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Absmd- Real world robot applications have to cape with 
large variations in the operating conditions due to the 
variability and unprediaability of the environment and its 
interaction with the robot. Performing an adequate cootrol 
using conventional control techniques, that require the model 
of the plant and some knowledge about the influence of the 
environment, could be almost impossible. An alternative to 
traditiooal control techniques is to use an automatic learning 
system that uses previous experience to learn an adequate 
control policy. Learning by experience has been formalized 
in the field of Reinlorcement Learning. But the application of 
Reinforcement Learning techniques io complex 
environments is only feasible when some generalization c m  
be made in order to reduce the required amount of 
experience. This work presents an algorithm that perfoms a 
kind of generalization called categorization. This algorithm is 
able to perform effcient generalization of the observed 
sitmtioos, and learn accurate control policies io .a short time 
without any previous knowledge of the plant and without the 
need of aoy k b d  of traditional control technique. Its 
performance is evaluated on the trajectory tracking control 
with simulated DC moton and compared with PID systems 
specifleally tuned for the same problem. 

Keywords- Reinforcement learning; Trajectory tracking 
con*ol; cotegorizJItion 

I. INTRODUCTTON 
Robotics applications are widening with the 

development of new technologies and the improvements 
reached in computer science. Day by day new difficult 
achievements are expected from robotics. A shift in the 
operation scenarios fiom structured environments w 
natural unshuctured ones becomes a necessity. In order to 
cope with the control of robot locomotion in this kind of 
environment the application of conventional control 
techniques are unsuitable for the control task due to the 
inherent variability of natural environments and the 
difficulty to model each aspect of them. An example of this 
is the problem of the walk control of a legged robot, as we 
are facing to perform autonomous navigation tasks 
outdoors [l], [2]. In legged robots the requirements for the 
control of each joint include fast execution of long as well 
as short displacements, accuracy in the tinal position 
Without overshooting, and fast response to varying loads 
and inertias. Complying with the mentioned requirements 
with a standard control method such as PID, requires an 
adequate model of the system under control, and a specific 
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tuning for each possible working condition, what is 
impractical and difficult to accomplish. 

To cope with this control challenge many control 
algorithms have been proposed [31, [41, [51, [61, [7], with 
different degree of success, but all of them have diverse 
problems when variations in the dynamics of the system 
are present and when non deterministic or random 
disturbances take place. Some works propose specialized 
control techniques to deal with dynamics variations and 
system perturbation [3] but they have the problem that the 
disturbance must fulfill some requirements that almost 
never take place in the task of robot walking. Other works 
mixed control techniques with machine leaming techniques 
[4], [SI, [a. For instance in [6] a PD control system for a 
torque control and trajectory tracking is complemented 
with a feed-fonvard component calculated using a learned 
inverse dynamics model of the system in order to 
compensate torque variations in the trajectory tracking 
control. These techniques improve the control task 
nevertheless they are associated to conventional control 
systems that require some plant information in order to 
tune their parameters. 

An altemative to the mentioned control systems is to 
use an automatic leaming system that uses previous 
experiences to improve its performance with time without 
any previous howledge of the model of the plant. 
Learning from experience is the subject of Reinforcement 
Learning @U) [7]. It is well known that the application of 
RL to non-toy problems suffers the problem of the curse of 
dimensionality [8], that is, the number of states that must 
be stored and experienced grows exponentially with the 
number of state variables. To allow the application of 
learning in complex tasks a new approach has been devised 
[9] based on the assumption that what has to be learnt is 
not a completely arbitrary function of the state vector, but 
satisfies what is called the categorizability hypothesis, 
which states that, in order to decide what action must be 
executed next, not all dimensions of the state vector are 
always relevant in all situations, but only relatively small 
subsets of them become relevant in each particular 
situation. In fact this is actually the case in most real world 
problems. The development of this ideas lead to the 
categorization and leaming algorithm (CL algorithm), 
whose fundamentals are introduced below. 

In this work we apply the categorization and learning 
algorithm to the problem of the trajectory tracking control 
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of DC motors. The results obtained in simulations show 
that it is possible to learn, in short time, control policies 
with performances comparable to that of a traditional PID 
control, with the advantage that the learning system does 
not require the individual tuning of the parameters for each 
case. Moreover, the algorithm makes efficient 
generalization using the categorizahility of the environment 
and the control is performed without the help of any 
traditional control technique making this learning system 
very promising for the control task in walking robots 
locomotion. 

