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Abstract

We present a reactive controller that is able to displace a legged robot along an
arbitrary trajectory with a high degree of accuracy. We designed the different mod-
ules of our controller so that they can deal with arbitrary leg configurations. In this
way, any leg movement necessary to overcome unexpected terrain irregularities can
be correctly compensated by the controller, while still following the trajectory com-
manded by the user. Since we move the robot as a reaction to leg movements while
stepping, the speed of the robot is automatically adjusted to the terrain profile: the
more obstacles in the terrain, the more leg movements necessary to overcome them,
and the slower the movement of the robot. We prove that, as the terrain becomes
simpler, so does the gait generated by our controller, automatically converging to
the tripod gait when the terrain becomes flat. This is achieved without requiring a
map of the terrain and, thus, our controller can be used by robots with minimum
computational and sensing capabilities. The results we report using different legged
robots and in different environments prove the adequacy of our approach.

Key words: Legged Robots, Gait Generation, Posture Control, Heading Control,
Reactive Control.

1 Introduction

To be used in real applications, a legged
robot must be controllable in a way similar
to that of a wheeled robot, that is, just by
providing the desired advance direction of
the robot. Thus, a walking machine, even if
it is human driven, has to show autonomous
behavior for advancing along a given tra-
jectory.
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Our purpose is to use the legged robots in
abrupt outdoor areas (forests, volcanoes,
mountains, etc.) that are the kind of en-
vironments where legged robots result ad-
vantageous with respect to wheeled ones.
Following a classical approach, the task of
legged-robot walking is confronted as an
optimization process. The gait of the robot
is selected optimizing for instance, the
number of footholds necessary to achieve a
given position [1,2], the size of the stabil-
ity margin [3,4], the desired trajectory and
speed [5], the mobility of the legs [6] or the
energy consumed [7].

The combinatorial complexity of evaluat-
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ing all valid sequences of leg movements to
find the optimal one may be so great as
to prohibit its computational solution in
an acceptable period of time. For this rea-
son, traditional legged robot controllers try
to alleviate this process using heuristics to
evaluate only the most promising sequences
[8,9]. An alternative is to only allow the
robot to operate in a restricted type of ter-
rains: flat, locally planar, etc [5]. In this
way, only specialized planning processes for
each type of terrain have to be developed.
Finally, another possible approximation to
reduce the complexity of the planning pro-
cess consists in identifying sequences of leg
movements that are optimal for a certain
kind of obstacles (steps, ditches,. . . ). These
sequences constitute a kind of toolbox from
which to select the adequate components
once the elements that constitute the en-
vironment are identified [10]. The draw-
back of this approach is that the robot can
only face environments composed by pre-
defined types of obstacles.

Most of the above-mentioned approaches
rely on the assumption that a map of the
environment is either available or built by
the robot. However, natural environments
are highly dynamic and the cost of acquir-
ing and maintaining an accurate map of the
terrain becomes too high. The alternative
is to use a reactive control paradigm [11]. In
this control approach, the sequence of leg
movements is not planned but reactively
generated as a result of the interaction be-
tween the robot and the environment. Re-
active controllers do not use any kind of
terrain map: the robot perceives the terrain
profile by the direct contact of the legs with
its irregularities as they are confronted.

The reactive control approach has been
successfully applied to legged robot con-
trol before, using relatively small robots
with two Degrees of Freedom (DoF) per
leg [12], or three DoF per leg [13,14,15]
or following a biological-based inspiration

to design the reflexes included in the con-
troller [16,17]. However, if we analyze these
works, we observe that they are focused
on straight line locomotion on mainly flat
terrain and, as the confronted terrain be-
comes more irregular, there is almost no
control on the exact trajectory followed by
the robot [18]. This lack of control is only
acceptable when using small robots with
reduced weight and inertial effects. These
robots are only useful for inspection tasks
since they can not carry significant loads.
A controller for larger legged robots should
combine the accurate control provided by
planning-based control approaches with
the efficiency provided by reactive con-
trollers.

In this paper, we develop a reactive con-
troller for legged robots that is able to ac-
curately follow a user provided trajectory
even when walking on very abrupt terrain.
This makes the controller useful for appli-
cations on real environments.

The key issue of our controller is that no
assumption about leg positions is made.
The different modules of the controller are
designed to deal with arbitrary leg config-
urations at any moment. The result is a
controller able to adapt to any leg move-
ment necessary to overcome unforeseen ob-
stacles, while still following the trajectory
designated by the user.

The paper is organized as follows. In sec-
tion 2, we formalize the tasks we confront.
Sections 3 and 4 describe the two subtasks
of our controller: the gait pattern gener-
ation and the heading control. Section 5
presents results of applying the controller
to different simulated robots and some pre-
liminary results with real legged robots. Fi-
nally, section 6 summarizes the work and
presents the conclusions that can be drawn
from it.
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2 Problem Formalization

Legged robot locomotion is achieved by
making successive steps and, at the same
time, by moving legs in contact with the
ground in the appropriate way so that the
robot’s body is displaced along the desired
trajectory. Thus, the problem of legged
robot locomotion can be clearly decom-
posed in two subtasks, that of executing
steps and that of displacing the robot’s
body to follow a given trajectory.

