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Abstract— This paper deals with the problem of esti-
mating the pose of a rigid moving object by measuring
the length of six wires attached to it. Among all possible
locations for the attachments on the moving object,
the “3-2-1" configuration exhibits the highest number
of favorable properties. A closed-form coordinate-free
solution to the forward kinematics of this particular
configuration is given in terms of Cayley-Menger de-
terminants. The proposed formulation is mathematically

more tractable compared to previous ones because all @) (b)

terms are determinants with geometric meaning. This

accommodates a more thorough investigation of the Fig. 1. (a) The “3-2-1" and (b) “2-2-2" configurations for
properties of the device and leads to formulas whose wire-based tracking devices as proposed in [6] and [
numerical conditioning is independent from the chosen respectively.

reference frames.

. INTRODUCTION they are also low cost portable devices but capable

Many systems for measuring the pose, i.e. position measuring large displacements. Moreover, they exh
and orientation, of moving objects, also known as @ good compromise among accuracy, measuren
tracking systems, have been developed. They can be range, cost and operability.
classified according to the measuring principle and Wire-based tracking devices consist of a fixed b
used technology. Most systems provide distance mea- and a platform connected by six wires whose tens
surements by triangulation or trilateration techniques. is maintained, while the platform is moved, by pulle)
Trilateration and triangulation determine the relative and spiral springs on the base, where a set of enco
position between points by using the geometry of tri- give the length of the wires. They can be modell
angles or tetrahedra. Triangulation uses measurements as six-degree-of-freedom parallel manipulators beca
of both distances and angles, whereas trilateration uses wires can be seen as extensible legs connecting
only distance measurements. platform and the base by means of spherical &

Tracking systems can also be classified according universal joints, respectively.
to their characteristics, such as accuracy, resolution,  Dimension deviations due to fabrication tolerance
cost, measurement range, portability, and calibration wire length uncertainties, wire slackness, etc., r
requirements. Laser tracking systems exhibit good ac- result in an unacceptable performance of a wire-ba:
curacy, which can be less thamu if the system is tracking device. In general, the effects of all systems
well calibrated. Unfortunately, they are very expensive, errors can be eliminated by calibration. Some tec
their calibration procedure is time consuming, and they niques for specific errors have already been propose
are sensitive to the environment. Vision systems have the literature. For example, a method for compensat
an accuracy of Amm, they are low cost portable the cable guide outlet shape of wire encoders is deta
devices but their calibration procedure can be compli- in [6], and a method for compensating the deflectic
cate. Wire-based systems have an accuracy. Iofi, caused by wire self-weights is described in [10]. In tf
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paper, we will only consider wire length errors which

cannot be compensated because of their random nature.

An important issue in wire-based tracking devices
is the number of attachments on the moving object
and how many wires are connected to each attachment.
On the base side, no two wire outlets can be made
coincident because of physical limitations. This is not
the case on the platform where it is advisable to reduce
the number of attachments not only for simplicity
reasons but also to reduce the risk of wire collisions
—if all attachments would collapse into a single point
on the platform, no collisions would be possible. Un-
fortunately, the minimum number of points for pose
measurements is three. Moreover, the maximum num-
ber of wires attached to a point is three, otherwise the
lengths of the wires will not be independent. This leads
to only two possible configurations for the attachments
on the moving object. Both have already been reported
in the literature of wire-based tracking devices.

« The 2-2-2 configuration. This configuration was
first proposed in [10] for a wire-based tracking
device [see Figure 1(a)]. The authors overlooked
the fact that the kinematics of this configuration
was already studied, for example, in [7], [15], and
[18] where it was shown that its forward kinemat-
ics has 16 solutions. In other words, there are up to
16 poses for the moving object compatible with a
given set of wire lengths. These configurations can
only be obtained by a numerical method, which
limits the use of this configuration in real-time
measurements.

« The 3-2-1 configuration. This configuration was
proposed in [6] [see Figure 1(b)]. The authors
present it as a new configuration of a Stewart
platform thus ignoring that the kinematics of this
configuration was already studied, for example,
in [14] and [9]. Its direct kinematics can be
solved in closed-form by using three consecutive
trilateration operations yielding 8 solutions, which
is the minimum number of solutions for the direct
kinematics 6 a 6 deree of freedom parallel
platform.

