ISOLATING SELF-MOTION MANIFOLDS
ON A PLAYSTATION™

J.M. Porta, L. Ros, F. Thomas

Institut de Robotica i Informatica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain
{jporta,IIros,fthomas}@iri.upc.es

Abstract In this paper, we show how it is possible to use the specialized hardware
of a Play Station 2 (PS2) to speed up the execution of the Cuik algo-
rithm, an interval-based inverse kinematics algorithm. A PS2 includes
a RISC CPU and two parallel vector units able to perform four floating
point multiplications and four additions in a single cycle. A careful use
of these two vector units to implement the basic operations of the Cuik
algorithms allows increasing the speed of the algorithm in one order of
magnitude. The final implementation in the PS2 is as fast as that in a
Pentium 4 at 2.6GHz (that is at least three times more expensive than
a plain PS2).

Keywords: Inverse kinematics, hardware implementation of algorithms, parallel al-
gorithms, graphic hardware, Play Station 2.

1. Introduction

To speed up inverse kinematics computations we can either develop
better algorithms and heuristics or provide better implementations of
already existing ones. One possibility to speed up a given algorithm is
to use special hardware to implement its basic operations. This is the
line followed, for instance, by Lee and Chang, 1987, using the CORDIC
architecture. In this work, the inverse kinematics of a particular mech-
anism is analytically solved and the resulting equations are efficiently
implemented using the special operations provided by the CORDIC pro-
cessors. A limitation of this work, however, is that it can only be applied
to mechanisms whose inverse kinematics can be solved in closed form.

In Porta et. al, 2002, we introduced the Cuik algorithm, an interval-
based algorithm able to deal with mechanism with an arbitrary number
of kinematic loops. The basic operations of this algorithm are homo-
geneous matrix products. Nowadays, commercially available graphic
cards include specialized hardware to perform products of homogeneous
matrices. The problem is how to use this hardware to implement our
algorithms. In general, the communication between the CPU and the
graphic card is slow and unidirectional. Therefore, although we can per-

form some computations using this specialized hardware, it is hard to
move back the results to the main CPU.

Recently, Sony has released a Linux kit for Play Station 2 (PS2) that
makes its programming rather easy. The design of the PS2 differs in
its principles from that of a PC (Diefendorff and Dubey, 1997). The
PC was designed for static applications: large programs, such as word
processors or spreadsheets, that deal with relatively static data (i.e., the
document). PS2 was designed for media applications: small applications
dealing with a constantly changing data stream. In a graphical context,
a PC is designed work with a mainly static environment including a
large number of geometric elements. This geometry is send once to the
graphic card and, afterwards, many operations (viewpoint changes, etc)
are applied to it. On the contrary, a PS2 is designed to repetitively apply
the same type of simple operations to a continuously changing geometry.
This has many implications in the hardware design. Thus, while the PC
has large graphic memories (to store the static geometry) and a relatively
slow communication bus between the CPU and the graphical card, the
PS2 has a reduced graphic memory and a fast communication bus.

An interval-based algorithm (and the Cuik algorithm in particular)
can be considered a media application: a relatively simple process (i.e.,
the box reduction) is repetitively applied to different inputs (the set of
boxes and sub-boxes where we recursively look for solutions). Thus, the
Cuik algorithm could substantially benefit from being implemented on
a PS2.

In section 2, we briefly describe the Cuik algorithm. Next (section 3),
we describe the hardware resources of the PS2 and how use them to
implement the Cuik algorithm. In section 4, we show the improvements
resulting of using the PS2 and we conclude in section 5 summarizing our
work and pointing out some directions for further development.

2. The Cuik Algorithm

A kinematic loop yields an equation of the form

(1, s T, 01,y 0) =1, (1)
where ¢ is a matrix function, x1,...,x, are variables involved in trans-
lations, A1, ...,0,, are rotational variables, and I is the identity matrix.

Translations and rotations can be represented using homogeneous trans-
forms. Thus, equation 1 can be seen as

max"
max’
min*
min’ 6
T2
~_—
To T2
(a) (b)

Figure 1. Segment-trapezoid clipping.

with K; and L; constant homogeneous transforms (possibly the identity),
H; a translation homogeneous matrix (along X, Y or Z) and J; us a
rotation matrix (around either X, Y or Z).