For step execution, we have to determine
both the movements to execute a single
step (including the negotiation with obsta-
cles detected while executing this step) and
the sequence in which steps are issued (the
so-called gait pattern). In this paper, we
assume the existence of pre-defined leg re-
flexes for step execution (see for instance
those described in [19]) and we concentrate
in the gait pattern generation problem.

The movements (and, thus, the time) to ex-
ecute a single step can largely change due
to terrain irregularities. Additionally, the
lack of valid points where to place a leg can
make a step execution to move the leg to
a position far away from the initially in-
tended one. The result of all these factors
is that the gait pattern generator can not
assume legs to be in pre-defined positions.
In other words, the gait pattern generator
must be able to decide which steps must be
executed next from any arbitrary arrange-
ment of legs.

As far as the advance of the robot along
the given trajectory is concerned we as-
sume that the robot’s body should be kept
parallel to the local ground profile (leav-
ing enough clearance with it). In contrast,
the advance of the robot will be controlled
through driving commands specifying the
heading direction of the robot.

Here, we restrict our analysis to heading
commands defining arcs of circumference
(figure 1), from which the case of a straight-
line trajectory can be readily generalized
by taking the limit of the equations that
describe our heading controller when the
turning radio r goes to ∞.
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Fig. 1. The robot following a circular trajec-
tory in its X-Y plane.

Thus, a heading command will specify the
radius (r) of the arc of circumference to be
followed at a given moment, in a way com-
pletely equivalent to how a car is driven by
turning the steering wheel. If the wheel is
turned counter-clockwise, the radius would
be positive, and the turning center of the
robot (o) would be at the left of the instan-
taneous velocity vector of the robot. Con-
trariwise, if the wheel is turned clockwise,
the radius would be negative, and the turn-
ing center of the robot would be at the right
of the velocity vector. Typically, the robot
will move with its longitudinal axis (i.e.,
axis X) tangent to the trajectory and the
turning center will be on the Y axis of the
robot. However, we will consider also the
general case in which there is an angle α
(called the crab angle) from the positive X
axis of the robot to its velocity vector.

Therefore, our controller will receive as in-
put a heading command that is a pair (r, α)
specifying both the turning radius and the
crab angle, from which a turning center o
in the X − Y plane of the robot can be de-
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termined, which is given by:

o =







ox

oy





 = r







− sinα

cosα





 . (1)

The simple case where the turning center
is located on the Y axis of the robot corre-
sponds to α = 0.

The heading command can be changed at
any moment (and, thus, with legs in any
possible position) and the controller must
be able to properly react to these heading
changes. Therefore, the controller must be
able to move the robot along the desired
trajectory even with legs in arbitrary posi-
tions.

So, to move on abrupt terrain following tra-
jectories with arbitrary changes, both pro-
cesses, that of gait pattern generation and
that of heading control, have to be able to
deal with arbitrary configurations of legs.
In this way, these two subtasks become de-
coupled and they can be confronted sepa-
rately. Next, we describe how we achieved
these two subtasks in our controller.

3 Gait Pattern Generation

Periodic gaits can be obtained from very
simple control rules. However, periodic
gaits are only feasible for walking along
regular trajectories (i.e., straight lines,
fixed predefined arcs of circumference,
etc). Since an arbitrary curve can be ap-
proximated by a sequence of arcs of cir-
cumference, a cyclic gait can be gradually
modified to follow an irregular trajectory,
provided direction changes are sufficiently
smooth. However, when sharp direction
changes are required (as, for example, when
the heading of the robot is controlled by
a human driver), the gradual adaptation

of the gait cycle may become unfeasible,
and a transition phase between one cyclic
gait to the next may be necessary. In an
extreme case in which sudden changes in
the heading direction occur too often, the
gait may never completely converge to a
cyclic gait and it will become a free gait.

A similar problem appears with irregular
terrain, where not all points of the ground
are acceptable as foothold. In this case, a
foot whose intended landing position turns
out unreachable, or is not valid to support
the load, will need to be landed in a dif-
ferent place, giving rise to gait perturba-
tions and arbitrary leg configurations. So,
for two of the most challenging problems
in gait generation, omni-directional walk-
ing and adaptation to difficult terrain, the
generation of a free gait is necessary.

The gait generation mechanism we next
describe is reactive and, when required, it
produces a free gait. A nice property of
the mechanism is that, under certain condi-
tions (i.e., regular terrain), it automatically
generates a periodic gait. In other words,
the gait generated by the robot emerges
from the robot-terrain interaction instead
of being specifically intended.

3.1 Requirements for Gait Generation

A gait generation system must ensure the
stability of the robot and its ability to keep
on advancing in next time slices.

To ensure stability, it must be granted that
a sufficient set of legs stay on the ground
supporting the body at any time. In the
case of most six-legged robots, this require-
ment can be satisfied by observing the fol-
lowing rule:

Rule 1 Never have two neighboring legs

raised from the ground at the same time.
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Two legs are neighbors when they appear
one next to the other in a closed circuit
around the robot (figure 2).

21

3 4

5 6

Fig. 2. Leg numbering and clockwise circuit.