Since, due to physical limitations, wire-based track-
ing devices work only in one of the two half-spaces
defined by the base plane, the number of solutions for
both configurations are, in practice, 8 and 4, respec-
tively. As a consequence, in order to avoid ambiguities,
it is preferable to work with the 3-2-1 configuration.
In this paper, we concentrate our efforts on this con-
figuration because of this reason.

Both configurations were compared in [6] in terms
of their sensitivity to wire length errors concluding
that they have similar properties. Nevertheless, the used
sensitivity index has important drawbacks as it depends
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on arbitrary choices. This sensitivity analysis is r
viewed in Section Il which motivates the search for
coordinate-free formulation for the forward kinematic
of the 3-2-1 configuration.

All operations for solving the direct kinematics ¢
the 3-2-1 configuration rely on trilateration. Althoug
the trilateration problem can be trivially expressed
the problem of finding the intersection of three spher
different closed-form solutions have been propos
in the areas of computer graphics [5], robotics [
and aeronautics [13]. Section Il presents some bz
properties of Cayley-Menger determinants related
the geometry of tetrahedra which are the key eleme
for the new vectorial coordinate-free solution to tt
trilateration problem presented in Section IV. Bas
on this new formulation, a complete error analysis 1
trilateration, including covariances and bias errors
the estimations is also given in this section. Next, t
forward kinematics and the singularities of the 3-2
configuration are analyzed in Section V. Finally, v
conclude in Section VI.

Il. SENSITIVITY TO WIRE LENGTH ERRORS

In what follows we will assume that the measur
wire lengths are corrupted by random noise with gai
sian probability density function.

In order to describe the relative position betwe
base and platform, let us introduce an absolute
a relative frame fixed to the base and the platfor
respectively. The pose of the platform with referen
to the base is given by the configuration vectpe
(w,t), wheret stands for the translation vector ar
w for the orientation vector given in roll, pitch an
yaw angles, i.eq € 03 x SO(3). The corresponding
rotation matrix will be denote®(w). The unit vector
along wirei will be denotedg;, andl; the corresponding
wire length. The centers of the articulations on the bs
and the platform for wire will be denoteda; andb;,
respectively. According to these definitioRgw)b; +
t=a +1;g. Thus, the wire lengtl, can be expresses
as

li =l R(w)b; +t—a ] . (1)

Let 51, andl? denote the additive random error ar
the actual value of distance measuremgntrespec-
tively. Let 81 = (81,...8lg)t andI®= (12...19)! . Then,
| =19+ 4l.

The wire length errors are assumed to have z
mean value, that i€{dl} = 0, whereE{-} stands
for the expected value operation. We also assume
the wire length errors are uncorrelated with the sa
variancea?. Consequently, their covariance matrix c:
be expressed as

E{dl 3I'} = o2, 2)



wherel denotes the identity matrix.

Then, the linearization of (1) around the measured
value ofl, (1), and the calculated value of the config-
urationq (q°) is

d\,
=51(q

Ii_lio—%(

~q°) <(t )X Q)t (@-9%- (3

&

Collecting (3) for the six wires into a single matrix
expression, we get

3l =1-1°=J(q-q° =Jdq, 4)
whereJ = ( (t—a) xe (t—ag) x & )t.
el 86

SinceE{dl 5I'} = JE{dq 6q'}J! = 021, the covari-

ance matrix for the pose is
E{5q 6q'} = 023 YY)t =230t (5)

Note that (5) is well-defined provided thats non-
singular. If screw coordinates are used —instead of roll,
pitch and yaw angles— the rows &fwould directly be
the Plicker coordinates of the wire lines. In our case, it
can be checked these rows are thecRér coordinates
of an arrangement of lines equivalent to that of the
wire lines. Then, it is possible to characterize the
singularities of] in terms of the geometry of linearly
dependent sets of lines [16, p. 274-284]. Nevertheless,

in Section V we will use an alternative approach that
takes advantage of the 3-2-1 configuration.

Now, since the actual configuration of the platform
is contained in the ellipsoid

(d—ap) (39)"Ha- o) < 16 (6)
with probability 0.99, it might seem reasonable to use
the volume of this ellipsoid (i.e. the square root of
the determinant ofJ'J) 1) as the measurement of this
sensitivity, as it is proposed in [6]. Unfortunately, the
matrix (J'J)~* does not make physical sense. Actually,
its elements are the sum of a quantity of length-
squared added to a unitless quantity, which leads to
what is technically called a nonconmmensurate system
[20]. Moreover, a sensitivity measurement based on
the volume of (6) cannot be used to compare different
wire configurations, contrary to what it is done in [6],
because it is not independent from the chosen reference
frames.

