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Abstract— Real world rebot applications have to cope with
large variations in the operating coenditions due to the
variability and unpredictability of the environment and its
interaction with the robot, Performing an adequate control
using conventional control techniques, that require the model
of the plant and some knowledge about the influence of the
environment, could be almost impossible. An alternative to
traditional contrel techniques is to use an antomatic learning
system that uses previous experience to learn an adequate
cantrol policy. Learning by experience has been formalized
in the field of Reinforcement Learning, But the application of
Reinforcement  Learning  techniques in  complex
environments is only feasible when some generalization can
be made in order to reduce the required amount of
experience. This work presents an algorithm that performs a
kind of generalization called categorization. This algorithm is
able to perform efficient generalization of the observed
situations, and learn accurate control policies in a short time
without any previous knowledge of the plant and without the
need of apy kind of traditional control technique. Its
performance is evaluated on the trajectory tracking control
with simulated DC motors and compared with PID systems
specifically tened for the same problem.

Keywords- Reinforcement learning; Trajectory tracking
control; categorization.

L INTRODUCTION

Robotics  applications are widening with the
development of new technologies and the improvements
reached in computer science. Day by day new difficult
achievements are expected from robotics. A shift in the
operation scenarios from structured environments to
natural unstructured ones becomes a necessity. In order to
cape with the control of robot locomotion in this kind of
environment the application of conventional cenirol
techniques are unsuitable for the control task due to the
inherent variability of natural environments and the
difficulty to model each aspect of them. An exampie of this
is the problem of the walk control of a legged robot, as we
are facing to perform autonomous navigation tasks
outdoors [1], {2]. In legged robots the requirements for the
control of each joint include fast execution of long as well
as short displacements, accuracy in the final position
without overshooting, and fast response to varying loads
and inertias. Complying with the mentioned requirements
with a standard control method such as PID, requires an
adequate model of the system under control, and a specific
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tuning for each possible working condition, what is
impractical and difficult to accomplish.

To cope with this control challenge many control
algorithms have been proposed {3], [4], [5], [6], [7], with
different degree of success, but all of them have diverse
problems when variations in the dynamics of the system
are present and when non deterministic or random
disturbances take place. Some works propose specialized
control techniques to deal with dynamics variations and
system perturbation [3] but they have the problem that the
disturbance must fulfill some requirements that almost
never take place in the task of robot walking. Other works
mixed control techniques with machine learning techniques
[4], [5], [6]. For instance in [6] a PD control system for a
torque control and trajectory tracking is complemented
with a feed-forward component calculated using a learned
inverse dynamics model of the system in order to
compensate torque variations in the trajectory tracking
control. These techniques improve the control task,
nevertheless they are associated to conventional contrel
systems that require some plant information in order to
e their parameters.

An alternative to the mentioned control systems is to
use an automatic leaming system that uses previous
experiences to improve its performance with time without
any previous knowledge of the model of the plant.
Leaming from experience is the subject of Reinforcement
Learning {RL) [7]. It is well known that the application of
RL to non-toy problems suffers the problem of the curse of
dimensionality [8], that is, the number of states that must
be stored and experienced grows exponentially with the
number of state variables. To allow the application of
learning in complex tasks a new approach has been devised
[9] based on the assumption that what has to be learnt is
not a completely arbitrary function of the state vector, but
satisfies what is called the categorizability hypothesis,
which states that, in order to decide what action must be
executed next, not all dimensions of the state vector are
always relevant in all situations, but only relatively small
subsets of them become relevant in each particular
situation. In fact this is actually the case in most real world
problems. The development of this ideas lead to the
categorization and leaming algorithm (CL algorithm),
whose fundamentals are introduced below.,

In this work we apply the categorization and learning
algorithm to the problem of the trajectory tracking control
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of DC motors. The results obtained in simulations show
that it is possible to leam, in short time, control policies
with performances comparable to that of a traditional PID
control, with the advantage that the learning system does
not require the individual tuning of the parameters for each
case. Moreover, the algorithm makes efficient
generalization using the categorizability of the environment
and the control is performed without the help of any
traditional control technique making this learning system
very promising for the control task in walking robots
locomotion.

In Section 2 the CL algorithm is presented. Section 3
states the control problem we face, and, in Section 4, its
formulation for the CL algorithm is introduced. Section 5
presents the results and compares them with the solutions
of a tuned PID control system. Conclusions are in Section
6.

II. THE LEARNING ALGORITHM

The fundamental aspects of the CL algorithm are
summarized in this section. For a more detailed explanation
see [9] and [10].