In Section 2 the CL algorithm is presented Section 3 
states the control problem we face, and, in Section 4, its 
formulation for the CL algorithm is introduced. Section 5 
presents the results and compares them with the solutions 
of a tuned PID cootrol system. Conclusions are in Section 
6. 

11. THE LEARNING ALGORITHM 

The fundamental aspects of the CL algorithm are 
m a r i z e d  in this section. For a more detailed explanation 
see[9]and[10]. 

It is assumed that the world is perceived though a set 
of n binary feature detectors f; i=l...n. A partial view of 
order m, denoted by VV;, ,..., f*), is defined as a virtual 
feature detector that becomes active when its m component 
feahm detectors are simultaneously active. The 
categorization process starts with the initial set of feature 
detectors (all partial views of order I), and progressively 
builds partial views of higher order, depending on the 
requirements of the learning task. 

A qda) value is stored for each partial view v and each 
possible action a, that, in a way similar to the usual Q- 
leaning algorithm, estimates the average discounted 
reward obtained from the execution of action a when v is 
active. Two more values are stored for each partial view 
and action: 

eda), the estimated average absolute error of 
q,(a), that provides a measure of the dispersion of 
the actual q value obtained when the partial view 
Y was active. We consider that a partial new with 
a value q,(a) and error eda) predicts that 
executing action a when Y is active will result in a 
q value in the interval I,(a)=[qda)-2eda), 
qda)+2 eda)l. 
ids), the confidence index, that estimates how 
much action a bas been tried when v was active 
and resulted in a value of q according to the 
prediction. This is used to estimate a confidence 
value for qda) and eda) using a monotonically 
increasing function with saturation value p: 

cda) = min@ conficrencefunction(i~a))) (1) 

The value for which the confidence+nction( ) 
reaches the saturation value is controlled by a user 
defined parameter q.  In this work, a proportional 
relation is considered. 

A. Action Selection 
As in the usual Q-learning algorithm, we must 

determine, for each situation, the action that maximizes the 
expected q value. The problem in our case is that in a given 
situation we may have many different predictions for the 
same action: one for each active partial view. To address 
this problem we define the relevance pda) of partial view v 
for action a, as 

where Gh(a) and %(a) are the minimum and maximum 
prediction e r "  for action a considering all the active 
partial views. 

The relevance pda) is a relative estimation of how 
precisely the q value for action a can be predicted by the 
partial view v. More relevant partial views will provide 
more accurate reward predictions for the action a and, 
therefore, they will be preferred to estimate its result. On 
the other hand, not all partial views will have the same 
confidence, so that we can not simply take the partial view 
with highest relevance to predict the result of an action. To 
take into account both, the relevance and the confidence of 
the prediction, we define the winner partial view for action 
a in a given situation V, as the active partial view for which 
the product pda).cda) is maximum: 

winner(V,a) =argmax{p,(o).c,(a)) (3) 
V"@V 

where Vis the set of active partial views. In this way, the q 
prediction for an action in a given situation will be 
obtained fiom the winner partial view for this action. 

To get an actual q prediction from the winner partial 
view, two sources of indeterminacy are considered On the 
fim place, since each partial view predicts that the q value 
is expected to lay in the interval Ida), some value in this 
interval is selected at random as initial guess: 

iguerr(a) = rand(lda)) (4) 

On the second place, a noise term is added to account 
for the uncertainty of the values stored in the partial view, 
as evaluated by the confidence: 

where 9.;. and qnm are the minimum and maximum q 
values actually obtained so far in the learning process. 
Once a guess is obtained for each of the actions that are 
executable in the current situation, the action with highest 
guess is selected for execution. Note that this strategy 
implements an adaptive form of exploration: actions with 
low confidence always have some oppormnity to be 
executed even with low q predictions, but exploratory 
actions have little chances to occur in a situation in which 
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there is a strong confidence on the prediction of the q 
values for all actions. 

B. Sraristics Update 
After the execution of an action, a reward r is obtained 

and a new situation Vis perceived, so that the actual q 
obtained h m  the execution of action a is computed using 
a Bellman like equation: 

where y is the discount factor. This information is used to 
update the estimated values for the executed action of all 
partial views that were active in the last situation. The q,(a) 
and eda) values are updated with identical schemas: 

Note that the confidence estimation is used in the 
learning rate parameter, so that values with low confidence 
are shifted towards the observed value faster than values 
with higher confidence. 

Finally, each confidence index ids) is increased by one 
if the actual q value lies in the predicted interval Ida) and 
decreased in aproportion of 0.2 when this q falls outside it. 
With this updating policy, a partial view that repeatedly 
makes correct predictions will gradually reach high 
confidence values, but a single wrong prediction will cause 
a significant reduction on its confidence. 