The above inconveniences motivate the search for
a coordinate-free formulation, but first we need to
introduce some concepts related to Cayley-Menger
determinants and the geometry of tetrahedra.
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I1l. CAYLEY-MENGER DETERMINANTS

The Cayley-Menger bideterminant of two sequences
of n points, [py,...,pn] and[d,,...,0n], is defined as:

—1\"
D(p17~--apn;q17~--7Qn) =2<—> .

2
0 1 1 1 1

1 D(plach) D(p17Q2) D(plaQn)
1 D(p,,q;) D(p,,0,) D(p,,0n) |,
1 D(pn,q;) D(pn,qy) D(Pn,0n)

WhereD(pi,qj) denotes the squared distance betwe
the pointsp; andqj.

This determinant plays a fundamental role in tl
so-called “Distance Geometry,” a term coined by
Blumenthal in [1] which refers to the analytical stuc
of the Euclidean geometry in terms of invarian
without resorting to artificial coordinate systems. (Tl
constant factor in this definition simplifies the ge
metric interpretation of these determinants, as will
seen below.) Since in many cases of interest the f
sequences of points are the same, it will be conveni
to abbreviat®(p,,...,pn;Py,---,Pn) By D(Py,.--,Pn),
which is simply called a&ayley-Menger determinant.

To set the background for later developments, 1
give the geometric interpretation of these determina
for n=2,3,4.

For the Cayley-Menger determinants, it can |
shown thatD(p,,...,pn) is ((n—1)1)? times the
squared hypervolume of the simplex spanned by
points p,,...,pn. For further details the reader is re
ferred to [8] and to [4, pp. 126-129].

Hence, forn = 2: D(p;,p,) = d(p;,p,)?, where
d(p;,p,) is the Euclidean distance betwegpandp,.
Observe that the use of the symti(p;,p;) for both
the squared distance fropy to p, and their Cayley-
Menger determinant is consistent.

Forn= 3, if Ais the area of the triangle spanne
by p;, p, andp,, we obtain Herron’s formula relating
A with the side-lengths:

D(plapzypg) = 4A2- (7)

For n=4, if V is the volume of the tetrahedro
spanned byp,, p,, p3, andp,, we obtain Eurler’s
formula relatingV with the edge-lengths:

D(p1>p27p37p4) = 3W2~ (8)

For the Cayley-Menger bideterminants, it can |
shown that, fom = 2:

D(P1,P5:01,0) = (P1 —P2) - (A, —0y)s

Since this dot product can be expressed
d(p;,p,)d(q,,0,)cog6), with 6 being the angle



between the two linep,p, and q,q,, this yields
the following formula for co&9) in terms of the six
inter-point distances:

D(p17 p21 qu q2)
d(p4,p,)d(0,,d,)

The reader can easily see that whep = q, this
formula reduces to the law of cosines for a triangle,
by expandindd(p4,p,;d;,0d,) in terms of the involved
distances.

Likewise, forn= 3 it can be shown that:

cos =

D(P1,P2,P3: 01,0, 03) =
((Py—P3) X (P2 —P3)) - ((dg —dg) x (A3 —03))s

The right hand side of this equation can be easily
shown to be equal to A - 2A, - cog @), where A;

and A, are the areas of the trianglgs,p,,p; and
0;,0,,05, respectively, andp is the dihedral angle
between the planes they define. By expressing these
areas as Cayley-Menger determinants of the triangles’
points, this yields the following formula for the cosine
of @ in terms of inter-point distances:

D ) ) ; ) M
cosp = —; (P1,P2,P3 qll d,03) 7
D2(py,P,,P3)D2(dy,d,,03)

which can be regarded as the law of cosines generalized
to a tetrahedron whep, = g, andp; = q; (see [12]

for an alternative formulation). Finally, far= 4, the
bideterminant is equal to the product of two triple
products:

(9)

D(P1;P2,P3,P4: 01,92, 03, 0,) =
IP1—P4>P2— Ps>P3— Pyl A1 — Uy, 05 — Uy, Uz — Ayl

and hence, it can be interpreted as 36 times the
product of the volumes of the two tetrahedra defined

by py,...,p, andqy,...,0,.