It is assumed that the world is perceived through a set
of » binary feature detectors f; i=1..n. A partial view of
order m, denoted by Wfj,..., fa), is defined as a virtual
feature detector that becomes active when its m component
feature detectors are simultaneously active. The
categorization process starts with the initial set of feature
detectors (all partial views of order 1), and progressively
builds partial views of higher order, depending on the
requirements of the learning task.

A gJa) value is stored for each partial view v and each
possible action a, that, in a way similar to the usual Q-
learning algorithm, estimates the average discounted
reward obtained from the execution of action a when v is
active. Two more values are stored for each partial view
and action:

e ¢/fd), the estimated average absolute error of
g.(a), that provides a measure of the dispersion of
the actual ¢ value obtained when the partial view
v was active. We consider that a partial view with
a value g¢Ja) and error efq) predicts that
executing action a when v is active will result in a
g value in the interval JJ{a¥(g.(a)-2efa),
g{a)yt eda)].

e ifa), the confidence index, that estimates how
much action a has been tried when v was active
and resulted in a value of g according to the
prediction. This is used to estimate a confidence
value for ¢{a) and e/fa) using a monotonically
increasing function with saturation value f:

cfa) = minif, confidence_function{i{a))} 4y

The value for which the confidence function( )
reaches the saturation value is controlled by a user
defined parameter #. In this work, a proportional
relation is considered.
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A.  Action Selection

As in the usual Q-learning algorithm, we must
determine, for each situation, the action that maximizes the
expected g value. The problem in our case is that in a given
situation we may have many different predictions for the
same action: one for each active partial view. To address
this problem we define the relevance p,{(a) of partial view v
for action a, as

e, (a) - eny (@) 2)
Epmin (2) — €1, ()

where epi(a) and ens(a) are the minimum and maximum
prediction errors for action a considering all the active
partial views,

pula)=

The relevance p{a) is a relative estimation of how
precisely the g value for action a can be predicted by the
partial view v. More relevant partial views will provide
more accurate reward predictions for the action a4 and,
therefore, they will be preferred to estimate its result. On
the other hand, not all partial views will have the same
confidence, so that we can not simply take the partial view
with highest relevance to predict the result of an action. To
take into account both, the relevance and the confidence of
the prediction, we define the winner partial view for action
a in a given situation ¥, as the active partial view for which
the product p(a).c(a) is maximum:

winner(V,a) = a.rgrgai_({pv (a)-c, (a)} 3)

where ¥ is the set of active partial views. In this way, the g
prediction for an action in a given situation will be
obtained from the winner partial view for this action.

To get an actual g prediction from the winner partial
view, two sources of indeterminacy are considered: On the
first place, since each partial view predicts that the g value
is expected to lay in the interval I{a), some value in this
interval is selected at random as initial guess:

i_guess(a)= rand(l(a)) O

On the second place, a noise term is added to account
for the uncertainty of the values stored in the partial view,
as evaluated by the confidence:

guess(ay=cJfa) i_guess(a)+ (1- cha)) mﬂd{‘]m(m Gma) (5)

where gpin 2a0d g, are the minimum and maximum g
values actually obtained so far in the leaming process.
Once 2 guess is obtained for each of the actions that are
executable in the current situation, the action with highest
guess is selected for execution. Note that this strategy
implements an adaptive form of exploration: actions with
low confidence always have some opportunity to be
executed even with low ¢ predictions, but exploratory
actions have little chances to occur in a sitvation in which
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there is a strong confidence on the prediction of the ¢
values for all actions.

B.  Statistics Update

After the execution of an action, a reward r is obtained
and a new situation V is perceived, so that the actual ¢
obtained from the execution of action a is computed using
a Bellman like equation:

g=r+ 7"1{2"{‘] (@) | v = winner(V, a)} &

where yis the discount factor. This information is used to
update the estimated values for the executed action of all
partial views that were active in the last situation. The g,(a}
and e (a) values are updated with identical schemas:

aua) = efa)qa) +(1- cfa)) g M
efa) = efa) efa) + (1 - ola) )| q - g4a)l ®

Note that the confidence estimation is used in the
leamning rate parameter, so that values with low confidence
are shifted towards the observed value faster than values
with higher confidence.

Finally, each confidence index i(a) is increased by one
if the actual g value lies in the predicted interval /(a) and
decreased in a proportion of 0.2 when this ¢ falls outside it.
With this updating policy, a partial view that repeatedly
makes correct predictions will gradually reach high
confidence values, but a single wrong prediction will cause
a significant reduction on its confidence.

C.  Partial View Generation

If the prediction of the g value is too inaccurate, T new
partial views are created to help improving the prediction
in the fiture. For this matter, a prediction is considered
inaccurate when the absolute difference between the
predicted value g.{a) and ¢ is higher than a user defined
amount J.