C. Parrial View Generation 
If the prediction of the q value is too inaccurate, r new 

partial views are created to help improving the prediction 
in the future. For this matter, a prediction is considered 
inaccurate when the absolute difference between the 
predicted value qda) and q is higher than a user defined 
amount 6. 

New partial views are created by combination of pairs 
of already existing partial views, randomly chosen among 
those that were active in the last situation. This random 
selection is biased towards the partial views with higher 
confidence and with better prediction of q. 

To avoid an undesired proliferatiou of partial views in 
the system, their number is limited to a threshold a 
parameter of the system whose appropriate value depends 
on how much categorizable, in the sense we defined above, 
is the environment. To comply with this threshold, it is 
necessary to remove partial views when its number gows 
above .U. There are two different elimination criteria: 
redundancy and utility. 

A partial view is considered redundant when its reward 
predictions are too similar to the reward predictions of any 
of the partial views composed by a subset of its features 
[IO]: 

Partial views with redundancy higher than a value i. are 
eliminated t h n  the system. 

On the other hand, the utility of a partial view is used to 
eliminate partial views that are not redundant hut appear to 
be less useful for the system. We consider that a partial 
view is less useful for the system if it has low relevance 
pda) and high confidence cda) for all the possible actions. 
So that, the utility of a partial view v is defined as, 

In. THE CONTROL PROBLEM 

A. Generation o/Re/erence Trajectori.s 
In order to create the training set for the learning 

process, we generate random trajectory samples, defined as 
relationships timelangular-position for the motor shaft, that 
we call subtrajectories. Each subtrajectory starts at the final 
angular position of the previous one. The duration of each 
subtrajectory is selected randomly in the interval [2..5] (s). 
The range of angular positions for subtrajectory generation 
is limited to [-lo011 ... IOOrr]. 

In accordance with the characteristics of the 
subtrajectories generation, and after fmding the Fourier 
Transform of them, we found that the maximum frequency 
component of these subtrajectories is ahout 5 Hz. The 
Nyquist theorem [Il l  states that, in order to keep all the 
information of the sampled signal, the sample frequency 
should be at least twice the maximum frequency 
component. Thus, we chose a frequency of 20 Hz (At of 50 
(ms)) for action execution and learning system update. 

B. Morors Modeling 
Two motors were modeled for the control task, the 

Maxon 11 8800 of nominal power rating of 70 (Watt) and 
the Maxon 118769 of nominal power rating of 18 (Watt) 
[ 121. Some considerations are made for model construction 
in accordance with the manual specifications and motor 
equations [12]: the fiction torque is independent of the 
motor speed and is calculated as the torque in the shaft 
when a nominal voltage is applied and no load is present. 
On the other hand, the inductance of the rotor is so small 
that can be neglected. With these assumptions the motor 
equations are: 

JE# + M, = K,i 

Ri  = V - K,B 

(12) 

(13) 

where Vis the input voltage and 0 is the output angular 
position. Table I shows the values of the parameters for the 
two motor models. 
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TABLE I. M U O N  MOTORS PARAMETERS 

In order to implement the simulation, an interval of 
d ~ 0 . 0 0 1  (s) was considered. This value is small enough to 
obtain good simulation results in accordance to the 
system's time constants. The set of possible actions 
considered for the learning system consists in a numher of 
discrete input voltage values chosen in accordance with the 
motors data sheets. The nominal voltage for the motor 
118800 is 42 (V), sowe chose a range of variation of [-48.. 
481 (V), and for the motor 118769, with 24 (V) of nominal 
voltage, we chose a range of [-28.281 (V). In both cases a 
discretization of 16 segments equally spaced was selected 

C. P D  Control 
In order to evaluate the obtained results, a PID control 

system was implemented for performance comparison with 
the CL algorithm. The tuning of the proporlional gain Kp, 
derivation time Td and integral time T, was made using the 
Ziegler-Nichols rule, in its second method [12]. Table II 
summarizes the tuned parameters for the control of motors 
1188Wand 118769. 