IV. A COORDINATE-FREE FORMULATION FOR
TRILATERATION

Given three points in space, spy, p,, andp;, the
trilateration problem consists in finding the location
of another point, sayp,, whose distance to these
three points is known. According to Figure 2, using
barycentric coordinates [3, pp. 216-221], the location
of the orthogonal projection @f ,, sayp, onto the plane
defined byp,, p, andp, (hereafter thdase plane) can
be expressed as

D= APy + AP, +AgP3
Ab )
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Fig. 2. Barycentric coordinates of the projection pf onto
the plane defined bp,, p,, andp,.

where A;, A, and A, are the signed arehsf the

triangles p,p;p, pPsP;P and p;p,p, respectively, and
A, is the area of the trianglp,p,p;. Alternatively,

Ay

A
P=pi+7"Vit A_bvza
wherev,; =p, —p; andv, = p;—p;.
The valuesh; can be obtained by projecting the are

of the triangles coincident ip,, onto the base plane
Hence, using Equation (7):

AZ D(p17p3ap4)
— = —— CO 5
Ab D(p17p27p3) 5((024)

& — D(p17p27p4)
Ay D(py,P,,P3)

where@,, and @,, are the dihedral angles indicated |
Figure 2. Now, using Equation (9) we can write:

COS@3y),

P =Py +KVv;+KV,,

where

i — _ D(P1:P2,P3iPy1,P3; Pa)
1=
D(p17 p27p3)
i — D(P1:P2,P3iP1, Py Ps)
= .
D(p17p27p3)
Finally, p, can be obtained as:

Py =P EKs(vy xV,),

where thet sign accounts for the two mirror symme
ric solutions ofp, with respect to the base plane, dad
is equal to the height of the tetrahedron divided by the

Y

1For a trianglepgr with areaA, the signed area is defined ast-A
(respectively—A) if the point q is to the right (respectively to th
left) of the line pr, when going fromp to r.



norm of v, x v,. Since the volume of the tetrahedron
is 3Ab h, using Equations (7) and (8) we can write:

D(P1,P2:P3:Pa)
D(py,P2,P3)
Moreover, since||v; x V,|| is twice the area of the

trianglep,,p,, P3,

[IV1 X V5|l = 1/D(Py1, P2, P3)s

one concludes that

D(py,P2:P3:P4)
D(py,P,,P3)
Hence, the final expression for, is:

3:

1

Y _Dp7pap;papap Vv
D(p17p27p3) < (1 22 F3 M1 M3 4) 1

+ D(p;p P2,P3:P1,P2; p4> Vo

(10)

Py =

Most solutions for trilateration are expressed accord-
ing to a specific coordinate frame. For example, in [6],
the XY plane is the plane defined by, p, andp,, the
X axis is defined by the line containing andp, and
the origin of the frame is located p. The formulation
given here is coordinate-free because it only deals with
inter-point distances. Hence, its numerical conditioning
is independent from the chosen reference frames.

Although the formulations presented in [13] and [2]
can also be classified as coordinate-free, the one pre-
sented here is mathematically more tractable because
all terms are determinants with geometric meaning.
Thus, it accommodates a more thorough investigation
of the effects caused by wire length errors and singular-
ities, as shown below. Moreover, its accurate evaluation
using floating point arithmetic can also be simplified
because it boils down to the accurate evaluation of
Cayley-Menger determinants (the reader is addressed
to [11] for considerations on this point).

For small wire length errors, the error in the location
of p, can be well approximated by retaining the terms
up to the second-order partial derivatives in the Taylor
expansion of Equation (10), that is

3 3 2
223 st

Then, the expected value of the random errop jj
i.e. the bias error, is

13 3 0%,

E{op,} =5 ZZ alal,

45| + 31;,8l;.

5p4=p4—p2—

LE(3]; 81, }.
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In other words, although the noise in the leng
measurements is assumed to have zero mean vi
the expected value of the estimation error obtained
trilateration does not equal zero due to nonlinearitie

a? (9%,

Then, using (2),
etop) = ( i ).

Finally, substituting (10),
(Dzklv1 + 0%KoV, + O%kg (V4 X V),

%p,
312

a%p,
o2

g2
E{dp,} =

2 2
where 0%k, = ‘;Ik' ‘;Ik'

The trllateratlon bias vector error was already exa
ined in [13], where it was shown that its projection on
the plane defined bp,, p, andp; can be neglected
Using our formulation, this fact can simply be state
as follows:

E{dp,} =

It can be checked that, as a consequence of this e
when the unknown point is moved on a plane paral
to that of the three known points, the estimation w
erroneously indicate that it ascends and descends w
it approaches to, and goes away from the center of
three known points, respectively. Fortunately, since t
is a systematic error, it can be compensated by prc
calibration.

