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Abstract— This paper deals with the problem of esti-
mating the pose of a rigid moving object by measuring
the length of six wires attached to it. Among all possible
locations for the attachments on the moving object,
the “3-2-1” configuration exhibits the highest number
of favorable properties. A closed-form coordinate-free
solution to the forward kinematics of this particular
configuration is given in terms of Cayley-Menger de-
terminants. The proposed formulation is mathematically
more tractable compared to previous ones because all
terms are determinants with geometric meaning. This
accommodates a more thorough investigation of the
properties of the device and leads to formulas whose
numerical conditioning is independent from the chosen
reference frames.

I. I NTRODUCTION

Many systems for measuring the pose, i.e. position
and orientation, of moving objects, also known as
tracking systems, have been developed. They can be
classified according to the measuring principle and
used technology. Most systems provide distance mea-
surements by triangulation or trilateration techniques.
Trilateration and triangulation determine the relative
position between points by using the geometry of tri-
angles or tetrahedra. Triangulation uses measurements
of both distances and angles, whereas trilateration uses
only distance measurements.

Tracking systems can also be classified according
to their characteristics, such as accuracy, resolution,
cost, measurement range, portability, and calibration
requirements. Laser tracking systems exhibit good ac-
curacy, which can be less than 1µm if the system is
well calibrated. Unfortunately, they are very expensive,
their calibration procedure is time consuming, and they
are sensitive to the environment. Vision systems have
an accuracy of 0:1mm, they are low cost portable
devices but their calibration procedure can be compli-
cate. Wire-based systems have an accuracy of 0:1mm,
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Fig. 1. (a) The “3-2-1” and (b) “2-2-2” configurations for
wire-based tracking devices as proposed in [6] and [10],
respectively.

they are also low cost portable devices but capable of
measuring large displacements. Moreover, they exhibit
a good compromise among accuracy, measurement
range, cost and operability.

Wire-based tracking devices consist of a fixed base
and a platform connected by six wires whose tension
is maintained, while the platform is moved, by pulleys
and spiral springs on the base, where a set of encoders
give the length of the wires. They can be modelled
as six-degree-of-freedom parallel manipulators because
wires can be seen as extensible legs connecting the
platform and the base by means of spherical and
universal joints, respectively.

Dimension deviations due to fabrication tolerances,
wire length uncertainties, wire slackness, etc., may
result in an unacceptable performance of a wire-based
tracking device. In general, the effects of all systematic
errors can be eliminated by calibration. Some tech-
niques for specific errors have already been proposed in
the literature. For example, a method for compensating
the cable guide outlet shape of wire encoders is detailed
in [6], and a method for compensating the deflections
caused by wire self-weights is described in [10]. In this
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paper, we will only consider wire length errors which
cannot be compensated because of their random nature.

An important issue in wire-based tracking devices
is the number of attachments on the moving object
and how many wires are connected to each attachment.
On the base side, no two wire outlets can be made
coincident because of physical limitations. This is not
the case on the platform where it is advisable to reduce
the number of attachments not only for simplicity
reasons but also to reduce the risk of wire collisions
–if all attachments would collapse into a single point
on the platform, no collisions would be possible. Un-
fortunately, the minimum number of points for pose
measurements is three. Moreover, the maximum num-
ber of wires attached to a point is three, otherwise the
lengths of the wires will not be independent. This leads
to only two possible configurations for the attachments
on the moving object. Both have already been reported
in the literature of wire-based tracking devices.

� The 2-2-2 configuration. This configuration was
first proposed in [10] for a wire-based tracking
device [see Figure 1(a)]. The authors overlooked
the fact that the kinematics of this configuration
was already studied, for example, in [7], [15], and
[18] where it was shown that its forward kinemat-
ics has 16 solutions. In other words, there are up to
16 poses for the moving object compatible with a
given set of wire lengths. These configurations can
only be obtained by a numerical method, which
limits the use of this configuration in real-time
measurements.