New partial views are created by combination of pairs
of already existing partial views, randomly chosen among
those that were active in the last situation. This random
selection is biased towards the partial views with higher
confidence and with better prediction of gq.

To aveid an undesired proliferation of partial views in
the system, their number is limited to a threshold p, a
parameter of the system whose appropriate value depends
on how much categorizable, in the sense we defined above,
is the environment. To comply with this threshold, it is
necessary to remove partial views when its number grows
above u There are two different elimination criteria:
redundancy and utility.

A partial view is considered redundant when its reward
predictions are too similar to the reward predictions of any
of the partial views composed by a subset of its features
[10]:
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redundancy(v) = l'l&ll{l\}'\l’ac)vi {sim(I (), I . (a})}} (9)
where,
(a)]
sim(I (a), I (a)) = 1, (@01, (a)]

@@ g
Partial views with redundancy higher than a value A are
eliminated from the system.

On the other hand, the utility of a partial view is used to
climinate partial views that are not redundant but appear to
be less useful for the system. We consider that a partial
view is less useful for the system if it has low relevance
p{a) and high confidence ¢,{a) for all the possible actions.
So that, the utility of a partial view v is defined as,

u(v)=mn{ﬁ@} {n

II. THE CONTROL PROBLEM

A, Generation of Reference Trajectories

In order to create the training set for the learning
process, we generate random trajectory samples, defined as
relationships time/angular-position for the motor shaft, that
we call subtrajectories. Each subtrajectory starts at the final
angular position of the previous one. The duration of each
subtrajectory is selected randomly in the interval [2..5] (5).
The range of angular positions for subtrajectory generation
is limited to [-100z...100x].

In accordance with the characteristics of the
subtrajectories generation, and after finding the Fourier
Transform of them, we found that the maximum frequency
component of these subtrajectories is about 5 Hz. The
Nyquist theorem [11] states that, in order to keep all the
information of the sampled signal, the sample frequency
should be at least twice the maximum frequency
component. Thus, we chose a frequency of 20 Hz (At of 50
(ms)) for action execution and learning system update.

B. Motors Modeling

Two motors were modeled for the control task, the
Maxon 118800 of nominal power rating of 70 (Watt) and
the Maxon 118769 of nominal power rating of 18 (Watt}
[12]. Some considerations are made for model construction
in accordance with the manual specifications and motor
equations [12]: the friction torque is independent of the
motor speed and is calculated as the torque in the shaft
when a nominal voltage is applied and no load is present.
On the other hand, the inductance of the rotor is so small
that can be neglected. With these assumptions the motor
equations are:

J G+ M, =K, i (12)
Ri=V-K,0 {13)
where V" is the input voltage and & is the output angular

position, Table I shows the values of the parameters for the
two motor models.
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TABLEL MAXON MOTORS PARAMETERS

Motor Model
Parameter
113800 118769
Ix (kg.m?) rotor inertia 65 E-7 10.8 E-7
My (Nm) is the friction torque 398E-3 | 1.082E-3
Ku (Nmv/A) is the torque constant | 56 E-3 21.3E-3
R (2} is the terminal resistance 2,75 2.27

In order to implement the simulation, an interval of
dt=0.,001 () was considered. This value is small enough to
obtain good simulation results in accordance to the
system’s time constants. The sct of possible actions
considered for the learning system consists in a number of
discrete input voltage values chosen in accordance with the
motors data sheets. The nominal voltage for the motor
118800 is 42 (¥), so we chose a range of variation of [-48..
48] (7), and for the motor 118769, with 24 (V) of nominal
voltage, we chose a range of [-28..28] (V). In both cases a
discretization of 16 segments equally spaced was selected.

C. PID Control

In order to evaluate the obtained results, a PID control
system was implemented for performance comparison with
the CL algoritim. The tuning of the proportional gain K,
derivation time T, and integral time 7; was made using the
Ziegler-Nichols rule, in its second method [12]. Table 11
summarizes the tuned parameters for the control of motors
118800 and 118769.

TABLE II. PID TUNED PARAMETERS FOR MAXON MOTORS
Case K. Ty T
118800 1.5 0.1At 2At
118769 0.58 0.02At 24t

For the control test using the PID system, also a sample
period of 50 {ms) was used, and the voltages applied were
discretized in the same way as with the CL algorithm.

