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Abstract— In this article, we show that partial ob-
servability hinders full reconstructibility of the state space
in SLAM, making the final map estimate dependent on the
initial observations, and not guaranteeing convergence to a
positive semi-definite covariance matrix. By characterizing
the form of the total Fisher information we are able to deter-
mine the unobservable state space directions. To overcome
this problem, we formulate new fully observable measure-
ment models that make SLAM stable.

Index Terms—SLAM.

I. I NTRODUCTION

The study of stochastic models for Simultaneous Lo-
calization and Map Building (SLAM) in mobile robotics
has been an active research topic for over fifteen years.
Within the Kalman filter (KF) approach to SLAM, semi-
nal work by Smith and Cheeseman [7] suggested that as
successive landmark observations take place, the correla-
tion between the estimates of the location of such land-
marks in a map grows continuously. This observation was
ratified by Dissanayake et al. [3] with a proof showing
that the estimated map converges monotonically to a rel-
ative map with zero uncertainty. They also showed how
the absolute accuracy of the map reaches a lower bound
defined only by the initial vehicle uncertainty, and proved
it for a one-landmark vehicle with no process noise.

In this communication we address these results as a
consequence of partial observability. We show that full
reconstruction of the map state vector is not possible with
typical measurement models, regardless of the vehicle
model chosen, and propose new fully observable mod-
els. Also, we show experimentally how the expected error
in state estimation is proportional to the number of land-
marks used.

An explicit solution to the SLAM problem for a one-
dimensional vehicle called the monobot was presented by
Gibbens et al. [4]. It shed some light on the relation be-
tween the total number of landmarks and the asymptotic
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values for the state error covariance P. They observed for
example, that in SLAM, the rate of convergence of P is
fixed, and that its asymptotic value is independent of the
plant variance. In their solution to the 1-d Brownian mo-
tion case, the state error covariance is linked to the total
number of landmarks in the form of the total Fisher infor-
mation IT =

∑n
1 (1/σ2

w). The expression indicates the
“informational equivalence of the measurements and the
innovations” [2], and was derived from a simple likeli-
hood function, one that does not contain the fully corre-
lated characteristics of the measurement model. We de-
rive a more general expression for the total Fisher infor-
mation in SLAM that shows explicitly the unobservable
directions of the state space.

In summary; in SLAM, the state space constructed by
appending the robot pose and the landmark locations is
fully correlated, a situation that hinders full observability.
Moreover, the modelling of map states as static landmarks
yields a partially controllable state vector. The identifica-
tion of the first of these problems, and the steps taken to
palliate it, are covered in this article. The effects of partial
controllability in SLAM are covered in [1].

The paper is structured as follows. In Section II we
analyze the steady state behavior of the error state covari-
ance in SLAM for the monobot, and show how the steady
state of the filter will always depend on the initial noise
parameters. The effect is known as marginal stability [8],
and is in general an undesirable feature in state estimation.
In Section III we derive an expression for the total Fisher
information in SLAM. The analysis yields a closed form
solution that shows, explicitly, the unobservable directions
of the map state.

Marginal filter stability and the singularity of the Fisher
information matrix are equivalently consequences of hav-
ing partial observability. Section IV is devoted to the com-
putation of general expressions for the bases of the con-
trollable and observable subspaces in SLAM. These ex-
pressions are later simplified in Sections V and VI for the
monobot, and for a planar wheeled vehicle. We prove,
in the end, that the angle between these two subspaces
is determined only by the total number of landmarks in
the map. The result is that as the number of landmarks
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increases, the state components get closer to being recon-
structible.

In Section VII we show how partial observability in
SLAM can be avoided by adding a fixed external sen-
sor to the state model, or equivalently, by setting a fixed
landmark in the environment to serve as global localiza-
tion reference. Full observability yields the existence of a
(not necessarily unique) steady state positive semi-definite
solution for the error covariance matrix, guaranteeing a
steady flow of the information about each state compo-
nent, and preventing the uncertainty (error state covari-
ance) from becoming unbounded [2].

II. S TEADY STATE BEHAVIOR OF KF-SLAM

We start the discussion with a pictorial representation
of the asymptotic behavior of the KF-SLAM algorithm.
The steady state covariance matrix is given by the solution
of the Riccati equation

P = F(P − PH�(HPH� + W)−1HP)F� + V (1)
with F and H the plant and measurement model Jaco-
bians, respectively; and V and W the motion and sensor
noise covariances.