In this work, we will assume rule 1 is a
sufficient condition for stability. The ful-
fillment of this rule assures that, at any
time, the robot will be supported by at
least three non-neighboring legs, forming a
triangle that we assume will always con-
tain the vertical projection of the Center of
Gravity, CoG This assumption might not
hold in robots with very particular leg con-
figurations or when the robot is too tilt.
In any case, the violation of rule 1, how-
ever, will result in a situation in which two
neighboring legs are out of the ground at
the same time, most probably leaving the
robot in a very unstable situation.

According to rule 1, a leg can be raised to
make a step only while its two neighboring
legs are in contact with the ground. How-
ever, rule 1 by itself is not enough to deter-
mine a gait. It leaves undetermined which
one of a pair of neighboring legs should ac-
tually perform a step when rule 1 allows
both of them to be raised. To deal with
these situations, we have to assign priori-
ties to the legs: the leg with a higher prior-
ity than its two neighboring legs would ex-
ecute the step in the first place (provided
that rule 1 is already fulfilled). Gait gen-
eration systems differ in the way in which
they determine the priorities to step.

In some cases (specially in controllers based
on central pattern generators [20,21,22])
priorities to step are based on time: legs
that executed a step more recently have
less priority to step again. In this way, the

execution of steps of neighboring legs is al-
ternated. This approach only works when
walking on flat terrain and on a straight
line since terrain irregularities or heading
changes might force a given leg to execute
a step twice in a row.

Other controllers [23,24] assign the prior-
ities to step attending to the position of
each foot: legs closer to the backward limit
of the corresponding workspace have more
priority. In this way, irregularities in the
foothold positioning automatically result
in alterations of the gait. The problem here
is how to ensure that the alterations in
the gait are properly compensated so that
the robot is still able to produce a proper
gait when the terrain irregularities are over-
come.

In next sections, we analyze the gait that
will be obtained from different priority
assignments, independently of how these
priorities are assigned. Using this general
analysis, we introduce a gait pattern gen-
eration system with good properties such
as the automatic convergence to tripod
gait when walking on flat terrain.

3.2 General Analysis of Gait Pattern

Generators

For two adjacent legs a and b, we will denote
as

a < b

when leg b has more priority to step than
leg a (i.e., it will execute a step earlier than
leg a).

We define the gait state of a six-legged robot
at a given time as the list of the six re-
lationships as the ones above that can be
established between neighboring legs. We
will represent the gait state as a row of six
symbols < or >, corresponding to the re-
lationships between priorities of neighbors

5



taken in a clockwise circuit beginning in leg
1 taking the leg numbering of figure 2. The
resulting order is: 1,2,4,6,5,3. Thus, for ex-
ample, the state

<><><>

represents the following relationships be-
tween leg priorities

1 < 2 > 4 < 6 > 5 < 3 > 1.

The gait state is important because it de-
termines the number of legs that can start
a protraction at a given time: only legs that
appear between a <> pair are allowed to
protract (note that, due to the cyclicity of
the state list, leg 1 can protract when the
state begins with > and ends with <). Ac-
cording to this we can distinguish four types

of gait states:

• A- Only one leg can protract.
• B- Two legs sharing a common neighbor

can protract.
• C- Two legs not sharing a common

neighbor can protract.
• D- Three legs can protract.

An important feature of the gait state is
what we call the clockwise circularity num-

ber (CCN), defined as the number of < re-
lationships in the gait state.

The CCN can take any value between 1
and 5. Values 0 and 6, corresponding to
the sequences >>>>>> and <<<<<<,
respectively, are inconsistent. The CCN
defines a partition in the set of gait states.
Table 1 shows all possible states, mod-
ulo cyclic permutations, classified by their
CCN and gait state type.

It is well established [25] that the so-called
wave gaits often observed in legged ani-
mals [26], constitute the most efficient and
stable way to walk on a flat surface and,
thus, our controller should be able to pro-
duce them. Wave gaits are characterized by

Gait State Type

CCN A B C D

1 <>>>>>

2 <<>>>> <><>>> <>><>>

3 <<<>>> <<><>> <<>><> <><><>

4 <<<<>> <<<><> <<><<>

5 <<<<<>

Table 1
Gait states (modulo cyclic permutations) clas-
sified by type and CCN

a rear to front propagation of stepping ac-
tions forming two waves, one at each side
of the body with the same frequency and in
opposition of phase. Steps of adjacent legs
are alternated and, thus, assuming that pri-
orities to perform a step only change when
a step is executed, after executing a step
with leg a the following transition is per-
formed in the gait state

. . . < a > . . .⇒ . . . > a < . . . , (2)

The duty factor defined as the fraction of
the gait period that a leg is in contact with
the ground and generally denoted as β is
used to classify the wave gaits. For each
value of the duty factor between 1 and 1/2
we get a particular gait in the family of the
wave gaits. Figure 3 shows the temporal
representation for the case of β = 5/6, usu-
ally known as slow wave gait. In the figure,
thick lines represent the protraction of each
leg. Observe that the steps of rear legs are
consistently delayed so that, as required by
the slow wave gait, only one leg executes a
step at a time. Again assuming that prior-
ities to perform a step only change after a
step is executed, we can compute the gait
states for the wave gait. The right extreme
of figure 3 shows the gait states resulting
from this computation. The symbols on top
of leg 2 correspond to its relationship with
leg 1. From the figure, we see that, in this
case, the CCN is 3. Figure 4 shows all pos-
sible transitions between gait states with
CCN = 3 in all the cases. The labels in the
arcs indicate the number of legs that have
to execute a step simultaneously to pro-
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Fig. 3. Slow wave gait.
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Fig. 4. Possible transitions between states
with CCN = 3. The letters in the graph nodes
represent the gait state type.

duce the corresponding transition. Analyz-
ing the gait states at the right of figure 3,
we can see that, as indicated in the bottom
line of the figure, when the wave gait is gen-
erated, the robot follows a sequence of gait
states with CCN = 3 and gait state types
ABC . . . ABC. The same sequence is ob-
tained for all wave gaits with duty factors
between 1 and 3/4.

