
 
 

Abstract— An autonomous agent is considered intelligent 
if it is capable to improve its performance through time, 
learning by experience. The problem of learning to improve 
performance from experience has been formalized in the 
field of Reinforcement Learning. The main difficulty found 
in this field is that the number of experiences required for 
learning to take place could be very large depending on the 
environment structure. If the environment has no structure 
at all the learning cannot be completed until all actions have 
been executed at least once in each possible state. Then, the 
application of reinforcement learning techniques is only fea-
sible when the environment presents enough regularity to 
allow some kind of generalization. Many reinforcement 
learning techniques have been proposed using different 
forms of generalization. Despite the diversity of strategies 
proposed, usual generalization techniques do not take ad-
vantage of all the opportunities of generalization. A new 
algorithm was proposed that exploits a type of regularity 
that is denoted as categorizability. Categorizability means 
that from all the relevant features that must be taken into 
account to decide the best action in any situation, only a few 
of them are actually relevant in each particular situation. In 
this paper the categorization and learning capabilities of the 
algorithm are evaluated using a problem that satisfies to a 
good extent the categorization property. The categorization 
achieved is analyzed in detail and illustrated with examples. 
The algorithm learning performance is compared with 
those of other learning algorithms. Some improvements of 
the original algorithm are introduced. 

 
Index Terms— Reinforcement Learning, Categorization, 

Complex Environments. 

I. INTRODUCTION 

For an autonomous agent to show intelligent behav-
iour, it must be able to identify the relevant aspects of the 
environment that allow it to select the most appropriate 
actions according to its goals. In complex environments, 
the number of aspects that the agent must take into ac-
count can be very large, and usually, the agent will not 
have a complete knowledge about what is the best possi-
ble action in any situation. A key aspect of intelligent be-
haviour is the ability to improve performance through 
time, or learning by experience. The problem of learning 
to improve performance from experience has been for-
malized in the field of Reinforcement Learning, which 

constitutes an active area of research [5], [14]. 
The main difficulty of reinforcement learning is the 

number of experiences required for learning to take 
place. In a complex environment, the number of possible 
states that need to be distinguished to select the appro-
priate action can be very large. If we assume that the en-
vironment has no structure at all, that is, that the result of 
an action in a given state cannot be predicted from the 
experience obtained in other states, then, to learn an op-
timal policy, all actions must be executed at least once in 
each possible state. Since this is impossible in most real-
istic problems, the application of reinforcement learning 
is only feasible when the environment presents enough 
regularity to allow generalization and therefore reduce 
the amount of experiences needed. 

Many reinforcement learning algorithms have been 
proposed using different forms of generalization. Each 
generalization technique implicitly assumes and exploits 
a possible kind of regularity that can be present in the 
environment, and its success depends on the degree in 
which the environment shows such regularity or not. 
Thus, for example, clustering techniques try to group a 
number of similar states that can be considered equiva-
lent for the purposes of the agent, and treat them as a 
single state [2],[4],[6],[8]. Feature-based approaches as-
sume that not all observable features are equally impor-
tant to decide the optimal action, and build the clusters of 
states based on this [10],[11]. Neural net approaches as-
sume that the mapping from states to optimal actions is 
sufficiently smooth and can be approximated by linear 
combination of the values taken in nearly states [7]. 

Despite the diversity of strategies proposed, rein-
forcement learning is still a hard task for most realistic 
problems. However, we observe that the usual generali-
zation techniques used in reinforcement learning do not 
take advantage of all the opportunities of generalization: 
for example, two states are clustered together only if the 
result of all actions is similar for both. The existence of a 
single action that provides different results implies a 
separation in two clusters, thus preventing the generaliza-
tion for all those actions that produce similar results in 
both states. The question, then, is: What kinds of regu-
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larities can be expected in the environment and how to 
take advantage of them in a reinforcement learning algo-
rithm? 

