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Abstract

We present in this article the model function-described graph (FDG), which is a type of compact representation of a set of
attributed graphs (AGs) that borrow from random graphs the capability of probabilistic modelling of structural and attribute
information. We de4ne the FDGs, their features and two distance measures between AGs (unclassi4ed patterns) and FDGs
(models or classes) and we also explain an e6cient matching algorithm. Two applications of FDGs are presented: in the
former, FDGs are used for modelling and matching 3D-objects described by multiple views, whereas in the latter, they are
used for representing and recognising human faces, described also by several views.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

A function-described graph (FDG) is a model that con-
tains probabilistic and structural descriptions of a set of
attributed graphs (AGs) to maintain, to the most part, the
local features of the AGs that belong to the set and other
AGs that are “near” them, as well as to allow the rejection
of the AGs that do not belong to it or are “far” from them
[1]. Let us consider, as an example, the 3D-object modelling
and recognition problem. Fig. 1 shows schematically the
FDG learning and classi4cation processes. The basic idea is
that only a single FDG is synthesised from the graphs that
represent several views of a 3D-object. Therefore, in the
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recognition process, only one comparison is needed
between each model represented by an FDG and the
unclassi4ed object (view of a 3D-object) represented by a
graph.

The FDG techniques have been applied on the project “ac-
tive vision system with automatic learning capacity for in-
dustrial applications” in which an autonomous mobile robot
has been developed [2].

Random graphs [3–5] are one of the earliest approaches
used to represent a set of AGs. In this approach, AGs are
extended to include probabilistic information. Wong et al.
4rst de4ned the general random graphs (GRGs) for mod-
elling classes of patterns described by AGs through a joint
probability space of random variables ranging over pattern
primitives (vertices) and relation (arcs). Due to the com-
putational intractability of GRGs, caused by the di6culty
in estimating and handling the high-order joint probabil-
ity distribution, 4rst-order random graphs (FORGs) were
proposed for real applications [4]. Strong simpli4cations
were made in FORGs to allow the use of random graphs in
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Fig. 1. FDG learning and classi4cation processes applied to the 3D-object recognition.

practical cases; more precisely, the following assumptions
were made [4]:

(1) the random vertices are mutually independent;
(2) given values for the random vertices, the random arcs

are independent;
(3) the arcs are independent of the vertices except for the

vertices that they connect.

FDGs can be seen as a type of simpli4cation of the GRGs,
diGerent from FORGs, in which some structural constraints
are recorded. A drawback of FORGs is that the strong as-
sumptions about the statistical independence of nodes and
arcs may lead to an excessive generalisation of the sample
graphs when synthesising an FORG. To alleviate this weak-
ness, a qualitative information of the joint probabilities of
two nodes is incorporated into FDGs, thus improving the
representional power of FORGs with a negligible increase
of computational cost.

Other diGerent approaches that de4ne a model to repre-
sent a set of AGs are mentioned here. Winston [6] presented
one of the earliest works in which a set of examples was
used to learn the structures that represent the class. Later on,
Stein [7] presented a system to identify the instances of the
objects in the image. Other authors presented systems ap-
plied as well to the problem of 3D-object recognition from
single-view graphs: for instance, the interesting approach to
graph matching and classi4cation [8], in which, from a train-
ing set of AGs corresponding to several classes, a single
model graph called rulegraph is learnt (using evidence-based
systems methods) which describes the full training set. In
this rulegraph, vertices do not represent object parts but
rules which depict attribute bounds and evidence for dif-
ferent classes. A new AG is then classi4ed by rulegraph
matching (subgraph isomorphism), with the advantage of a
reduced search space, since the number of vertices in the
rulegraph can be much lower than the number of nodes in
the original AGs. And also, Kim and Kak [9] represented a