For the special case of β = 3/4, in which
legs 1,6 and 2,5 protract simultaneously
and leg 3 and 4 step alone, the state se-
quence reduces to BC . . . BC.

A similar analysis for β between 3/4 and
1/2, shows that the corresponding sequence
in this case is BCD . . . BCD.

In the extreme case of the tripod gait with
β = 1/2, in which three legs (1,4,5 and
2,3,6) protract at the same time, the se-
quence collapses to D . . .D.

From this analysis, we conclude that all
wave gaits have a CCN = 3. In other
words, the complete family of wave gaits
can be obtained from a proper initial gait

state with CCN = 3 by alternating steps
of adjacent legs, and with the appropriate
delays in the steps of the rear legs. Since in
wave gaits, neighboring legs always alter-
nate their steps and since the alternation
of steps of neighboring legs keep the CCN
constant (see equation 2), only an initial-
ization of legs with a CCN = 3 would
allow the robot to execute a wave gait.
With a CCN different from 3 a wave gait
can only be achieved if the basic rules of
step execution (alternation between steps
of neighboring legs, rear to front step exe-
cution, etc) are somehow violated.

The transitions of any wave gait is a sub-
graph of that presented in figure 4. Thus,
we can smoothly change from one wave gait
to another by simply taking the desired
branch from a node common to the two
subgraphs of the corresponding wave gaits.

Even more, it is possible to show that, inde-
pendently of the initial assignment of step
priorities and whether or not legs are ini-
tially in contact with the ground, under the
following conditions

(1) the robot is in a gait state with
CCN = 3

(2) legs on the air try to recover contact
with ground as fast as possible,

(3) all legs spend the same amount of time
in the transfer phase,

(4) legs start their step as soon as possi-
ble,

the gait of the robot will soon converge to
the tripod gait (an alternation of gait states
<><><> and ><><><). Observe that
all those conditions are likely to be hold
when the robot walks on flat terrain. To
prove this property, we only have to ana-
lyze the different gait state sequences from
all the possible situations with CCN = 3.
Table 2 shows this analysis for a gait state
with CCN = 3 and gait type B and with
one leg initially not in contact with the
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T Gait State Type Type CCN Events

1 a < b < c > d < e > f > a B 3 Initial Gait State

• • • • • ◦ •

2 a < b < c > d < e > f > a B 3 c Starts a step

• • ◦ • • ◦ •

3 a < b < c > d < e > f > a B 3 f Contacts ground

• • ◦ • • • •

4 a < b < c > d < e > f > a B 3 e Starts a step

• • ◦ • ◦ • •

5 a < b > c < d < e > f > a C 3 c Contacts ground

• • • • ◦ • •

6 a < b > c < d < e > f > a C 3 b Starts a step

• ◦ • • ◦ • •

7 a < b > c < d > e < f > a D 3 e Contacts ground

• ◦ • • • • •

8 a < b > c < d > e < f > a D 3 d, f Start step

• ◦ • ◦ • ◦ •

9 a > b < c < d > e < f > a B 3 b Contacts ground

• • • ◦ • ◦ •

10 a > b < c > d < e > f < a D 3 d, f Contact ground

• • • • • • •

11 a > b < c > d < e > f < a D 3 a, c, e Start step

◦ • ◦ • ◦ • ◦

12 a < b > c < d > e < f > a D 3 a, c, e Contact ground

• • • • • • •

13 a < b > c < d > e < f > a D 3 b, d, f Start step

• ◦ • ◦ • ◦ •

14 a > b < c > d < e > f < a D 3 b, d, f Contact ground

• • • • • • •

15 a > b < c > d < e > f < a D 3 a, c, e Start step

◦ • ◦ • ◦ • ◦

Table 2
Gait evolution toward the tripod gait. We use the symbol • for legs touching the ground and ◦ for
legs in the air.

ground. As it can be seen, the tripod gait
is readily achieved. A similar reasoning can
be done for all other initial situations show-
ing that, in all the cases, the tripod gait is
achieved.

So, it is clear that the preferred gait state
at any moment is one with CCN = 3. In
other words, independently of how we as-
sign priorities to step, we must ensure that
they conform a gait state with CCN = 3.