In [12] a categorization and learning algorithm is pro-
posed that exploits a type of regularity that is denoted as 
categorizability. In short, categorizability means that 
from all the features of the environment that must be 
taken into account to decide the best action in any situa-
tion, only a relatively small subset of them are actually 
relevant in each particular situation. This does not mean 
that some features are always irrelevant and can be ig-
nored, but that depending on the situation, the effect of 
each action can be better predicted with different subsets 
of the whole set of features available. The assumption 
that the number of relevant features in each particular 
situation is much smaller than the total number of fea-
tures that can be relevant in some situation constitutes the 
basis of the proposed categorization algorithm. 

In this paper we introduce some improvements of the 
original algorithm presented in [12]. Then, we evaluate 
the categorization and learning capabilities of the algo-
rithm applying it to a simple problem that satisfies to a 
good extent the categorization property: the game of tic-
tac-toe. 

The structure of the paper is the following. In section 
2 we summarize the fundamental aspects of the Categori-
zation and Learning Algorithm. Then, in section 3 some 
improvements of the original algorithm are presented. In 
Section 4 the problem formulation is made and general 
outlines about the implementation are given. Section 5 
contains the results obtained and an evolution of the 
categorization capability analysis of the algorithm. Fi-
nally, the conclusions of the work are given in section 6. 

II. CATEGORIZATION AND LEARNING ALGORITHM 

In this section we summarize the fundamental aspects 
of the Categorization and Learning algorithm (CL algo-
rithm) as presented in [12]. Some improvements we in-
troduced in this algorithm will be explained in section 3. 

It is assumed that the world is perceived through a set 
of n binary feature detectors fi i=1...n. We define a par-
tial view of order m, denoted by v(fi1,..., fim), as a virtual 
feature detector that becomes active when its m compo-
nent feature detectors are simultaneously active. The 
categorization process starts with the initial set of feature 
detectors (all partial views of order 1), and progressively 
builds partial views of higher order, depending on the 
requirements of the learning task.   

For each existing partial view v, and for each action a 
that is executable when v is active, a value qv(a) is main-
tained estimating the average discounted reward obtained 
after executing a when v is active. 

Two more values are stored for each partial view and 

action:  
� ev(a), the estimated average absolute error of 

qv(a), that provides a measure of the disper-
sion of the actual q values obtained in the 
different situations in which the partial view 
was active. Making some simplifying as-
sumptions, we consider that a partial view 
with value qv(a) and error ev(a) predicts that 
executing action a when v is active will result 
in a q value in the interval Iv(a)=[qv(a) - 2 
ev(a),  qv(a) + 2 ev(a)]. 

 
� iv(a), the confidence index, that registers the 

number of times action a has been tried when 
v was active and resulted in a value of q ac-
cording to the prediction. This is used to es-
timate a confidence value for qv(a) and ev(a) 
using a monotonically increasing function 
with saturation that takes values between 0 
and �������where � is a parameter of the sys-
tem, 

 
cv(a) = min{�,  confidence_function(iv(a))}   (1) 

 
The value for which the confi-
dence_function( ) reaches the saturation 
value � is controlled by a parameter�.  
 

A. Action selection 

As in the usual Q-learning algorithm, we must deter-
mine, for each situation, the action that maximizes the 
expected q value. The problem in our case is that in a 
given situation we may have many different predictions 
for the same action: one for each active partial view. To 
address this problem, the relevance �v(a) of partial view 
v for action a, is defined as 
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The relevance �v(a) takes values in the interval (0,1) 

and estimates how precisely the q value for action a can 
be predicted by the partial view v. A perfect prediction 
with ev(a)=0 corresponds to a relevance �v(a)=1. Since 
the relevance depends on the error estimation, it is also 
subject to the confidence estimation. Thus, the q predic-
tion for action a will be made according to the most rele-
vant partial view for this action, weighted by the confi-
dence. Therefore, we define the winner partial view for 
action a in a given situation V, as the active partial view 
for which the product �v(a) · cv(a)  is maximum.  
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where V is the set of active partial views. In this way, the 
q prediction for an action in a given situation will be ob-
tained from the winner partial view for this action. 

