The second
property is subdivision: if we are interested in the val-
ues that F (x) takes within a sub-box of [0; 1]n, say
B = [a1; b1]�[a2; b2]�: : :�[an; bn], with 0 � ai; bi � 1,
then it is possible to apply an a�ne parameter trans-
formation xi = ai + ui(bi � ai), i = 1; :::; n, to scale
B to the unit box and rewrite F in Bernstein form
in terms of the new parameters ui, with new control
points. The important point here is that, after the
scaling, the new control points for F can be directly
obtained from the control points of the initial F (x),
and they will be closer to the graph of F than the pre-
vious ones [4, Sec. 15.7]. These considerations permit
the following procedure to �nd all the roots of Equa-
tion (10).

1. Compute the control points vI of F (x). Start with

the box B = [0; 1]n.

2. Using the convex hull property, �nd a sub-box B0 of

B that contains all the solutions of F (x) = (x; 0) (see

the details below). If there is no such sub-box (i.e., B

contains no solution), set B0 = ?.

3. If B0 6= ?, see if it is su�ciently small. If so, conclude

that there is a root inside and return B
0; otherwise

split B0 into some number of equally sized smaller

boxes, scale these boxes back to [0; 1]n using the sub-

division property for F , and recursively call step 2

once for each new smaller box.

It remains to see how step 2 is performed. Let C
denote the convex hull of the control points vI , and let
R be the region of intersection of C with the hyper-
plane xn+1 = 0. Then, we de�ne B0 as the smallest
rectangular box enclosing R. Although the explicit
computation of R is a complex and time-consuming

5
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task, it is not necessary to carry it out explicitly if
all we need is just a bounding box for it. Indeed, R
can be described with a set of linear equalities and in-
equalities as follows. Since a point in R is of the form
(x; 0) and it must be a convex combination of the con-
trol points vI , there must be coe�cients cI 2 R such
that

(x; 0) =

MX
I=0

cI vI ; cI � 0 8I; and

MX
I=0

cI = 1:

(12)

Now, to obtain the bounds of the box B0 we simply

need to maximize and minimize xi, for i = 1; : : : ; n

subject to the constraints in Equations (12). These

optimizations are linear programming problems and,

hence, they can be e�ciently solved with the simplex

algorithm.

The above algorithm has been proven to terminate

in all cases. Moreover, if there is a �nite number of

roots, then it returns a box enclosing each of them

that is smaller than a user-speci�ed tolerance. If the

number of roots is in�nite, the algorithm also termi-

nates, providing a discretization of the solution space

in a number of small boxes enclosing it. Additionally,

the algorithm has the good property of being quadrat-

ically convergent to the roots. See [9] for details on all

these facts.

This process is straightforwardly generalizable to

mechanisms with several loops as follows. For each

loop j we will have one closure equation fj(x) = 0,

with its corresponding function Fj(x) = (x; fj(x))

written as in Equation (11), and an associated convex

hull Cj , wrapping the control points of Fj(x). Note

that the common solutions to the whole system of

equations necessarily lie in the intersection of all Cj 's,

on xn+1 = 0. This just introduces a slight modi�ca-

tion in step 2 of the previous algorithm: as before, B0

is computed from B by minimizing each xi, i = 1; :::; n,

but now subject to all linear constraints in (12), asso-

ciated with all Cj 's.

5 Conclusions

We have presented an algorithm for solving the di-

rect kinematics of parallel spherical mechanisms us-

ing a technique that takes advantage of the subdivi-

sion and convex-hull properties of the polynomials in

Bernstein form, a technique developed in the context

of Computer Graphics applications. This has been

possible thanks to the recursion found for the control

points of the closure equations.

We have used a tangent-half-angle substitution.

This is probably the worst possible algebraic param-

eterization of the unit circle. Alternatively, it would

be possible to apply the substitutions xi = sin�i and

yi = cos�i. Then, the equation x2
i
+ y2

i
= 1 should

be included in the resulting system of equations. This

would have at least two main advantages: the singu-

larity at �i = �, inherent to the tangent-half-angle

substitution, would be avoided; and the set of con-

trol points would be greatly simplied because the clo-

sure equations would become linear in all the variables.

These points concentrate our current e�orts.
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