3D-object as an assembly of several parts, each represented
as a node in a graph carrying information characterising
the part. Sossa [10] indexes a library of graph-based mod-
els using the coe6cients derived from the Laplacian matrix
that describes the graph. However, the graphs are not at-
tributed and the system has been shown to work only with
simplistic objects comprising planar surfaces. Shapiro and
Haralick [11] organise models in a tree according to an in-
termodel distance metric. In the approach by Messmer and
Bunke [12–14], the model graphs are pre-processed gener-
ating a symbolic data structure, called network of models.
This network is a compact representation of the models in
the sense that multiple occurrences of the same sub-graph
are represented only once. Consequently, such sub-graphs
will be matched only once with the input and the computa-
tional eGort will be reduced. A recent approach is the gen-
eralised attributed relational graph (GARG) [15], in which
the set of AGs is represented by only one model or proto-
type, but diGerently from the network of models, the model
has the same structure and attribute domain as the AGs that
represent, except that a null value is introduced. GARGs
are synthesised by a prototyping algorithm, based on in-
ductive learning methodologies. Moreover, Chan proposed
the fuzzy attributed graphs (FAGs) and the hard FAGs
to represent objects and templates, respectively, [16]. A
neural networks method [17] was proposed to encode an
AG into a real-valued feature vector using recurrent neu-
ral network architectures and a generalised recursive neuron
model. A feedforward network classi4es the feature vectors
yielded by the encoder network while returning an error sig-
nal to the encoder, which is then used to adapt the encoder
weights. Note however that, in this case, there is no learnt
model graph that represents a set of AGs, but a collection
of learnt feature vectors, one for each AG, together with a
trained neural classi4er. Finally, Sengupta [18] presented a
hierarchically structured approach to organising large struc-
tural model bases using an information theoretic criterion.
Objects or patterns are modelled in the form of random
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parametric structural descriptions and objects in the scenes
are represented as parametric structural descriptions.

The structure of the rest of the paper is as follows. In
Section 2, all the notation used throughout the paper is in-
troduced, including the formal de4nitions of AG and FDG.
The fundamental ideas behind FDGs are discussed in Sec-
tion 3, which also includes an illustrative example. In Sec-
tion 4, two distance measures between an AG and an FDG
are presented, whereas the algorithms for computing or
approximating them are sketched in Section 5. The ex-
perimental results of two applications of FDGs for object
modelling and recognition are presented in Section 6:
3D-object modelling and recognition [19] and face identi4-
cation [20]. Finally, some conclusions are given in Section 7.

We de4ned some methods and algorithms to synthesise
an FDG using a set of classi4ed AGs and also to cluster AGs
and synthesise several FDGs that represent the clusters in
Refs. [21,22]. Due to lack of space, these methods are out
of the scope of this article.

2. Formal de�nitions and notation

De�nition 1. Let �v and �e denote the domains of possible
values for attributed vertices and arcs; respectively. These
domains are assumed to include a special value � that rep-
resents a null value of a vertex or arc. An AG G over
(�v; �e) is de4ned to be a four-tuple G = (�v; �e; �v; �e);
where �v = {vk |k = 1; : : : ; n} is a set of vertices (or nodes);
�e = {eij|i; j∈{1; : : : ; n}; i �= j} is a set of arcs (or edges);
and the mappings �v : �v → �v and �e : �e → �e assign
attribute values to vertices and arcs; respectively.

De�nition 2. A complete AG is an AG with a complete
graph structure (�v; �e); but possibly including null ele-
ments. An AG G with n vertices can be extended to form
a complete AG G′ with k vertices k¿ n; by adding ver-
tices and arcs with null attribute values �. We call G′ the
k-extension of G.

De�nition 3. Let�v and�e be two sets of random variables
with values in �v (random vertices) and in �e (random arcs);
respectively. A function-described graph F over (�v; �e) is
de4ned to be a tuple (�v; �e; �v; �e; P; R);where �v={!k |k=
1; : : : ; n} is a set of vertices; �e={�ij|i; j∈{1; : : : ; n}; i �= j}
is a set of arcs; the mapping �v : �v → �v associates each
vertex !k ∈�v with a random variable �k=�v(!k) with val-
ues in �v; and �e : �e → �e associates each arc �ij ∈�e with
a random variable �k=�e(�ij) with values in �e. P=(Pv; Pe)
are two sets of marginal (or 4rst-order) probability density
functions for random vertices and edges; respectively. This
is; Pv = {pi(a); 16 i6 n} and Pe = {qj(b); 16 j6m}; m
being the number of edges; where pi(a) = Pr (�i = a) for
all a∈�v and qj(b) ≡ Pr (�j = b|�j1 �=� ∧ �j2 �=�) for all
b∈�e such that �j1; �j2 refer to the random variables for the
endpoints of the arc associated with �j . Note that; due to the

structural consistency requirements; there is no need to store
the conditional probabilities Pr(�j = b|�j1 = � ∨ �j2 = �);
since by de4nition Pr(�j = �|�j1 = � ∨ �j2 = �) = 1.
R = (Av; Ov; Ev) is a collection of boolean functions