TABLE U. P D ~ D P U U M E T E R S F O R M A X O N U O T O R S  

CaSC 1111 Td I T, 
118800 I 1.5 I 0.IAt I 2At 
118769 I 0.58 I 0.OZAt I ZAt 

For the control test using the PID system, also a sample 
period of 50 (ms) was used, and the voltages applied were 
discretized in !he same way as with the CL algorithm 

N. PROBLEMFORMULA"ION 

A. CL Algorithm Implementation 
The features considered in the leaning algorithm for 

the motor control problem were the angular speed and 
acceleration, the difference between the current motor 
position and the next desired trajectory position, and the 
difference between the current angular speed and the next 
desired trajectory speed. Since these are continuous 
variables, a discretization is required in order to apply the 
CL algorithm, which demands binary feature detectors. We 
choose a logarithmic scale for those features that give 
information ahout the difference with respect to the next 
desired point of the trajectory. This logarithmic scale 
improves precision when the system approaches the 
trajectory, enabling a more accurate tracking of it. The 
ranges selected are in accordance with the control problem 
requirements. We consider 40 discretization intervals for 
each feature. 

In addition to the mentioned features, we include a 
redundant feature that again consists in the difference 
between the current position of the motor and the next 
desired trajectory position, but with less discretization 
intervals. This feature covers the working space with fewer 
segments, so that, with relatively few experiences, the 
system can leam a rough knowledge of the motor response 
in most situations, favoring the convergence at early stages 
of the leaming process. 

After performing some experiments we found an 
adequate set of learning parameters for both motor control , 

learning processes: v=ZO, B=0.95, 6=50, y 4 5 ,  %=0.9 and 
p=SOO. 

B. The Reword Function 
Our goal is to leam a control policy to follow the 

reference trajectory as close as possible. So, a naive reward 
function could be one that depends only on the distance 
ffom the motor position to the current reference trajectory 
position. But, with this reward, the approach to the desired 
trajectory would he jagged because it does not take into 
account the fiture evolution of the trajectory. So, we 
consider, in addition to current position, the current angular 
speed of the motor and of the reference trajectory, and 
detine an approaching target position, Om,, in order to 
reach the reference trajectory smoothly: 

r(t)  = -loA,(f) - K ~ A O  (15) 

where 0, is the motor angular position, and ST is the 
trajectory angular position. 

v. RESULTS 
All the control performances are evaluated on 

trajectories composed hy five randomly generated 
suhtrajectories. 

A. Control of motor 118800 
Figure 1 shows the performance of the tuned PID 

control compared with that of the CL algorithm trained 
with 25000 iterations. To better appreciate the results, the 
respective tracking errors are shown in a different scale. 

As we can see, the performance reached by the CL 
algorithm is comparable with that of a tuned PID control. 
This is a significant result considering that the training was 
conducted for no more than 25000 iterations, what 
corresponds to only 20 minutes of motor operation. 

In this case, the parameter that determines the 
maximum numher of partial views allowed in the system 
U), was set to 500. This is very low compared with the 
large numher of possible states that a conventional 
reinforcement leaming algorithm would need considering 
the features available (about 3 million states). This fact 
demonstrates the high degree of categorization reached by 
the CL algorithm. 
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Figurs 1. Reference mjccloty and comparison between P D  and CL 
algantam for m01m 11 8800 with the* respective uacking errors 

B. ConlrolofMotor I18769 
In a second experiment we trained the CL algorithm to 

control the 118769 motor using the same problem 
formulation as in the case ofmotor 118800 (Figure 2). 

In order to show the necessity of re-tuning the 
parameters of the PID, we also show in Figure 2 the results 
obtained with the PID tuned for the motor I18800 under 
the motor 118769. As expected, the system presents an 
unstable oscillatoly behavior due to the change of system 
parameters. New tuned parameters of the PID system to 
control motor 1 I8169 are computed as shown in Table II. 
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VI. CONCLUSIONS 
We have presented a new leaming algorithm that takes 

advantage of a kind of regularity of the environment 
denoted as categorizability. The algorithm was applied to 
the problem of tlajectory tracking control of a rotational 
joint under different model parameters. 

The CL algorithm is able to make efficient 
generalization taking advantage of the categorizability of 
the environment reducing both the storage needs and the 
convergence time to make possible the learning of control 
policies whose performance can be compared with those of 
PID controls specifically tuned for each specific situation. 
No problem reformulation for the CL algorithm was 
needed to achieve a good performance in the different 
situations. Moreover, the CL algorithm does not reqnire 
any previous howledge of the plant and can learn a good 
control policy even in the presence of large plant 
parameters variations, while a PID system without an 
adequate tuning fails. It is also remarkable that no 
traditional control techniques are involved in the learning 
process or in the control performance of the CL algorithm. 

We are now working on the application of ow leaming 
system based on the categorizability property to the control 
of more complex manipulators, considering high load 
inertias and variable perturbations. 
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