To get an actual q prediction from the winner partial 
view w, two sources of uncertainty must be considered: 
On the first place, since each partial view predicts that 
the q value is expected to lay in the interval Iw(a), some 
value in this interval is selected at random as initial 
guess: 

 
i_guess(a) =  rand(qw(a)-2 ew(a), qw(a)+2 ew(a))     (4) 
 
On the second place, a noise term is added to account 

for the uncertainty of the values stored in the partial 
view, as evaluated by the confidence: 

 
guess(a)=cw(a)i_guess(a)+(1- cw(a) )rand(qmin,qmax) (5) 
 
where qmin and qmax are the minimum and maximum q 

values actually obtained so far in the learning process. 
Once a guess is obtained for each of the actions that are 
executable in the current situation, the action with high-
est guess is selected for execution. Note that this strategy 
implements an adaptive form of exploration: actions with 
low confidence always have some opportunity to be exe-
cuted even with low q predictions, but exploratory ac-
tions have little chances to occur in the situation in which 
there is a strong confidence on the prediction of a high q 
value for some action. 

B.  System update 

After the execution of an action, a reward r is ob-
tained and a new situation V’ is perceived, so that the ac-
tual q obtained from the execution of action a can be 
computed as: 
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where � is the discount factor. This information is 

used to update the estimated values for the executed ac-
tion of all partial views that were active in the last situa-
tion. The qv(a) and ev(a) values are updated with identi-
cal schemas: 

  
qv(a) =  cv(a) qv(a) + (1 -  cv(a) ) q    (7) 

 
 

ev(a) =  cv(a) ev(a) + (1 -  cv(a) ) | q - qv(a)|      (8) 
 

Note that the confidence estimation is used as a learn-
ing rate parameter, so that values with low confidence 
are shifted towards the observed value faster than values 
with higher confidence.  

Finally, each confidence index iv(a) is increased by 
one if the actual q value lies in the predicted interval 
Iv(a), and decreased by one in the other case. 

C.  Partial view generation 

If the prediction of the q value is inaccurate, τ new 
partial views are created to help improving the prediction 
in the future. A prediction is considered inaccurate when 
the absolute difference between the predicted value qv(a) 
and q is higher than a user defined amount δ.    

New partial views are created by combination of two 
already existing partial views, randomly chosen among 
those that were active in the last situation. This random 
selection is made preferring the partial views with higher 
confidence and with better prediction of q. 

To avoid an undesired proliferation of partial views in 
the system, their number is limited to a threshold �, a pa-
rameter of the system whose appropriate value depends 
on  how much categorizable, in the sense we defined 
above, is the environment. To comply with this thresh-
old, it is necessary to remove partial views when its 
number grows above �. There are two different elimina-
tion criteria: redundancy and creation error.  

A partial view is considered redundant when its re-
ward predictions are too similar to the reward predictions 
of its parents. This redundancy is measured in the follow-
ing way: 
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where v1 and v2 are the parent partial views and, 
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Partial views with redundancy higher than a value λ 

are eliminated from the system.  
On the other hand, the creation error is used to elimi-

nate partial views that are less useful for the system. This 
error indicates how bad the prediction was when the par-
tial view was created. If this error is low, the created par-
tial view is considered not so useful. Then, the partial 
views with lowest creation error are eliminated. The cri-
teria used for partial view elimination may have an im-
portant impact in the performance of the algorithm, and 
this is the object of the improvements introduced in the 
next section. 

 



 
 

III. NEW PARTIAL VIEW ELIMINATION CRITERIA 

A. Redundancy 

The redundancy computed in equation (9) only con-
siders the redundancy of a partial view with its parents, 
but in general, a partial view can be redundant with any 
other subset of partial views. Thus, the redundancy of a 
partial view is now calculated using not only its parents 
but also all the partial views composed by a subset of its 
features: 
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B. Utility Index 

The criterion of the creation error for the elimination 
of less useful partial views takes the value of the error in 
the prediction at the time the partial view was created. 
But, as the system evolves, partial views with low crea-
tion error may become more useful (or the converse) so 
we need a better criterion to assess the current utility of a 
partial view. Intuitively, the utility of a partial view could 
be measured taking its relevance. But, to avoid the pre-
mature elimination of partial views not sufficiently 
tested, we must keep partial views with low confidence. 
We devised a new criterion to estimate the utility of a 
partial view based on these statements by taking the ratio 
between the relevance and the confidence as a utility in-
dicator of a partial view for an action execution.  
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IV. PROBLEM FORMULATION 

In order to evaluate the categorization capability of 
the CL algorithm we use a simple problem, the game of 
tic-tac-toe, that satisfies to a good extent the categoriza-
bility property. This problem is widely used to exemplify 
and evaluate generalization and clustering techniques [9], 
[1], [11], [6], and other learning methods [3], [13]. 