� The 3-2-1 configuration. This configuration was
proposed in [6] [see Figure 1(b)]. The authors
present it as a new configuration of a Stewart
platform thus ignoring that the kinematics of this
configuration was already studied, for example,
in [14] and [9]. Its direct kinematics can be
solved in closed-form by using three consecutive
trilateration operations yielding 8 solutions, which
is the minimum number of solutions for the direct
kinematics of a 6 degree of freedom parallel
platform.

Since, due to physical limitations, wire-based track-
ing devices work only in one of the two half-spaces
defined by the base plane, the number of solutions for
both configurations are, in practice, 8 and 4, respec-
tively. As a consequence, in order to avoid ambiguities,
it is preferable to work with the 3-2-1 configuration.
In this paper, we concentrate our efforts on this con-
figuration because of this reason.

Both configurations were compared in [6] in terms
of their sensitivity to wire length errors concluding
that they have similar properties. Nevertheless, the used
sensitivity index has important drawbacks as it depends

on arbitrary choices. This sensitivity analysis is re-
viewed in Section II which motivates the search for a
coordinate-free formulation for the forward kinematics
of the 3-2-1 configuration.

All operations for solving the direct kinematics of
the 3-2-1 configuration rely on trilateration. Although
the trilateration problem can be trivially expressed as
the problem of finding the intersection of three spheres,
different closed-form solutions have been proposed
in the areas of computer graphics [5], robotics [2],
and aeronautics [13]. Section III presents some basic
properties of Cayley-Menger determinants related to
the geometry of tetrahedra which are the key elements
for the new vectorial coordinate-free solution to the
trilateration problem presented in Section IV. Based
on this new formulation, a complete error analysis for
trilateration, including covariances and bias errors of
the estimations is also given in this section. Next, the
forward kinematics and the singularities of the 3-2-1
configuration are analyzed in Section V. Finally, we
conclude in Section VI.

II. SENSITIVITY TO WIRE LENGTH ERRORS

In what follows we will assume that the measured
wire lengths are corrupted by random noise with gaus-
sian probability density function.

In order to describe the relative position between
base and platform, let us introduce an absolute and
a relative frame fixed to the base and the platform,
respectively. The pose of the platform with reference
to the base is given by the configuration vectorq =

(ω; t), where t stands for the translation vector and
ω for the orientation vector given in roll, pitch and
yaw angles, i.e.q 2 ℜ 3� SO(3). The corresponding
rotation matrix will be denotedR(ω). The unit vector
along wirei will be denotedei, andli the corresponding
wire length. The centers of the articulations on the base
and the platform for wirei will be denotedai andbi,
respectively. According to these definitionsR(ω)b i +

t = ai + liei: Thus, the wire lengthli can be expressed
as

li =jjR(ω)bi + t�ai jj : (1)

Let δli and l0
i denote the additive random error and

the actual value of distance measurementl i, respec-
tively. Let δl = (δl1 : : :δl6)

t andl0 = (l0
1 : : : l0

6)
t . Then,

l = l0+δl.
The wire length errors are assumed to have zero

mean value, that isEfδlg = 0, where Ef�g stands
for the expected value operation. We also assume that
the wire length errors are uncorrelated with the same
varianceσ2. Consequently, their covariance matrix can
be expressed as

Efδl δltg= σ2I ; (2)
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whereI denotes the identity matrix.
Then, the linearization of (1) around the measured

value of li (l0
i ), and the calculated value of the config-

urationq (q0) is

li� l0
i =

∂ li
∂q

(q�q0
) =

�
(t�ai)�ei

ei

�t

(q�q0
): (3)

Collecting (3) for the six wires into a single matrix
expression, we get

δl = l� l0 = J(q�q0
) = Jδq; (4)

whereJ =

�
(t�a1)�e1 � � � (t�a6)�e6

e1 � � � e6

�t

.