Each matrix equation leads to 12 scalar equations, one for each row
and column j in the transformation matrix:

fii(@1, o @0, 01, 0m) = 0,)

where ¢; ; is 1 if 7 is equal to j, and 0 otherwise.

To avoid trigonometric expressions in the f; ; functions, we use the
substitutions y; = cosfp and z; = sinf, and we add the circle con-
straint y,% + z,% =1 to the system. The drawback of this variable change
is that we have m additional variables and, thus, the search space is
considerably enlarged. The advantage is that now all f; ; functions are
multilinear, allowing us to use the following procedure to isolate the
solutions of the resulting set of equations.

Assume we want to find all solutions of a multilinear equation f(x) =
§, for x in the box B = [z}, 2¥] x ... x [z}, 2%] € R". According to Rikun,
1997, the graph of (x, f(x)) must lie within the convex hull of the 2"
points {(x, f(x))| x € {z}, 2%} x ... x {a}, 2%}}. To efficiently bound
the intersection of this convex hull with the plane f(x) = 0 we project
the hull onto each coordinate plane, as depicted in Fig. 1a for n = 2, and
we intersect each of the resulting trapezoids with the f(x) = 0 line, as
shown in Fig. 1b. Usually, these segment-trapezoid clippings reduce the
ranges of some variables, and the Cartesian product of them all gives a
box smaller than B still bounding the root locations (the black rectangle

The Cuik Algorithm
Input: A set of kinematic equations
Output: A set of solution boxes (.5)
Process:
S0
L — Initial list of bozes
while not empty(L)
B — first boz(L)
do
s «—size(B)
Reduce_Box(B)
until empty(B) or size(B)< o or size(B)/s > p
if not empty(B) then
if size(B)< o then S — S U {B}
else
Split B into two sub-boxes: Bi, Ba
Add B1 and Bs to L
endif
endif
endwhile

Figure 2. The Cuik algorithm.

in Fig. 1a). If the range of a variable y; involved in a circle constraint
yz + zi = 1 is reduced, then the range of z; can also be reduced using a
rectangle-circle clipping operation.

Fig. 2 shows the high level form of the Cuik algorithm. To determine
the set of solution boxes, each of the initial boxes is reduced as much
as possible by the successive application of the segment-trapezoid and
rectangle-circle clippings (see Fig. 3). If one of the clippings yields no
solutions, then the search can be stopped in the area delimited by the
box in process. If a box becomes smaller than a given limit (o) we
consider it a solution. Finally, if a box can not be significantly reduced
(its reduction ratio is below a user-provided parameter p), we split it
and we process the two resulting sub-boxes in a recursive way.

3. Cuik on a PlayStation 2

The Emotion Engine (see Fig. 4) (the core controller of the PS2)
is equipped with one RISC processor that works at 300MHz and two
vector units (Sony, 2001). The RISC processor executes the operating
system (Linux in our case). The vector units (VU0 and VUI1) have
two sub-processors. The first one, called Floating Point Unit (FPU), is

Reduce_Box(B)
Input: A box defined as a set of intervals:
B = {[xivx%L B [xln: x|}
Output: The same box but eventually resized
Process:

for each kinematic loop ¢
V —A{vo,...,vc} (Set of indices of variables involved in c)
(Initialize the projection matrices)
for each v € V

min!, «— 400

miny < +00

max!, «— —oo
max, <« —oo

endfor

for each x € {xfjmxﬁo} X ... X {mik,x}jk} (For each corner of box BB)
(Generate a sequence of matrices for this corner)
S — ¢(x)
(Multiply the matriz sequence)
s «— eval(S)
(Project the matriz on the coordinate planes)
for each v e V
if x[v] = z! then
min!, «— min(min,, s)
max!, «+ max(max!,, s)
else
miny < min(miny, s)
max, < max(maxy, s)
endif
endfor
endfor
(Perform the clippings)
for each v € V
for each i € [1,3] and j € [1,4]
ifi=jthenj=1else § =0
Trapezoid_Clipping(z!, z¥, min, (i, j), max!, (¢,), min¥ (i, §), max® (i, §), §)
if z, is involved in a circle equation z2 + 22, = 1 then
Rectangle_Circle_Clipping(z!, 2%, 2}, z%)
endif
endfor
endfor
endfor

Figure 3. The Reduce_Box function.