The covariance matrixC, of the position estimate
error op, can now be evaluated as

C E{[0p,— E{0p,}][0p, — E{p,}]'}
E{dp,0py} — E{Op,}E{dps}.

Since the second term contains the multiplicati
factor g%, it can be neglected for small wire lengt
or

errors. Thus,
t t
(5) = (T)
= (|17 IZa |3)t .

C:E{
wherer

Explicit expressions for all the partial derivative
appearing in this section, in terms of Cayley-Menc
bideterminants, can be found in [19], where the en
in the location ofp, due to the errors in the locatiol
of p,, p, andp; is also analyzed.

D K3(vy X Vy).

P4

0'2_
(?I’

ar

P4

ap,
—20rd ar

V. FORWARD KINEMATICS AND SINGULARITIES

The direct kinematics of the 3-2-1 configuration c:
be solved by three consecutive trilateration operatio
Indeed, according to Fig. 3a, givép |,, andl,, there
are two possible mirror locations for, with respect to
the plane defined bg,, a,, anda; (Figure 3b). Once
one of these two solutions fds, is chosen,z,, as,



i.e., ifa;, a,, andag are aligned. Sinc®(a,,a,,a;) =
0 implies D(a,,a,,a5,b;) = 0, this latter condition
encompasses all singularities for the first trilateratic
This reasoning can be repeated for the other t
trilateration operations concluding that, if the platfor
is in a configuration in whichD(a,,a,,a;,b;) =0,
D(ay,ag,b;,b,) =0, orD(ag,by,b,,b;) =0, the track-
ing system is in a singularity. In other words, the
three equations fully characterize all the singularitic
Each of them defines a variety of dimension 5 tF
divides the configuration space of the platform, i.
0% x SO(3), into two half-spaces. Then, they lead to
partition of this configuration space into 8 regions wi
congruent signs for the corresponding 3 determinal
During normal operation, the tracking system shot
work in one of these regions without getting out of
to avoid ambiguities. Nevertheless, either by assum
continuity in the velocity vector or by using an extr
sensor such as an inclinometer, it is possible to mu
from one of these regions to an adjacent one withi
ambiguities.

(@) (b)

(©) (d)

VI. CONCLUSIONS

£, 3, Genera nemati mode) of 32,1 acking SYS- . The formulation presented in this paper is curren
of the platform compatible with a set of wire lengths due to  being validated using the hardware implementati
the two possible solutions for the location lnf (b), b, (c), described in [17].

andb (d). At the beginning of a measuring cycle, the pose
the platform is assumed to be known. This requi
deciding the orientation of three tetrahedra which c
be done by visual inspection or using an extra sen:
When traversing a singularity, an ambiguity arise
Nevertheless, since infinity accelerations are not ph
ically feasible, an algorithm can be designed to tracl
unique solution based on the continuity of the veloci
vector. Moreover, the measurements along a traject
are not statistically uncorrelated so that they should
jointly smoothed during tracking to improve accurac
using, for example, a Kalman filter. The probabilist
uncertainty model given in this paper is of relevan
to this end. For example, the characterization of t
bias error must not be ignored at this point and it h
to be suitably anticipated in this filter. These issu
concentrate our current efforts.

b, andb, define another tetrahedron with known edge
lengths. Again, there are two possible mirror locations
for by, in this case with respect to the plane defined by
a,, ag, andb, (Figure 3c). Finally, after choosing one
of the two solutionsag, b;, b,, andb, define another
tetrahedron with known edge lengths. In this case there
are two mirror possible locations fdr; with respect

to the plane defined bgg, b; andb, (Figure 3d).

Once pointsb,, b,, andb; have been located, they
can be used to define a reference frame on the moving
object. For example, thg-axis can be defined by the
direction given by(b, —b,), they-axis can be chosen
orthogonal to the plane defined by, —b,) and(b; —

b,), and thez-axis can be obtained to give a Cartesian
reference frame. These vectors form a set of orthogonal
basis vectors whose directions are known relative to ACKNOWLEDGEMENTS

both the fixed and the moving reference frames. This This work has been partially supported &
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ing less than eight solutions. For example, according to
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