SinceEfδl δltg= JEfδq δqtgJt
= σ2I ; the covari-

ance matrix for the pose is

Efδq δqt
g= σ2J�1

(Jt
)
�1

= σ2
(JtJ)�1

: (5)

Note that (5) is well-defined provided thatJ is non-
singular. If screw coordinates are used –instead of roll,
pitch and yaw angles– the rows ofJ would directly be
the Plücker coordinates of the wire lines. In our case, it
can be checked these rows are the Pl¨ucker coordinates
of an arrangement of lines equivalent to that of the
wire lines. Then, it is possible to characterize the
singularities ofJ in terms of the geometry of linearly
dependent sets of lines [16, p. 274-284]. Nevertheless,
in Section V we will use an alternative approach that
takes advantage of the 3-2-1 configuration.

Now, since the actual configuration of the platform
is contained in the ellipsoid

(q�q0)(J
tJ)�1

(q�q0)� 16 (6)

with probability 0.99, it might seem reasonable to use
the volume of this ellipsoid (i.e. the square root of
the determinant of(JtJ)�1) as the measurement of this
sensitivity, as it is proposed in [6]. Unfortunately, the
matrix (JtJ)�1 does not make physical sense. Actually,
its elements are the sum of a quantity of length-
squared added to a unitless quantity, which leads to
what is technically called a nonconmmensurate system
[20]. Moreover, a sensitivity measurement based on
the volume of (6) cannot be used to compare different
wire configurations, contrary to what it is done in [6],
because it is not independent from the chosen reference
frames.

The above inconveniences motivate the search for
a coordinate-free formulation, but first we need to
introduce some concepts related to Cayley-Menger
determinants and the geometry of tetrahedra.

III. C AYLEY-MENGER DETERMINANTS

TheCayley-Menger bideterminant of two sequences
of n points, [p1; : : : ;pn] and [q1; : : : ;qn], is defined as:

D(p1; : : : ;pn;q1; : : : ;qn) = 2

�
�1
2

�n

�

�

�����������

0 1 1 1 1
1 D(p1;q1) D(p1;q2) � � � D(p1;qn)

1 D(p2;q1) D(p2;q2) � � � D(p2;qn)

...
...

...
. . .

...
1 D(pn;q1) D(pn;q2) � � � D(pn;qn)

�����������
;

whereD(pi;q j) denotes the squared distance between
the pointspi andq j.

This determinant plays a fundamental role in the
so-called “Distance Geometry,” a term coined by L.
Blumenthal in [1] which refers to the analytical study
of the Euclidean geometry in terms of invariants
without resorting to artificial coordinate systems. (The
constant factor in this definition simplifies the geo-
metric interpretation of these determinants, as will be
seen below.) Since in many cases of interest the two
sequences of points are the same, it will be convenient
to abbreviateD(p1; : : : ;pn;p1; : : : ;pn) by D(p1; : : : ;pn),
which is simply called aCayley-Menger determinant.

To set the background for later developments, we
give the geometric interpretation of these determinants
for n = 2;3;4.

For the Cayley-Menger determinants, it can be
shown that D(p1; : : : ;pn) is ((n � 1)!)2 times the
squared hypervolume of the simplex spanned by the
points p1; : : : ;pn. For further details the reader is re-
ferred to [8] and to [4, pp. 126-129].

Hence, for n = 2: D(p1;p2) = d(p1;p2)
2, where

d(p1;p2) is the Euclidean distance betweenp1 andp2.
Observe that the use of the symbolD(p i;p j) for both
the squared distance fromp1 to p2 and their Cayley-
Menger determinant is consistent.

For n = 3, if A is the area of the triangle spanned
by p1, p2 andp3, we obtain Herron’s formula relating
A with the side-lengths:

D(p1;p2;p3) = 4A2
: (7)

For n = 4, if V is the volume of the tetrahedron
spanned byp1, p2, p3, and p4, we obtain Eurler’s
formula relatingV with the edge-lengths:

D(p1;p2;p3;p4) = 36V 2
: (8)

For the Cayley-Menger bideterminants, it can be
shown that, forn = 2:

D(p1;p2;q1;q2) = (p1�p2) � (q1�q2);

Since this dot product can be expressed as
d(p1;p2)d(q1;q2)cos(θ), with θ being the angle
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between the two linesp1p2 and q1q2, this yields
the following formula for cos(θ) in terms of the six
inter-point distances:

cosθ =
D(p1;p2;q1;q2)

d(p1;p2)d(q1;q2)

The reader can easily see that whenp1 = q1 this
formula reduces to the law of cosines for a triangle,
by expandingD(p1;p2;q1;q2) in terms of the involved
distances.