The opponent used in the training task was created 
with a temporal difference algorithm with state-value up-
date [14], making an average of one exploratory move in 
each match and with a learning rate of 0.05. It was 
trained using 100.000 matches playing against itself. 
Then the playing policy learned is used as a fixed oppo-
nent to train the other reinforcement learning algorithms. 

The reward value considered is 100 for a win, -100 
for a lose, 50 for a draw, and 0 in non terminal situations. 

The set of binary feature detectors consists of 3 fea-
tures detectors for each cell of the board: X(i,j), O(i,j) 
and empty(i,j), where i�{1,2,3} indicates the number of 

row, and j�{1,2,3} the number of column. Each of these 
features becomes active when the corresponding cell 
contains the value X, O or is empty, respectively. Ac-
tions are also represented as an X or an O in a particular 
position (i,j). 

To exemplify the categorizability of the tic-tac-toe 
game note that in the states shown in Fig. 1 only features 
X(1,1) and X(2,2) are relevant to determine that the 
match is won by playing an X in position (3,3).  

 
X O O  X   

O X    X O 

X    O   

 
Fig 1. Two different situations in the game of tic-tac-toe categorizable 

with the same partial view. 
 

A point to remark is that the action selection is per-
formed only over available actions. Thus, if one cell is 
occupied with an X or O then it is not considered as a 
possible place to move. Finally, the CL algorithm is 
trained playing with X’s and always plays in the first 
place. 

After some empirical experiments, the following set 
of training parameters for the CL algorithm was selected: 
�=0.99, �=50, �= 50, �=0.90, �=500, �=0.90 and 	=3. 
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Fig 2. Average reward obtained during the learning task: a) with 
“Creation error” elimination criterion, and b) with “Utility index” 

elimination criterion. 



 
 

V. RESULTS 

Fig. 2 shows the average rewards obtained with the 
CL algorithm along 30.000 training matches before and 
after the modifications explained in section 3. As we can 
observe in Fig. 2 a), the average reward trend shows 
some instability in the learning process. After performing 
the mentioned changes a new training process was done 
obtaining the results shown in Fig. 2 b). As observed, the 
learning process is much more stable.  

A. Comparison with Q-Learning 

Fig. 3 shows the average reward trends over 30.000 
matches of CL algorithm and Q-Learning algorithm [15]. 
For Q-Learning, a learning rate of 0.05, a discounted co-
efficient of 0.9 and an average of one exploratory move 
per match were used.  
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Fig 3. Performance comparison between Q-Learning and CL algo-
rithms. 

 
We observe that, at the beginning of the training, the 

CL algorithm fails to categorize the tic-tac-toe environ-
ment using the initial partial views, composed of only 
one feature. Then, new partial views were generated im-
proving categorization and consequently increasing the 
average reward. After the convergence is reached, the CL 
algorithm performs better than Q-Learning. Nevertheless, 
differences in the exploration methods influence this fi-
nal average reward value.  

In order to obtain a better comparison of the algorithm 
performance, 100 matches are played against the training 
opponent using both learned sets. No exploration is made 
except the first move that is made in a random position. 
Table 1 shows the obtained results. 

 
TABLE 1. RESULTS OF 100 MATCHES PLAYED AGAINST THE TRAINING 

OPPONENT 
 Cat. & Learning Q-Learning 

Won 100 85 
Drawn 0 15 

Lost 0 0 

 
CL algorithm won all the matches while Q-Learning 

drew 15 of them. With this opponent, CL algorithm 
learned a better game policy than Q-Learning. 