3.3 The Gait Generation Mechanism

In our controller, we determine the gait
state in the following way. First, if a leg a is
not in contact with the ground the subse-
quence < a > is included in the gait state.
Next, if neighbouring legs a and b are both
on the ground and leg a is more advanced

than leg b, then the sequence a < b is in-
cluded in the gait state meaning that leg b
must step first to avoid it to reach the back-
ward limit of its workspace, blocking the
robot. When the robot is moving along a
straight line, the advance position for each
feet is readily obtained. However, in a gen-
eral case, we have to measure the advance
position of each leg w.r.t. the current turn-
ing center or, equivalently, w.r.t. the arc
of circumference that, at a given moment,
defines the trajectory. To evaluate this ad-
vance position, we compute the angle δ be-
tween the projection in the X −Y plane of
the current feet positions and the center of
the corresponding workspace. This angle is
measured from the current turning center
and its sign is set attending to the direc-
tion along the trajectory we want the robot
to move. If for legs a and b we have that
δa < δb, then a < b is introduced in the gait
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state. In the case of ties, we favor legs 1, 4,
and 5.

The priority assignment using the above
simple rules can lead to a gait state with
CCN different from 3. Consequently, we
have to adjust the CCN . We achieve this
with the following CCN adjustment proce-
dure: we increase the CCN (if it is below
3) by applying the conversion rule

. . . >>< . . .⇒ . . . ><< . . .

and, if the initial CCN is above 3, we use
the rule

. . . ><< . . .⇒ . . . >>< . . .

Using table 1, we can see that these adjust-
ment rules can always be applied as many
times as necessary transforming any gait
state with a CCN different from 3 into one
with CCN equal to 3, but without mod-
ifying the gait state type (the columns in
table 1).

Observe that, when we set the gait state,
we favor the steps of those legs that are
in a more critical situation (i.e., near its
workspace limits) and, since the CCN ad-
justment never affects these more critical
legs (it never modifies subsequences . . . <>
. . . in the gait state), the most urgent steps
are always issued first.

The gait state determination should be
applied at every time slice. In normal cir-
cumstances, we will observe an alternation
between steps of neighboring legs, but if a
leg has to be landed in a very unusual place
(in a more backward position that one of
its neighbors) then we will observe an au-
tomatic alteration in the gait. In the same
way, if a new heading command is issued
the gait controller automatically changes
the gait state (and, thus, the sequence of
issued steps) since changes in the turning
center result in changes in the δ’s used to

determine the priorities to step. In any
case, our controller retains the property
that, if flat terrain is eventually achieved,
the tripod gait will automatically emerge.

4 Heading Control

Up to this point we have described the
way to determine when legs start a step.
The problem now is how to coordinate the
movements performed by legs in support
and legs in return phase so that the robot
is moved along the desired trajectory. This
is essentially the problem of body and leg
movement coordination, which has been
recognized as a challenging problem in
legged robot control [27], especially when
terrain irregularities can force legs in re-
turn phase to be moved to unforeseen posi-
tions. Next, we propose a general, though
simple, solution to this problem.

To drive the robot along the commanded
trajectory, all legs in support phase must
move along arcs of circumference centered
at the turning center o. The landing posi-
tion after a step (or Anterior Extreme Po-
sition, AEP) allows to choose the position
of this arc for each leg.

The AEP could be determined according
to multiple criteria. We adopt the one in [5]
which consists in making each leg reach the
central position of its workspace in the mid-
dle of its expected travel between consecu-
tive steps.

Formally, if ci = (cix, c
i
y, c

i
z) is the central

position of the workspace of leg i, the in-
tended AEP for this leg is

AEP i = Mr,α(γ) ci, (3)

with

Mr,α(γ) = Rz(α)Ty(r)Rz(γ)

Ty(−r)Rz(−α),
(4)
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and where Ty(·) is a translation along the
Y axis of the reference frame of the body
and Rz(·) a rotation about its Z axis, and
γ is half the step size. The matrixMr,α cor-
responds to a rotation of angle γ around
the current turning center o. Note that the
Z component of the AEP is given only as a
reference, since in any case, it is completely
determined by the ground elevation at this
point.

This procedure provides only an intended
AEP since actually placing the foot at it
may be forbidden by terrain conditions.
In this case, a different point should be
searched for in the vicinity of the intended
AEP by the leg reflexes we assume to be
present in the controller.

No matter whether a foot is placed in
the desired AEP or not, all feet in con-
tact with the ground have to be moved
in a coordinated way: without modifying
the distances between them. Thus, posi-
tions of feet P = {pi | i ∈ [1, n]} (with
pi = (pi

x, p
i
y, p

i
z) and n the number of legs

of the robot) can be moved to positions qi

using a spatial rigid transformation

qi(Ω) = qi(x, y, z, φ, θ, ψ) =

Tz(z)Ty(y)Tx(x)Rz(φ)Ry(θ)Rx(ψ) pi,

(5)

where Tx(·), Ty(·), Tz(·), Rx(·), Ry(·) and
Rz(·) are translations along, and rotations
about, the corresponding axes of the refer-
ence frame of the body. The robot’s body
can be moved in six DoF just using the
appropriate set of parameters Ω. Transla-
tions along Z and rotations aboutX and Y
have to be used to keep the robot parallel
to the ground profile. Movements along the
trajectory defined in the X − Y plane are
performed using translations along X and
Y and rotations about Z. The movements
in these three dimensions are linked into a
single DoF: the displacement of the robot
along the arc of circumference traced from

the current turning center. The question
is to find the best position for the robot’s
body along that arc for an arbitrary set of
leg positions. We define a criterion to eval-
uate all possible body positions on the tra-
jectory taking into account leg positions.
Then, the robot has to be moved to the
point that optimizes the criterion at every
moment.