For the linear fully observable case, the solution to the
Riccati equation will converge to a steady state covariance
only if the pair {F,H} is completely observable. If in ad-
dition, the pair {F, I} is completely controllable, then the
steady state covariance is a unique positive definite ma-
trix, independent of the initial covariance P0|0 [2]. These
two conditions are not satisfied in general in SLAM, and
for the linear case, the solution of (1) is a function of the
initial vehicle pose covariance Pr,0|0, V, W, and the to-
tal number of landmarks n. Note however that, for the
nonlinear case, the computation of the Jacobians F and H
will in general also depend on the steady state value of x.

Consider a linear one-dimensional vehicle, i.e., a
monobot. The evolution of the error covariance matrix is
independent of the state input, and measurements through-
out the run of the algorithm. For a monobot with perfect
data association and constant motion and sensor uncer-
tainty, the computation of the Kalman gain could even be
performed offline. That is, the asymptotic (steady state)
behavior of the filter, and its rate of convergence are al-
ways the same, regardless of the actual motions and mea-
surements.

Fig. 1 shows the steady state vehicle and land-
mark variances of the KF-SLAM algorithm applied to a
monobot when observations of 1, 2, 3, and 50 landmarks
are available. The figure plots the influence of each of the
noise variances V and W with respect to the final vehicle
and landmark uncertainty.

All final state estimates are bounded by below by the
initial vehicle variance Pr,0|0 = 1. Meaning one can
never estimate the vehicle and landmark locations with
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Fig. 1. Final vehicle and landmark localization variances after
500 iterations of SLAM for a monobot with initial localiza-
tion variance Pr,0|0 = 1, and various values for the plant
and sensor noise variances.

more accuracy than what was available at the first sighting
[3], but certainly can do worse; that being dictated by the
values of V, W, and the total number of landmarks n.

III. T OTAL FISHER I NFORMATION

Under the Gaussian assumption for the vehicle and sen-
sor noises, the Kalman filter is the optimal minimum mean
square error estimator. And, as pointed out in [2], mini-
mizing the least squares criteria E[x̃k+1|k+1x̃�k+1|k+1], is
equivalent to the maximization of a likelihood function
Λ(x) given the set of observations Zk; that is, the max-
imization of the joint probability density function of the
entire history of observations, Λ(x) =

∏k
i=1 p(zi|Zi−1),

where x is the augmented map state (vehicle and landmark
estimates), and zi the entire observation vector at time i.

Given that the above pdfs are Gaussian, and that
E[zi] = Hxi|i−1, the pdf for each measurement in
SLAM is p(zi|Zi−1) = N(z̃i|i−1;0,Si), with Si =
E[z̃i|i−1z̃�i|i−1].

In practice however, it is more convenient to consider
the log likelihood function ln Λ(x). The maximum of
ln Λ(x) is at the value of the state x that most likely gave
rise to the observed data Zk, and is obtained by setting its
derivative with respect to x equal to zero, which gives

∇x ln Λ(x) =
k∑

i=1

H�S−1
i z̃i|i−1 (2)

An intuitive interpretation of the maximum of the
log-likelihood is that the best estimate for the state
x, in the least squares sense, is the one that makes
the sum of the entire set of Mahalanobis distances
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Fig. 2. First entry in the total Fisher information matrix
(
∑ ∑

ςij) for a monobot with variance parameters Pr,0|0 =
V = W = 1, and various sizes for the measurement vector.

∑k
i=1 z̃�i|i−1S

−1
i z̃i|i−1 as small as possible. A measure

that is consistent with the spatial compatibility test de-
scribed in [5].

The Fisher information matrix, a quantification of
the maximum existing information in the observations
about the state x, is defined in [2] as the expectation
on the dyad of the gradient of ln Λ(x), that is, J =
E[(∇x ln Λ(x))(∇x ln Λ(x))�]. Taking the expectation
on the innovation error in the above formula gives the sum

J =
k∑

i=1

H�(HPH� + W)−1H (3)

It is easy to verify that in the linear case, this expres-
sion for the total Fisher information is only a function of
Pr,0|0, V, and W. If, on the other hand, the EKF is used,
the Jacobian H in (3) should be evaluated at the true value
of the states x0, . . .xk. Since these are not available, an
approximation is obtained at the estimates xi|i−1. The pre
and post multiplying H is, in this context, also known as
the sensitivity matrix.