It is remarkable that Q-Learning experimented and 
stored about 6.000 states against the 500 partial views 
stored by the CL algorithm. 

B. Partial Views Generated 

Fig. 4 shows some partial views generated with the 
CL algorithm. Each board only shows the features of the 
partial view marked with gray and the corresponding qv, 
ev and iv values associated to each possible action. 

 
a) b) 

- - - 

- X - 

X - -  

- O - 

- O - 

- - -  
  

a qv(a) ev(a) iv(a) 
(1,1) 75,7 41,9 50 
(1,2) 61,2 25,5 50 
(1,3) 100,0 0,0 50 
(2,1) 78,3 24,3 49 
(2,2) - - - 
(2,3) 24,7 69,9 50 
(3,1) - - - 
(3,2) 11,9 50,6 50 
(3,3) 71,6 15,5 49  

a qv(a) ev(a) iv(a) 
(1,1) -100 0,0 21 
(1,2) - - - 
(1,3) -100 0,0 16 
(2,1) -100 0,0 48 
(2,2) - - - 
(2,3) -100 0,0 25 
(3,1) -100 0,0 50 
(3,2) 56,6 22,7 50 
(3,3) -100 0,0 30  

Fig 4. Generated partial views of order 2 and their associated action 
values. 

It is clear that these generated partial views contain 
only relevant features. Note that in Fig. 3 a) the action 
that win the match is that with highest qv(a) (in fact the 
maximum possible), lowest ev(a) (highest relevance) and 
high confidence. Fig. 4 c) shows that the algorithm also 
learns to avoid a lose as we can see in the values associ-
ated to action X(3,2). 

The learned set contains 90 partial views of order 2, 
131 of order 3, 138 of order 4, 79 of order 5, 23 of order 
6, 9 of order 7, and 3 of order 8, in addition to the 27 ini-
tial partial views of order 1. It is remarkable that the 
mean number of features per partial view is 3.5, against 
the 9 features present in each situation. 

C.  Evaluation of the Categorization Capability 

In order to evaluate the categorization capability of 
the CL algorithm, two complete matches against the 
training opponent are presented in Fig. 5. In these tests 
no exploration is made except for the initial moves, 
which are made at random positions. The CL algorithm 
plays with X‘s and each board represents a state of the 
game. When it is the turn of the CL algorithm the winner 
partial view for the selected action is marked in light 
gray. 
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Fig 5. Two tic-tac-toe matches against the training opponent using the 
learned set of partial views.  

 
We see that the winner partial views at terminal situa-

tions clearly contain relevant features, and the actions 
selected are those that win the match. In early states of 
the game there are other partial views whose relevance is 
not obvious to select the action. Nevertheless, they con-
tain the relevant features to play with this particular op-
ponent and take advantage of its imperfections. 

Note that in both terminal situations the same partial 
view is used to select the action demonstrating the cate-
gorization achieved by the algorithm.  

VI. CONCLUSION  

The CL algorithm was created with the aim of taking 
advantage from the categorizability properties of a com-
plex environment to improve the learning task.  

From Fig. 3 and Table 1 we observed that the CL al-
gorithm is capable to learn an adequate policy for the se-
lected problem with a performance superior to the Q-
learning algorithm. Note from table 1 that the learned 
policy approaches better the optimal one, always winning 
the game. Additionally, The CL algorithm learned to 
play using only 500 partial views, against the 6.000 
states needed in Q-Learning for the same learning task. It 
is also remarkable that the mean order of these partial 
views is 3.5 features against the 9 features present in 
each situation. These last two facts imply a great im-
provement in the computing performance reducing the 
amount of memory needed to store and process the learn-
ing data. 

From these points we can conclude that the CL algo-
rithm is capable to take advantage of the categorizatibil-
ity of an environment to improve the learning task. 

Additionally, despite the simplicity of the selected 

problem, the results obtained suggest that the CL algo-
rithm could be suitable to be applied in a more complex 
categorizable environment. As a future work we would 
like to apply this algorithm in such a complex environ-
ment, more precisely to face the problem of locomotion 
control of legged robots. 
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