IV. PROBLEM FORMULATION

A.  CL Algorithm Implementation

The features considered in the learning algorithm for
the motor control problem were the angular speed and
acceleration, the difference between the current motor
position and the next desired trajectory position, and the
difference between the current angular speed and the next
desired trajectory speed. Since these are continuous
variables, a discretization is required in order to apply the
CL algorithm, which demands binary feature detectors. We
choose a logarithmic scale for those features that give
information about the difference with respect to the next
desired point of the trajectory. This logarithmic scale
improves precision when the system approaches the
trajectory, enabling a more accurate tracking of it. The
ranges selected are in accordance with the control problem
requirements. We consider 40 discretization intervals for
each feature.
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In addition to the mentioned features, we include a
redundant feature that again consists in the difference
between the current position of the motor and the next
desired trajectory position, but with less discretization
intervals. This feature covers the working space with fewer
segments, so that, with relatively few experiences, the
system can learn a rough knowledge of the motor response
in most situations, favoring the convergence at early stages
of the learning process.

After performing some experiments we found an
adequate set of learning parameters for both motor control
learning processes: =20, §=0.95, =50, y=0.5, A=0.9 and
u=300.

B. The Reward Function

Our goal is to learn a control policy to follow the
reference trajectory as close as possible. So, a naive reward
function could be one that depends only on the distance
from the motor position to the current reference trajectory
position. But, with this reward, the approach to the desired
trajectory would be jagged because it does not take into
account the future evolution of the trajectory. So, we
consider, in addition to current position, the current angular
speed of the motor and of the reference trajectory, and
define an approaching target position, G, in order to
reach the reference trajectory smoothly:

P 1 Gl i ]+ 6, 0Ar

r(t) = _|9M (t) - Bnrgez (t)| (l 5)

where 8y is the motor angular position, and fr is the
trajectory angular position.

(1%

+6,0)

V. RESULTS

All the control performances are evaluated on
trajectories composed by five randomly generated
subtrajectories.

A.  Control of motor 118800

Figure 1 shows the performance of the tuned PID
contrel compared with that of the CL algorithm trained
with 25000 iterations. To better appreciate the results, the
respective tracking errors are shown in a different scale.

As we can see, the performance reached by the CL
algorithm is comparable with that of a tuned PID control.
This is a significant result considering that the training was
conducted for no more than 25000 iterations, what
corresponds to cnly 20 minutes of motor operation.

In this case, the parameter that determines the
maximum number of partial views allowed in the system
(1), was set to 500. This is very low compared with the
large number of possible states that a conventional
reinforcement learning algorithm would need considering
the features available (about 3 million states). This fact
demonstrates the high degree of categorization reached by
the CL algorithm,
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Figure 1, Reference trajectory and comparison between PID and CL
algorithm for motor 118800 with their respective tracking errors.

B.  Control of Motor 118769

In a second experiment we trained the CL algorithm to
control the 118769 motor using the same problem
formulation as in the case of motor 118800 (Figure 2).

In order to show the necessity of re-tuning the
parameters of the PID, we also show in Figure 2 the results
obtained with the PID tuned for the motor 118800 under
the motor 118769. As expected, the system presents an
unstable oscillatory behavior due to the change of system
parameters. New tuned parameters of the PID system to
control motor 118769 are computed as shown in Table II.
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time [s]

Figure 2. PID control of motor 118769 with parameters tuned for motor
118800 and comparison of PID tuned control versus CL algorithm
control of motor 118769,

Note that the proportional gain X, decreased about
three times in comparison with the K, to control the
118800 motor.

The resuits obtained with the controller learned with the
CL algorithm after only 25,000 iterations are again
comparable to those obtained with a tuned PID system.

It is important to note that the CL algorithm always
keeps learning on-line and could adjust the control policy
to adapt to eventual variations of the plant dynamics.
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VI. CONCLUSIONS

We have presented a new learning algorithm that takes
advantage of a kind of regularity of the environment
denoted as categorizability. The algorithm was applied to
the problem of trajectory tracking control of a rotational
joint under different model parameters.

The CL algorithm is able to make -efficient
generalization taking advantage of the categorizability of
the environment reducing both the storage needs and the
convergence time to make possible the learning of control
policies whose performance can be compared with those of
PID controls specifically tuned for each specific situation.
No problem reformulation for the CL algorithm was
needed to achieve a good performance in the different
situations. Moreover, the CL algorithm does not require
any previous knowledge of the plant and can leamn a good
control policy even in the presence of large plant
parameters variations, while a PID system without an
adequate tuning fails. It is also remarkable that ao
traditional control techniques are involved in the learning
process or in the control performance of the CL algorithm.

We are now working on the application of our learning
system based on the categorizability property to the control
of more complex manipulators, considering high load
inertias and variable perturbations.
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