A necessary condition for the estimator (the Kalman
filter) to be consistent in the mean square sense is that
there must be an increasing amount of information about
the state x in the measurements. That is, as k → ∞,
the Fisher information must also tend to infinity. Fig.
2 shows this for the monobot with constant parameters
Pr,0|0 = V = W = 1, and various sizes for the observa-
tion vector. Notice how, as the total number of landmarks
grows, the total Fisher information also grows, directly
relating the number of landmarks to the amount of infor-
mation available for state estimation in SLAM.

Solving for the k-th sum term in J for the monobot,

Jk =
[ ∑∑

ςij −ς

−ς� S−1
k

]
(4)

with ςij the ij-th entry in S−1
k , and ς =

[
∑

ς1i, . . . ,
∑

ςni].
Citing Bar-Shalom et al. [2]: “a singular Fisher infor-

mation matrix means total uncertainty in a subspace of
the state space, that is, the information is insufficient for
the estimation problem at hand.” Unfortunately, it can be
easily shown, at least for the monobot case, that the first
row (or column) of J is equivalent to the sum of the rest

of the rows (or columns), producing a singular total Fisher
information matrix. Thus, SLAM is unobservable.

This is a consequence of the form of the Jacobian H,
i.e, of the full correlation in SLAM. Zero eigenvalues of
H�S−1H are an indicator of partial observability, and the
corresponding vectors give the unobservable directions in
state space.

So for example, for a one-landmark monobot, the in-
novation covariance is the scalar s = σ2

r − 2ρrfσrσf +
σ2

f + σ2
w, and since H = [−1, 1], the Fisher information

matrix in (3) evaluates to

J =
[

1 −1
−1 1

] k∑
i=1

1
si

(5)

The unobservable direction of the state space is the
eigenvector associated to the null eigenvalue of J, we de-
note it for now EKerR (the name will be clear soon), and
evaluates to

EKerR =
(

1
1

)
(6)

IV. O BSERVABLE SUBSPACE

To see what part of the state space is compromised by
full correlation, we now develop closed form expressions
for the bases of the observable and controllable subspaces
in SLAM and relate them to the total number of landmarks
used.

The linearized state model is
xk+1 = Fxk + vk (7)

zk+1 = Hxk+1 + wk+1 (8)
and the controllability matrix for such a plant is

Q = [ I 0 F 0 . . . Fdimx−1 0 ] (9)
Consequently, the dimensionality of the controllable

subspace, spanned by the column space of Q, (ImQ), is
rank Q = dimxr, regardless of the number of landmarks
in the map. Obviously, the only controllable states are the
ones associated with the vehicle motion.

The observability matrix of our system becomes

R =




H
HF

...
HFdimx−1


 (10)

The rank of R indicates the dimensionality of the ob-
servable subspace, which in turn, is spanned by the row
space of R, (ImR�). rank R = dimx − dimxf(i) .

V. T HE MONOBOT

We return our attention now to the monobot. Consider
the even more restrictive case in which only one landmark
is available. By substituting the resulting expressions for
the model Jacobians, the controllability and observability
matrices reduce to

Q =
[

1 1
0 0

]
, R =

[ −1 1
−1 1

]
(11)



The controllable subspace has a basis of the form
[q, 0]�, clearly indicating that the only dimension in the
state space that can be controlled is the one associated
with the motion of the robot.

The observable subspace on the other hand, with ba-
sis [r,−r]�, shows how the observed robot and landmark
locations are fully correlated. The unobservable subspace
is the orthogonal complement of ImR�, and has a basis
[r, r]�. An expression for it was already derived from the
analysis of the total Fisher information matrix and is given
in (6). The name EKerR indicates that it is a basis for the
null space of R.

A measure of the error incurred while trying to recon-
struct the state x̃r from correlated observations is given
by the angle between these two subspaces. For the one
landmark monobot, the angle is α = ∠ ImQ ImR� =
π/4rad.

There is one direction of the state space which is not
observed, the one orthogonal to ImR� (along KerR). The
information for the revision of x̃r and x̃f along the direc-
tion orthogonal to ImR� is missing. The angle α indi-
cates how close noise driven observations are from fully
revising the robot part of the state space.