EMOTION ENGINE
RISC vuo VUl
CPU
MAIN ‘ FPU ‘ ‘ - ‘ ‘ FPU ‘ ‘ - ‘ GRAPHIC
MEMORY SINTHESIZER
Memory
(32Mb) 16 Kb ‘ 4KB Memory ‘ ‘ 16KB Memory ‘
A A A \ A
\4 \/ \/ \4 \/
2.8GHz Bus
SP: ScrathPad Memory VU: Vector Unit

FPU: Floating Point Unit
IU: Integer Unit

Figure 4. Sketch of the PS2 hardware.

specialized in the operation of vectors of four single-precession floating
points elements. For instance, it can perform the element-wise product
of two vector of four elements (i.e., four products) and accumulate the
result to another vector (i.e., four additions) with a latency of 1 cy-
cle. Using these operations, a full 4 x 4 matrix multiplication (as that
performed in the matriz sequence multiplication step of the reduce box
process) can be performed in just 16 cycles. Other basic operations the
FPU can perform are the minimum and maximum of two vectors. We
can use these operations to speed up the matriz projection step of the
reduce box algorithm. The second sub-processor of the vector units, the
Integer Unit (IU), can be used to feed the FPU with new data so that
wait cycles are minimized.

The main memory of the Emotion Engine has 32 Mb. However, each
processor has its own fast-access local memory. The bus communicating
all the devices in the Emotion Engine operates at 2.8GHz, faster than
the AGP graphic bus currently used in the PCs.

The special design of the PS2 enforces a particular programming
philosophy. Small programs must be loaded in the VUs (with micro-
instructions both to the FPU and to the IU). Then, the a continuous
stream of data must be placed into the VU memories at the same speed
as the VUs consumes the data.

To efficiently use the three processors of the PS2, we have to divide the
Cuik algorithm in three sub-processes. Since, the VUs are specialized in
matrix operations, we can use them to perform the matrix multiplica-
tions and the matrix projections included in the inner loop of the reduce
boz process (Fig. 3). The cost of both operations is O(n), with n the

Main CPU ‘ M H P “ M H B

MainCPU | G || G || G |- Time
,,,,, G: Generate matrix sequence
vuo M: Matrix sequence multiplication
B B H ----- P: Matrix projection

Figure 5. Time arrangement of the basic operation of the reduce-box process in a
sequential processor (up) and in the PS2 (down).

VUl

number of variables involved in the loop. In this way, the load of the
two VUs is balanced. The main RISC processor will take care of the rest
of the algorithm: to generate the sequences of matrices to be multiplied
(one sequence for each corner of the box in process, B), to coordinate
the execution of the vector units (sending data to them when appropri-
ate), and to perform the clippings when the matrix multiplication and
projections are done.

Fig. 5 shows a sketch with the arrangement of operations when us-
ing a sequential processors and when using the PS2. The use of three
processors instead of just one, reduces the total cost of the algorithm at
least by a factor of 3. Additionally, the time of the matrix multiplica-
tions and the matrix projection is considerably reduced due to the use
of the special hardware of the VUs. The final result is a large increase
of the speed in the algorithm.

4. Experiments and Results

Fig. 6a represents the Bennett linkage, a 4R spatial closed chain with
1-d.o.f. mobility. Fig. 6b shows the discretization of the one-dimensional
solution space provided by the Cuik algorithm with o = 0.1 and p = 0.9.
This discretization includes about 300 boxes and it was achieved after
applying the box reduction process 4150 times to 1575 boxes. Thus, the
box reduction is applied, in average, 2.6 times to each processed box. The
problem has 4 rotational variables but, after the sin/cos substitutions,
we work with 8 variables. Consequently, each box has 256 corners and
for each one of them we have to apply the matrix sequence generation,
matrix multiplication and matriz projection steps.