In [19], we introduced a way to evaluate the
position of the robot’s body according to
the distance between feet and the central
positions of leg workspaces (that are at a
fixed position w.r.t. the robot’s body). The
minimization of this criterion increases the
(average) mobility of the robot since legs
have maximum mobility when they are as
far away as possible from the limits of their
workspaces or, what is the same, in the cen-
ter of their workspaces.

Formally, if Q = {qi | i ∈ [1, n]}, is the set
of legs positions w.r.t. the body and C =
{ci | i ∈ [1, n]} represents the center of the
leg workspaces, then

EQ,C =
n

∑

i=1

‖qi − ci‖2, (6)

is the quadratic error between Q and C.

Using equation 5, we can find the compo-
nents of the gradient vector of the quadratic
error function in posture P (i.e., Q with
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Ω = 0):

∂EQ,C

∂x

∣

∣

∣

∣

∣

Ω=0

= 2
n

∑

i=1

(pi
x − cix)

∂EQ,C

∂y

∣

∣

∣

∣

∣

Ω=0

= 2
n

∑

i=1

(pi
y − ciy)

∂EQ,C

∂z

∣

∣

∣

∣

∣

Ω=0

= 2
n

∑

i=1

(pi
z − ciz)

∂EQ,C

∂ψ

∣

∣

∣

∣

∣

Ω=0

= 2
n

∑

i=1

(ciyp
i
z − cizp

i
y)

∂EQ,C

∂θ

∣

∣

∣

∣

∣

Ω=0

= 2
n

∑

i=1

(cizp
i
x − cixp

i
z)

∂EQ,C

∂φ

∣

∣

∣

∣

∣

Ω=0

= 2
n

∑

i=1

(cixp
i
y − ciyp

i
x)

(7)

For the optimal posture, the six gradient
components of equation 7 must vanish. An
iterative gradient-descent process can be
used to reach this optimal posture (i.e.,
a relative minimum of the quadratic error
function).

The posture control mechanism just de-
scribed keeps the robot body parallel to
the terrain below the robot (as desired) but
provides a too coarse way to move the body
as a reaction to leg movements: there is no
explicit attempt to follow a specific trajec-
tory with the body, it just follows the legs
wherever they move. In that framework,
heading control can only be done through
the selection of landing positions for the
different steps, and the trajectory becomes
subject to disturbances caused by modifi-
cations in the actual footholds imposed by
terrain conditions and other perturbing ef-
fects such as the exact order at which steps
are performed. When following a given tra-
jectory, the movement of the body on its
X − Y plane is restricted by the current
heading command and, so, what we have
to use in this case is a restricted form of
the posture optimization mechanism just
described.

As mentioned, to propel the body along a
given trajectory, legs in support phase must
be moved along arcs of circumference cen-
tered at the current turning center. The re-
lation between the positions of leg i before
(pi) and after (qi) a rotation around the
turning center can be expressed as

qi(γ) = Mr,α(γ)pi, (8)

where Mr,α(γ) is the rigid transformation
defined in equation 4.

Using equations 6 and 8, we can find the
derivative of the quadratic error function
in posture P (i.e., Q with γ = 0):

∂EQ,C

∂γ

∣

∣

∣

∣

∣

γ=0

=2r cosα
n

∑

i=1

(pi
x − cix)+

+ 2r sinα
n

∑

i=1

(pi
y − ciy)+

+ 2
n

∑

i=1

(cixp
i
y − ciyp

i
x).

(9)

This gradient factor replaces the gradient
components w.r.t. x, y, and φ of equation 7.
Therefore, the minimum EQ,C value on the
trajectory is found by making the deriva-
tives w.r.t. γ, z, ψ, and θ decrease to zero.
For any arbitrary disposition of legs, we can
compute the value of these derivatives and,
attending to their sign, apply a small rigid
transformation (Mr,α, Tz, Rx, and Ry re-
spectively) to all legs in support phase un-
til the corresponding derivative vanishes.
At this point the robot is at the best po-
sition attainable along the trajectory for a
given set of leg positions. As mentioned,
translations along Z and rotations around
X and Y keep the robot parallel to the lo-
cal ground profile and movements along γ
smoothly displace the robot along the tra-
jectory.

The fact that the proposed posture control
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Fig. 5. The Genghis II robot.

mechanism is a particularization of a more
general one can be used to get out of pos-
sible deadlock situations. A deadlock can
appear when terrain conditions force an
excessive displacement of footholds from
the intended AEP’s, so that some legs
reach their workspace limit when in sup-
port phase. In this case, the only way to
keep on advancing is by altering the tra-
jectory in some way. The application of the
trajectory-free posture optimization mech-
anism summarized in equation 7 provides
a good choice to produce such a trajectory
modification, since its effect will be an in-
crease in the global mobility of the robot.