What happens if we add more landmarks to the envi-
ronment? will the vehicle and landmark location estimates
improve or degrade? will we be able to achieve an uncou-
pled reconstruction of the entire state space? The answer
to the above questions is “improve” but “no”.

Consider the two-landmark monobot case. A possible
set of bases for the controllable and observable subspaces
are

EImQ =


 1

0
0


 , EImR� =


 1 1

−1 0
0 −1


 (12)

and the angle between these two subspaces can be com-
puted as the smallest non null singular value of the prod-
uct of their orthonormal bases [6]. α = ∠ ImQ ImR� =
163π/832rad. Following this procedure we computed the
value of α for a three-landmark monobot model, further
reducing to α = π/6. And, as we add more landmarks
to the map, the angle between the observable and con-
trollable subspaces reduces monotonically. Fig. 3a shows
experimentally the decrease in α as landmarks are added
to the map state model. Such monotonic reduction in α

suggests that our measurement noise driven corrections to
the map state estimate would reconstruct the vehicle lo-
calization estimate closer to the actual value of the vehicle
pose.

Theorem 1 (proof in [1]) In the case of a linear one-
dimensional robot, the angle between the controllable and
observable subspaces in the KF-SLAM algorithm depends
only on the total number of landmarks used, n, and is

given by α = arccos
√

n
n+1 .
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Fig. 3. a) ∠R(Q)R(R�). Angle between the observable
and controllable subspaces. b) Reduction of the average
monobot localization error xr,k − xr,k|k with respect to the
number of landmarks used. The results correspond to a Mon-
tecarlo simulation over 100 SLAM runs. The dotted lines
show the extent of the data for the entire set of runs, and the
boxes contain marks at the lower, median and upper quartile

As the number of landmarks grows, the observable sub-
space gets closer to the controllable part of the state space
(the vehicle localization states). limn→∞ α = 0.

It is unrealistic however, to have an infinite number of
landmarks, and a compromise has to be made between the
possibility of including as many landmarks as possible,
and the amount of information that new observations give.
Also one has to bear in mind that as we add more and
more landmarks to the map, we will also introduce their
associated measurement noise.

It has been argued that the performance of any SLAM
algorithm would be enhanced by concentrating on fewer,
better landmark observations [4]. That is certainly true,
little gain (little reduction in α) is attained when going
from 25 to 125 landmarks compared to the move from 1
to 5 or 5 to 25.

In Fig. 4 we have plotted the results of using the origi-
nal fully correlated KF approach to SLAM for a monobot
that starts at location xr,0|0 = −1m, and moves along a
straight line with a temporal sinusoid trajectory returning
to the same point after 100 iterations. Landmarks are lo-
cated at xf(i) = 1m. A plant noise model proportional
to the motion command, and a measurement noise model
proportional to the distance from the sensor to the land-
mark are used. The dotted lines indicate 2σ bounds on the
state estimates.

The effects of partial observability manifest the depen-
dence on the initial conditions. Note how both the ve-
hicle and landmark mean localization errors do not con-
verge to zero. Their steady state value is subject to the
error incurred at the first observation. That is, the filter is
marginally stable (the matrix F−KHF has a pole in one
[9]).

A Montecarlo simulation over 100 SLAM runs showed
however filter unbiasedness, a property of optimal
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Fig. 4. Full-covariance KF SLAM for a monobot in a sinu-
soidal path from xr,0|0 = −1m to x100 = −1m with
100 iterations. The noise corrupted sinusoidal vehicle tra-
jectory is indicated by the darkest curve in the first col-
umn of plots. In the same set of figures, and close to it is
a lighter curve that shows the vehicle location estimate as
computed by the filter, along with a pair of dotted lines indi-
cating 2σ bounds on such estimate. The dark straight lines
at the 1m level indicate the landmark location estimates; and
the lighter noise corrupted signals represent sensor measure-
ments. Also shown, are a pair of dotted lines for 2σ bounds
on the landmark location estimates. The second column of
plots shows the vehicle localization error and its correspond-
ing covariance, also on the form of 2σ dotted bounds. And,
the last column shows the same for the landmark estimates.

stochastic state estimation (Kalman filter). That is, the
average landmark localization error over the entire set of
simulations was still zero, thanks to the independence of
the initial landmark measurement errors at each test run.