Likewise, for n = 3 it can be shown that:

D(p1;p2;p3;q1;q2;q3) =

((p1�p3)� (p2�p3)) � ((q1�q3)� (q2�q3));

The right hand side of this equation can be easily
shown to be equal to 2A1 � 2A2 � cos(φ), where A1
and A2 are the areas of the trianglesp1;p2;p3 and
q1;q2;q3, respectively, andφ is the dihedral angle
between the planes they define. By expressing these
areas as Cayley-Menger determinants of the triangles’
points, this yields the following formula for the cosine
of φ in terms of inter-point distances:

cosφ =
D(p1;p2;p3;q1;q2;q3)

D
1
2 (p1;p2;p3)D

1
2 (q1;q2;q3)

; (9)

which can be regarded as the law of cosines generalized
to a tetrahedron whenp2 = q2 and p3 = q3 (see [12]
for an alternative formulation). Finally, forn = 4, the
bideterminant is equal to the product of two triple
products:

D(p1;p2;p3;p4;q1;q2;q3;q4) =

jp1�p4;p2�p4;p3�p4j � jq1�q4;q2�q4;q3�q4j;

and hence, it can be interpreted as 36 times the
product of the volumes of the two tetrahedra defined
by p1; : : : ;p4 andq1; : : : ;q4.

IV. A COORDINATE-FREE FORMULATION FOR

TRILATERATION

Given three points in space, sayp1, p2, andp3, the
trilateration problem consists in finding the location
of another point, sayp4, whose distance to these
three points is known. According to Figure 2, using
barycentric coordinates [3, pp. 216-221], the location
of the orthogonal projection ofp4, sayp, onto the plane
defined byp1, p2 andp3 (hereafter thebase plane) can
be expressed as

p =
A1p1+A2p2+A3p3

Ab
;

p1

p2

p3

l1
l2

l3

A1

A2

A3

p

p4

v1

v2φ24

φ34

Fig. 2. Barycentric coordinates of the projection ofp4 onto
the plane defined byp1, p2, andp3.

where A1, A2 and A3 are the signed areas1 of the
trianglesp2p3p, p3p1p and p1p2p, respectively, and
Ab is the area of the trianglep1p2p3. Alternatively,

p = p1+
A2

Ab
v1+

A3

Ab
v2;

wherev1 = p2�p1 andv2 = p3�p1.
The valuesAi can be obtained by projecting the areas

of the triangles coincident inp4, onto the base plane.
Hence, using Equation (7):

A2

Ab
=

s
D(p1;p3;p4)

D(p1;p2;p3)
cos(φ24);

A3

Ab
=

s
D(p1;p2;p4)

D(p1;p2;p3)
cos(φ34);

whereφ24 andφ34 are the dihedral angles indicated in
Figure 2. Now, using Equation (9) we can write:

p = p1+ k1v1+ k2v2;

where

k1 =�
D(p1;p2;p3;p1;p3;p4)

D(p1;p2;p3)
;

k2 =
D(p1;p2;p3;p1;p2;p4)

D(p1;p2;p3)
:

Finally, p4 can be obtained as:

p4 = p� k3(v1�v2);

where the� sign accounts for the two mirror symmet-
ric solutions ofp4 with respect to the base plane, andk3
is equal to the heighth of the tetrahedron divided by the

1For a trianglepqr with areaA, the signed area is defined as+A
(respectively�A) if the point q is to the right (respectively to the
left) of the linepr , when going fromp to r .
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norm of v1� v2. Since the volume of the tetrahedron
is 1

3Ab h, using Equations (7) and (8) we can write:

h =

s
D(p1;p2;p3;p4)

D(p1;p2;p3)
:

Moreover, sincekv1 � v2k is twice the area of the
trianglep1;p2;p3,

kv1�v2k=

q
D(p1;p2;p3);

one concludes that

k3 =

p
D(p1;p2;p3;p4)

D(p1;p2;p3)
:

Hence, the final expression forp4 is:

p4 =
1

D(p1;p2;p3)
�

�
�D(p1;p2;p3;p1;p3;p4) �v1

+D(p1;p2;p3;p1;p2;p4) �v2

�

q
D(p1;p2;p3;p4) � (v1�v2)

�
:

(10)

Most solutions for trilateration are expressed accord-
ing to a specific coordinate frame. For example, in [6],
the XY plane is the plane defined byp1, p2 andp3, the
X axis is defined by the line containingp1 andp2 and
the origin of the frame is located atp1. The formulation
given here is coordinate-free because it only deals with
inter-point distances. Hence, its numerical conditioning
is independent from the chosen reference frames.

Although the formulations presented in [13] and [2]
can also be classified as coordinate-free, the one pre-
sented here is mathematically more tractable because
all terms are determinants with geometric meaning.
Thus, it accommodates a more thorough investigation
of the effects caused by wire length errors and singular-
ities, as shown below. Moreover, its accurate evaluation
using floating point arithmetic can also be simplified
because it boils down to the accurate evaluation of
Cayley-Menger determinants (the reader is addressed
to [11] for considerations on this point).

For small wire length errors, the error in the location
of p4 can be well approximated by retaining the terms
up to the second-order partial derivatives in the Taylor
expansion of Equation (10), that is

δp4 = p4�p0
4 =

3

∑
i=1

∂p4

∂ li
δli +

1
2

3

∑
i=1

3

∑
j=1

∂2p4

∂ li∂ l j
δliδl j:

Then, the expected value of the random error inp 4,
i.e. the bias error, is

Efδp4g=
1
2

3

∑
i=1

3

∑
j=1

∂2b1

∂ li∂ l j
Efδli δl jg:

In other words, although the noise in the length
measurements is assumed to have zero mean value,
the expected value of the estimation error obtained by
trilateration does not equal zero due to nonlinearities.

Then, using (2),

Efδp4g=
σ2

2

�
∂2p4

∂ l2
1

+
∂2p4

∂ l2
2

+
∂2p4

∂ l2
3

�
:

Finally, substituting (10),

Efδp4g=
σ2

2
(∇ 2k1v1+ ∇ 2k2v2+ ∇ 2k3(v1�v2));

where∇ 2ki =
∂2ki
∂ l21

+
∂2ki
∂ l22

+
∂2ki
∂ l23

:

The trilateration bias vector error was already exam-
ined in [13], where it was shown that its projection onto
the plane defined byp1, p2 and p3 can be neglected.
Using our formulation, this fact can simply be stated
as follows:

Efδp4g '
σ2

2
∇ 2k3(v1�v2):

It can be checked that, as a consequence of this error,
when the unknown point is moved on a plane parallel
to that of the three known points, the estimation will
erroneously indicate that it ascends and descends when
it approaches to, and goes away from the center of the
three known points, respectively. Fortunately, since this
is a systematic error, it can be compensated by proper
calibration.

The covariance matrix,C, of the position estimate
error δp4 can now be evaluated as

C = Ef[δp4�Efδp4g][δp4�Efδp4g]
t
g

= Efδp4δpt
4g�Efδp4gEfδpt

4g:

Since the second term contains the multiplicative
factor σ4, it can be neglected for small wire length
errors. Thus,

C' E

�
∂p4

∂ r
δrδr t

�
∂p4

∂ r

�t�
= σ2 ∂p4

∂ r

�
∂p4

∂ r

�t

;

wherer = (l1; l2; l3)
t .

Explicit expressions for all the partial derivatives
appearing in this section, in terms of Cayley-Menger
bideterminants, can be found in [19], where the error
in the location ofp4 due to the errors in the location
of p1, p2 andp3 is also analyzed.