5 Results

To obtain results with a real robot, we
used a Genghis II robot [28] (see figure 5).
Genghis II’s body is about 40 cm long and
15 cm wide. Each leg is approximately
10 cm long and has two DOF: a rotation
around a vertical axis fixed to the body
and another around a non-fixed horizontal
axis. When legs are completely vertical,
body clearance is about 8 cm. The robot
is provided with force sensors at each joint
(actually, it is the current used by each
motor that is measured), contact/force
sensors all along the lower part of the body,
two frontal whiskers to detect contacts,
one pitch inclinometer, four infrared sen-
sors, and a set of five pyro sensors. Genghis
is adequate for testing the performance of
the gait pattern generation module of the

controller (described in section 3) since
this module is just related with the se-
quence at which step are execute and not
with the exact movements of each leg to
perform those steps nor with the particular
structure of the legs. We will later see that
this is not the case for the heading control
module (described in section 4).

The controller is programmed in PCBL [29]
a modification of the BL programming lan-
guage [30] that was developed to facilitate
the implementation of behavior-based con-
trollers according to the main guidelines of
the subsumption architecture.

5.1 Gait Generation Test

Tests of the controller including the move-
ment generation module showed that
the average speed of Genghis on smooth
ground is about 5cm/s, progressively de-
creasing as the difficulty of the terrain is
increased. The limiting factor for speed is
the slow movement imposed on leg descent
in order to reliably detect ground contacts
with the noisy force sensors of the robot’s
motors.

Using our controller, Genghis is able to
climb up and down vertical steps of more
than 10 cm, which is about the leg length
and 2 cm more than the maximum body-
ground clearance.

Tests in general terrain with all kinds of ir-
regularities showed the ability of the robot
to negotiate virtually all kind of difficulties,
getting stuck only on some rare occasions
in which a foot gets trapped in a narrow
cavity.

Figure 6-A shows the achieved advance due
to the first steps of the robot when using
a simple controller that generates the tri-
pod gait. As mentioned, this is the opti-
mal gait when walking on flat terrain. This
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Fig. 6. Advance speed at the first steps using the tripod gait (A), using our gait generation
mechanism (B), and using the same controller but without the CNN adjustment mechanism
(C). The dashed lines represent the average speed.

controller waits until all legs are in con-
tact with the ground and then it issues al-
ternately steps with legs (1, 4, 5) and with
legs (2, 3, 6). The result shown in the fig-
ure corresponds to a single execution de-
parting from a random initial posture. As
it can be seen, every time a tripod is is-
sued, the robot advances 50 units and, in
average (the dashed line in the figure), the
robot advances approximately 8 units per
time slice.

Figure 6-B, shows the results obtained in a
similar experiment but using our gait gen-
eration mechanism. We can see that, after
a few time slices, the result is that of the
tripod gait controller.

To appreciate the effect of theCCN adjust-
ment mechanism, we show the first steps
issued by our gait generation controller but
without the CCN adjustment. Figure 6-
C, shows the results obtained by departing
from an initial gait state withCCN = 2. In
this case, the robot can not issue more than
2 steps simultaneously and, consequently,
the average speed decreases.

To perform long series of experiments in
order to get statistically significant results,
we implemented different gait generation
mechanisms using a simple 2D simulation
of the Genghis robot. In this simulation, the
execution of a step consists of two phases:

one to raise and advance the leg and an-
other to descend the leg until it touches the
ground. The first phase of the step takes
one time slice and the second one takes five
time slices. The simulated robot is initial-
ized with all legs in contact with the ground
but in a random advance position.

Figure 7-A, shows the comparison of the
average speed of the three controllers (the
one performing the tripod gait, our con-
troller, and our controller but without the
CCN adjustment mechanism) departing
from 100 initial postures generated at ran-
dom and running for 500 time slices. Our
gait generation mechanism performs at the
same level as the tripod one but only when
the CCN adjustment is performed.

The advantage of our gait generation mech-
anism over the one that implements the tri-
pod gait is clear when walking over irreg-
ular surfaces. In this case, each leg takes
a variable time to find a foothold and the
tripod gait is not always the optimal one.
The tripod gait controller must wait until
all legs are in contact with the ground be-
fore starting a new tripod. In contrast, our
controller issues a step with a given leg as
soon as its two neighboring legs reach the
ground. Consequently, there are fewer de-
lays in the beginning of the steps and the
average speed is increased. The magnitude
of this increment depends on the particular
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Fig. 7. Average speed when walking on flat terrain (A) and walking on abrupt terrain (B), with
different gait generation mechanisms.

terrain configuration but, in any case, the
performance of our gait generation mecha-
nism is never below that of the tripod gait
controller. Figure 7-B, shows the average
speed using the two controllers departing
form 100 randomly generated initial pos-
tures and executing each controller during
500 time slices. The terrain profile for each
experiment is generated at random.

5.2 Heading Control Test

In the Genghis robot, the heading can be
approximately controlled by setting oppo-
site strokes on legs of both sides. In our
experiments, the robot turns around at a
speed of about 8◦/s. Trajectories with fre-
quent heading changes could be executed
without any problem. The controller also
provided successful results when we use it
in a simple navigation task (to avoid colli-
sions with walls and to scape from cliffs).