The steady state error for the robot and landmark lo-
calization is less sensitive to the initial conditions when
a large number of landmarks are used. The reason is the
same as for the Montecarlo simulation, the observations
are independent, and their contribution averages at each
iteration in the computation of the localization estimate.
The results of the Montecarlo simulation are shown in
Fig. 3b depicting the effect of the increase in the number
of landmarks on the average vehicle localization error.

VI. T HE PLANAR ROBOT

The reconstructibility issues presented for the linear
and one-dimensional robot of the previous section, nicely
extend when studying more complicated platforms. Con-
sider the planar robot shown in Fig. 5, a nonlinear wheeled
vehicle with three degrees of freedom, and an environment
consisting of two-dimensional point landmarks located on
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Fig. 5. Two-dimensional mobile robot motion model.

the floor.
The dimensionality of the controllable subspace is

dimxr = 3, and for the specific case in which only one
landmark is available, a basis for the controllable subspace
is simply

EImQ =
(

I
02×3

)
The dimensionality of the observable subspace is, for

this particular configuration, rank R = 3. This last re-
sult is easily verified with simple symbolic manipulation
of the specific expression for the state model in [1]. Pos-
sible bases for ImR�, and for the null space of R (the
unobservable subspace) are

EImR� =




1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0


 EKerR =




1 0
0 1
0 0
1 0
0 1




The only independently observable state is the one as-
sociated to the robot orientation θ. The other four states,
the Cartesian coordinates of the robot and landmark lo-
cations span a space of dimension 2. Even when ImQ
and ImR� both span R

�, we see that the inequality
ImQ �= ImR� still holds, as in the case of the monobot.
That is, the observable and controllable subspaces for the
one-landmark 3dof-robot SLAM problem correspond to
different three-dimensional subspaces in R

�; and, their
intersection represents the only fully controllable and ob-
servable state, i.e., the robot orientation. Once more, a
measure of the reconstruction error incurred when esti-
mating the vehicle pose from correlated observations is
given by the angle between these two subspaces.

Resorting again to a singular value decomposition for
the computation of a pair of orthonormal bases for ImQ
and ImR�, we have that for the one-landmark planar
robot case, α = π/4rad. For a two-landmark map, α =
163π/832rad, for a three-landmark model, α = π/6, and
as we add more and more landmarks to the environment,
the angle between the controllable and observable sub-
spaces reduces monotonically, in exactly the same manner
as in the case of the monobot.



Theorem 2 (proof also in [1]) In the case of a nonlinear
planar robot with 3 degrees of freedom, the angle be-
tween the controllable and observable subspaces in the
EKF-SLAM algorithm depends only on the total number

of landmarks used, n, and is given by α = arccos
√

n
n+1 .

VII. C OMPLETE OBSERVABILITY

In Section III we characterized the unobservable sub-
space in SLAM as the subspace spanned by the null eigen-
vectors of the total Fisher information matrix. Further-
more, we showed in Sections IV-VI how the unobservable
part of the state space is precisely a linear combination of
the landmark and robot pose estimates.

In order to gain full observability we propose to extend
the measurement model doing away with the constraint
imposed by full correlation. We present two techniques to
achieve this. One is to let one landmark serve as a fixed
global reference, with its localization uncertainty indepen-
dent of the vehicle pose.

The second proposed technique is the addition of a
fixed external sensor, such as a camera, a GPS, or a com-
pass, that can measure all or part of the vehicle location
state at all times, independent of the landmark estimates.

Both techniques are based essentially on the same prin-
ciple. Full observability requires an uncorrelated mea-
surement Jacobian, or equivalently, a full rank Fisher in-
formation matrix.

A. A fixed global reference

The plant model is left untouched, i.e.,
xk+1 = xk + uk + vk (13)

The measurement model takes now the form[
z
(0)
k

zk

]
=

[ −1 01×n

−1n×1 I

]
x +

[
w

(0)
k

wk

]
(14)

One of the observed landmarks is to be taken as a
global reference at the world origin. No map state is
needed for it. The zero-th superscript in the measurement
vector is used for the consistent indexing of landmarks
and observations with respect to the original model. It can
be easily shown that the observability matrix for this new
model is full rank.