V. FORWARD KINEMATICS AND SINGULARITIES

The direct kinematics of the 3-2-1 configuration can
be solved by three consecutive trilateration operations.
Indeed, according to Fig. 3a, givenl1, l2, andl3, there
are two possible mirror locations forb1 with respect to
the plane defined bya1, a2, anda3 (Figure 3b). Once
one of these two solutions forb1 is chosen,a4, a5,
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a1

a2

a3a4 a5

a6

b1
b2

b3 !!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!

a1

a2

a3

b1

(a) (b)

!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!

a4
a5

b1
b2

a6

b1

b2 b3

(c) (d)

Fig. 3. (a) General kinematic model of a 3-2-1 tracking sys-
tem. There are up to 8 possible solutions for the configuration
of the platform compatible with a set of wire lengths due to
the two possible solutions for the location ofb1 (b), b2 (c),
andb3 (d).

b1 andb2 define another tetrahedron with known edge
lengths. Again, there are two possible mirror locations
for b2, in this case with respect to the plane defined by
a4, a5, andb1 (Figure 3c). Finally, after choosing one
of the two solutions,a6, b1, b2, andb3 define another
tetrahedron with known edge lengths. In this case there
are two mirror possible locations forb3 with respect
to the plane defined bya6, b1 andb2 (Figure 3d).

Once pointsb1, b2, andb3 have been located, they
can be used to define a reference frame on the moving
object. For example, thex-axis can be defined by the
direction given by(b2�b1), the y-axis can be chosen
orthogonal to the plane defined by(b2�b1) and(b3�

b1), and thez-axis can be obtained to give a Cartesian
reference frame. These vectors form a set of orthogonal
basis vectors whose directions are known relative to
both the fixed and the moving reference frames. This
completely solves the forward kinematics of the 3-2-
1 configuration without evaluating any trigonometric
function.

There are certain singular sets of wire lengths yield-
ing less than eight solutions. For example, according to
Equation (10), the first trilateration operation will yield
only one solution if, and only if,D(a1;a2;a3;b1) = 0,
i.e., if a1, a2, a3, andb1 lie on the same plane. Also,
the result is undefined if, and only if,D(a1;a2;a3) = 0,

i.e., if a1, a2, anda3 are aligned. SinceD(a1;a2;a3) =

0 implies D(a1;a2;a3;b1) = 0, this latter condition
encompasses all singularities for the first trilateration.
This reasoning can be repeated for the other two
trilateration operations concluding that, if the platform
is in a configuration in whichD(a1;a2;a3;b1) = 0,
D(a4;a5;b1;b2) = 0, orD(a6;b1;b2;b3) = 0, the track-
ing system is in a singularity. In other words, these
three equations fully characterize all the singularities.
Each of them defines a variety of dimension 5 that
divides the configuration space of the platform, i.e.
ℜ 3�SO(3), into two half-spaces. Then, they lead to a
partition of this configuration space into 8 regions with
congruent signs for the corresponding 3 determinants.
During normal operation, the tracking system should
work in one of these regions without getting out of it
to avoid ambiguities. Nevertheless, either by assuming
continuity in the velocity vector or by using an extra
sensor such as an inclinometer, it is possible to move
from one of these regions to an adjacent one without
ambiguities.

VI. CONCLUSIONS

The formulation presented in this paper is currently
being validated using the hardware implementation
described in [17].

At the beginning of a measuring cycle, the pose of
the platform is assumed to be known. This requires
deciding the orientation of three tetrahedra which can
be done by visual inspection or using an extra sensor.
When traversing a singularity, an ambiguity arises.
Nevertheless, since infinity accelerations are not phys-
ically feasible, an algorithm can be designed to track a
unique solution based on the continuity of the velocity
vector. Moreover, the measurements along a trajectory
are not statistically uncorrelated so that they should be
jointly smoothed during tracking to improve accuracy
using, for example, a Kalman filter. The probabilistic
uncertainty model given in this paper is of relevance
to this end. For example, the characterization of the
bias error must not be ignored at this point and it has
to be suitably anticipated in this filter. These issues
concentrate our current efforts.
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