If we apply the sequential version of the Cuik algorithm to this prob-
lem using the main processor of the PS2; the solution manifold of the
Bennett linkage is isolated in about 265 seconds.

The parallelized version explained in the previous section, solves the
problem in less than 22 seconds. So, using the special hardware of the

(a) (b)

Figure 6. (a) The Bennett linkage. (b) The discretization of the one-dimensional
space of solutions provided by the Cuik algorithm.

PS2 decreases the execution time to 10% of the original cost. The final
execution time on the PS2 is roughly the same as that on a Pentium 4
at 2.6GHz, that is a much more expensive machine.

After the parallelization, the bottleneck in the PS2 implementation is
the generation of the matrix sequences for each corner of all processed
boxes. This takes about 97% of the final execution time. This process
is that slow since it is executed by the RISC CPU of the PS2 that only
operates at 300MHz. So, what in the sequential version of the algorithm
was non-relevant (less than 10% of the execution time) becomes the most
expensive step in the parallelized version. Therefore, any improvement
in the matrix sequence generation procedure would result in a direct
improvement of the global performance of the system.

The matrix multiplications and projections for the 4150 processed
boxes are performed in less than 1 second. Thus, the PS2 achieves
1.8GFlops. This is less than the PS2 theoretical maximum (4.8GFlops)
since not all instructions in the VUs perform floating point operations.
(initializations, branches, etc are performed by the IU while the FPU is
stopped).

5. Conclusions

Currently available graphic hardware offer many opportunities to speed
up kinematic algorithms. In this paper, we describe the use of a PS2 to
implement Cuik, a kinematic problems solver. Previously existing works
on the use of hardware devices for inverse kinematic computations where

limited to particular mechanism while the Cuik algorithm can deal with
(almost) general mechanisms.

The internal controller of the PS2 with three CPU’s, two of them
specialized in vector operations, happened to be perfectly tailored for
the structure of the Cuik algorithm.

The use of the PS2 resulted in the parallelization of our algorithm at
two different levels of granularity (Henrich et al, 1997). The first one
is the in-box level: the different operations applied to each box can be
implemented in a different processor of the PS2. The second level of
parallelism we achieved is the operation-level: the basic floating-point
vector operations are performed in parallel in the vector units of the
PS2.

Additionally, the interval-based algorithms, such as Cuik, are inher-
ently parallelizable at the box-level (different boxes can be processed by
different computers). Thus, one possible extension of this work is the
set up of a grid of PS2s to cooperatively solve large problems.

The version of the Cuik algorithm described in this paper is the most
basic one. A future improvement is to incorporate to the PS2 version
the heuristics and improvements we have already developed for other
versions of Cuik. This would result in a even larger increase of the speed
of the algorithm.

Another possibility we want to explore is the use of PC graphic cards
to implement Cuik since they are more easily available in research labs
than PS2.

Acknowledgments

This research has been partially supported by the Spanish CICYT
under contract TIC2003-03396.

References

Diefendorff K. and Dubey P.K. (1997), How Multimedia Workloads Will Change Pro-
cessor Design, IEEE Computer, Vol. 30, No. 9, pp. 43-45.

Henrich D., Karl J. and Woérn H. (1997) A Review of Parallel Processing Approaches
to Robot Kinematics and Jacobian Technical Report 10/97, Computer Science De-
partment, University of Karlsruhe, ISSN 1432-7864.

Lee C.S.G. and Chang P.R. (1987), A Mazimum Pipelined CORDIC Architecture for
Inverse Kinematic Position Computation. IEEE Journal of Robotics and Automa-
tion. Vol. 3, No. 5, pp. 445-548.

Porta J.M., Ros L., Thomas F. and Torras C. (2002), Solving Multi-Loop Linkages
by Iterating 2D Clippings, Advances in Robot Kinematics. Kluwer Academic Pub-
lishers, pp.255-264.

Rikun, A.D. (1997), A Convex Envelope Formula for Multilinear Functions, J. of
Global Optimization, Vol. 10, pp. 425-437.

Sony Computer Entertainment Inc. (2001) The Emotion Engine User’s Manual.