The innovation covariance matrix for the augmented
system SO,k is of size (n + 1) × (n + 1), and its inverse
can be decomposed in

S−1
O,k =




ςO,00 ςO,01 . . . ςO,0n

ςO,01

...
ςO,0n

Ŝ−1
k


 (15)

with ςO,ij the ij-th entry in S−1
O,k, ςO =

[
∑

ςO,1i, . . . ,
∑

ςO,1i], and Ŝ−1
k its submatrix as-

sociated to the landmarks that are under estimation
(excluding the anchor observation).

The k-th element of the Fisher information matrix sum
in (3) is now

JO,k =
[ ∑ ∑

ςO,ij −ςO

−ς�O Ŝ−1
k

]
(16)

Unlike in (4), this form of the Fisher information ma-
trix is full rank. Moreover, from the properties of posi-
tive definite matrices, if JO,k is positive definite, the entire
sum that builds up JO is also positive definite.

Fig. 6 shows the results of applying full observability
to the same monobot model as the one portrayed in Fig. 4.
Note how the steady state (robot pose and landmark lo-
cations) is now unbiased with respect to the initial state
estimates. State covariances are also smaller than those in
Fig. 4.

B. An external sensor

Instead of using one of the landmarks as a global ref-
erence, one could also use a fixed sensor to measure the
position of the robot. For example, by positioning a cam-
era that observes the vehicle at all times. For such cases,
the monobot measurement model may take the form[

z
(0)
k

zk

]
=

[
1 01×n

−1n×1 I

]
x +

[
w

(0)
k

wk

]
(17)

The characteristics of the observability matrix, and the
Fisher information matrix, are exactly the same as for the
previous case. This new model is once more, fully ob-
servable. The results are theoretically equivalent to the
previous case. The choice of one technique over the other
would depend on the availability of such external sensor,
and on its measurement noise covariance characteristics.

The key point here is that we have proved that full ob-
servability, i.e., zero mean state convergence, is indeed
possible in SLAM without the need of an oracle (an ex-
ternal sensor), but by simply anchoring the first observed
landmark to the global reference frame.

C. Planar vehicle

The results from the previous section are easily extensi-
ble to more complicated vehicle models, provided the lin-
earization technique chosen is sufficiently accurate. For
example, the measurement model of a global reference
fixed at the origin, for the nonlinear vehicle from Fig. 5
is

h(0) = −R�t + w(0) (18)
and its corresponding Jacobian is

H(0)
x = [ −R� −Ṙ�t 02×2n ] (19)

The case of the external sensor is even simpler, the cor-
responding equations are

h(0) = t + w(0) (20)

H(0)
x = [ I 02×(2n+1) ] (21)

In both cases, the symbolic manipulation of (19) and
(21) with a commercial algebra package, produced full



1
la

nd
m

ar
k

0 20 40 60 80 100
−3

−2

−1

0

1

2

Iteration

x r,
k−

x r,
k|

k (
m

)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

x k (
m

)

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Iteration

x f,k
−

x f,k
|k

 (
m

)

2
la

nd
m

ar
ks

0 20 40 60 80 100
−3

−2

−1

0

1

2

Iteration

x r,
k−

x r,
k|

k (
m

)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

x k (
m

)

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Iteration

x f,k
−

x f,k
|k

 (
m

)

20
la

nd
m

ar
ks

0 20 40 60 80 100
−3

−2

−1

0

1

2

Iteration

x k (
m

m
)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

x k (
m

)

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Iteration

x f,k
−

x f,k
|k

 (
m

)

Robot and landmark localization Vehicle error Landmark localization error

Fig. 6. Full-covariance fully observable KF SLAM for a
monobot in a sinusoidal path from xr,0|0 = −1m to x100 =
−1m with 100 iterations. The global reference is observed
at the origin.

rank observability matrices. That is, for the planar mo-
bile robot platform used, only one two-dimensional global
reference, or the use of a sensor that can measure the xy

position of the robot, are sufficient to attain full observa-
bility in SLAM.

VIII. C ONCLUSION

We have shown how full correlation of the map model
in KF-SLAM hinders full observability of the state esti-
mate. Partial observability makes the final map dependant
on the initial observations, and does not guarantee conver-
gence to a positive definite covariance matrix. This situ-
ation can easily be remedied either by anchoring the map
to the first landmark observed, or by having an external
sensor that sees the vehicle at all times.
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