The Genghis robot only has two DoF per
leg and, to correctly follow an arbitrary tra-
jectory, the robot must have 3 independent
DoF per leg. To test the full controller as
presented in this paper, we used a simu-
lator of the Argos robot, currently in de-

Fig. 8. The Argos robot and its simulation.

velopment in our institute (see figure 8).
Argos will have six legs, each with three
independent DoF. Its total length will be
about 1 m and its weight about 50 Kg in-
cluding batteries. It will be provided with
force and contact sensors in each leg. In
our simulator [31], we can define different
ground shapes and robots with 3 DoF per
leg, with variable number of legs, and even
with different leg arrangements. The simu-
lation of the Argos robot can be seen in fig-
ure 8. In all the cases, the robot has no in-
formation about the terrain configuration
and can only sense it via the contact sen-
sors of the legs (as it would occur in a real
application).

Figure 9 shows Argos executing different
heading commands. First (snapshot A) it
follows a straight trajectory, then (snap-
shots B and C) it executes a turn in place,
next (snapshot D) it walks straight ahead
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Fig. 9. A sequence of snapshots of the simulated Argos robot executing different heading com-
mands.
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Fig. 10. Argos performing a turn to the left while walking on abrupt terrain.
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Fig. 11. Right picture show the trace followed
by the spider-like robot shown on the left re-
ceiving heading commands generated at ran-
dom.

again, next (snapshots E to F ) it makes
a turn with a radius different from 0, fi-
nally (snapshotH) the robot returns to the
straight ahead advance. Our controller is
able to execute any heading change with-
out any problem and with smooth transi-
tions when new turning centers are given.

The overall performance of the controller
can be seen in the sequence of snapshots of
figure 10 where the simulated Argos robot
is walking over irregular terrain while exe-
cuting a turn to the left: despite the terrain
is very abrupt the robot traverses it with-
out any problem.

In our development, we have taken few as-
sumptions about the structure of the robot
and, consequently, the resulting controller
can be applied to different robots with mi-
nor parameter adjustment. To show this
point, we simulated a spider-like six-legged
robot using the same controller we applied
to the Argos robot. Figure 11 shows the
trace followed by this spider-like robot re-
ceiving heading commands generated at
random (the circles mark the moment new
heading commands are issued). The figure
illustrates that the robot is able to per-
form very sharp direction changes, as well
as smooth ones, without problems.

To test the generality of our controller, we
are currently implementing it on a Lauron
III six-legged robot we recently acquired
(see figure 12). We had to re-implement the
controller using the MCA2 framework [32]

Fig. 12. The Lauron III six-legged robot de-
signed and built by the FZI group at the Uni-
versity of Karlsruhe.

but the implementation only required of
some parameter adjustment leaving the
entire controller structure unchanged. The
main issue was to implement a discrete
version of the posture control introduced
in section 4. In a real robot the smooth
displacements of legs in contact with the
ground have to be approximated using dis-
crete displacements, trying to avoid leg slip
as much as possible. The performance of
the heading control mechanism introduced
in this paper relies on this approximation
to be accurate enough. The results we ob-
tained so far [33] show that using Lauron,
the leg slip is less than 1 cm, which is small
enough to be compensated by the mechan-
ical structure of the legs. Thanks to this
accuracy the results with Lauron do not
significantly differ from those we obtained
with the simulation.

6 Conclusions

In this paper, we have presented a reactive
controller for legged robots. The idea we
followed is to decouple the control of legs
when in return phase from that of legs when
in support phase and to confront both sub-
problems assuming no special leg configu-
rations.

For the first subproblem, we have intro-
duced a gait generation mechanism that
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guarantees the stability of the robot at any
time and that produces an efficient gait
pattern (always in accordance with the
terrain conditions). For instance, we have
proved that our gait generation mecha-
nism spontaneously produces the tripod
gait when walking on flat terrain.

For the second subproblem we have used
a particularization of a posture control in-
troduced in [19]. This new mechanism tries
to minimize at any time the distance be-
tween legs and the centers of their respec-
tive workspaces, but taking into account
the restrictions in the robot’s movements
imposed by the trajectory to be followed.

Since the two subtasks are solved for any
possible configuration of legs, the resulting
controller is able to efficiently react to any
leg movement necessary to adapt to terrain
irregularities.

The presented controller has been designed
in accordance with the main ideas of the re-
active control paradigm and, thus, it does
not use any map of the environment. The
fact that our controller has good perfor-
mance even if unforeseen obstacles are en-
countered or if the environment is changed
on-line supports the hypothesis that pro-
cesses for which high level planning-based
methods were supposed to be needed can
actually be solved using much simpler
tools.

However, a remarkable difference w.r.t.
other reactive controllers is that ours is
able to follow the desired trajectory with a
high degree of accuracy, even when walk-
ing on very abrupt terrain. In this way, we
achieve the good performance of delibera-
tive controllers but with the low computa-
tional cost of reactive ones. This makes our
controller adequate for real applications
where the robot has to move in unknown
dynamic environments.

Of course, if the robot is expected to move
in a static environment and a detailed map
of that environment is available (which is
not the case for natural environments), a
classical planning-based controller would
result better than any possible reactive
controller, including ours.

Finally, our controller has been developed
under very general assumptions about the
robot and, thus, it can be applied to differ-
ent legged robots. To validate this, we have
performed tests with the Genghis robot
and with other simulated and real robot
structures, with good results in all cases,
as reported in this paper. Hopefully, others
could use our results to take advantage of
the superior capabilities of legged robots
with respect to wheeled ones, but with-
out having to deal with the complexity of
legged robot locomotion.
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