de4ned over pairs of graph vertices (i.e. relations on the
set of vertices) that allow the incorporation of qualitative
second-order probability information. Thus, Av : �v×�v →
{0; 1}, de4ned by Av(!i; !j)=1 ⇔ Pr(�i �=�∧�j �=�)=0,
is the so-called vertex antagonism function, which can be
seen as a symmetric binary relation on the set �v. In addi-
tion, Ov : �v × �v → {0; 1}, de4ned by Ov(!i; !j) = 1 ⇔
Pr(�i �=�∧ �j =�) = 0, is the so-called vertex occurrence
function, which can be seen as a reMexive and transitive re-
lation (partial order) on the set �v. Finally, �v : �v ×�v →
{0; 1}, de4ned by Ev(!i; !j)=1 ⇔ Pr(�i=�∧�j=�)=0,
is the so-called vertex existence function, which can also
be seen as a symmetric binary relation on �v.

A random element � or � of an FDG is a null random
element if its probability of instantiation to the null value is
one, i.e. Pr(� = �) = 1 or Pr(� = �) = 1.

De�nition 4. A complete FDG is an FDG with a complete
graph structure (�v; �e); but possibly including null random
elements. An FDG F with n vertices can be extended to
form a complete FDG F ′ with k vertices k¿ n; by adding
null random vertices and null random arcs and extending
appropriately the boolean functions of antagonism; occur-
rence and existence. We call F ′ the k-extension of F . Note
that both F ′ and F represent the same model.

De�nition 5. Any AG obtained by instantiating all ran-
dom vertices and random arcs of an FDG in a way that
satis4es all the relations of antagonism; occurrence and
existence speci4ed by the FDG is called an outcome graph
of the FDG. Hence; similar to the case of random graphs;
an FDG represents the set of all possible AGs that can be
outcome graphs of it; according to an associated probability
distribution.

3. A function-described graph as a model of a class of
attributed graphs

FDGs are proposed here for modelling classes of patterns
described by attributed graphs. An FDG is a probabilistic
structural model that contains some functions to maintain,
to the most part the local features of the AGs that belong to
the class as well as to allow the rejection of the AGs that
do not belong to it. In general, an FDG can be derived as
a synthesis of a cluster or set of individual AGs, similar to
the case of random graphs. A comparison between FDGs
and FORGs is sketched in Section 3.1 to introduce the novel
features that are included in FDGs to represent a set of AGs.
Then, a simple example of representing a 3D-object using
FDGs is provided for illustrative purposes in Section 3.2.
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3.1. FDGs: a model lying between FORGs and general
random graphs

In order to attain a compact representation of a set of
AGs by means of a model, a probabilistic description of the
ensemble is desirable to account for the variations of struc-
tural patterns in the reference set or sample. As recalled in
Section 1, random graphs (RGs) provide such a represen-
tation. Nevertheless, when estimating the probability distri-
bution of the structural patterns from an ensemble of AGs,
it is impractical to consider the high-order probability dis-
tribution where all the graph elements are taken jointly. It
was the random graph authors believe (and also ours), that
general RGs cannot be applied in real applications, and for
this reason, they proposed the FORGs.

The FORG approach, although simpli4es the representa-
tion considerably, continues to be di6cult to apply in real
problems where there is a large number of vertices in the
AGs and their attributes have an extensive domain. The main
cause of this problem is the dependence of the arc attributes
with respect to the attributes of the vertices that the arc con-
nects (assumption 3 in Section 1). Although this supposi-
tion is useful to constrain the generalisation of the given
set of AGs, it needs a huge amount of data to estimate the
probability density functions and bears a high computational
cost. On the other hand, an important drawback of FORGs,
which is due to the probability independence assumptions
1 and 2 in Section 1, is that the structural information in a
sample of AGs is not well preserved in the FORG synthe-
sised from them. This is because an FORG represents an
over-generalised prototype that may cover graph structures
quite diGerent from those in the sample. For example, if C
is a set of AGs describing diGerent perspective views of an
object O, many of the outcome graphs of the FORG syn-
thesised from C will represent impossible views of O (just
from the topological point of view, without further consid-
eration of the attributes of primitives and relations).

With the aim of oGering a more practical approach,
function-described graphs (FDGs) can be seen as a diGer-
ent type of simpli4cation of the GRGs, in which another
approximation of the joint probability P of the random el-
ements is proposed. On the one hand, some independence
assumptions (1) are considered, but on the other hand, some
useful second-order functions (2) are included to constrain
the generalisation of the structure.

(1) Independence assumptions in the FDGs:

1. The attributes in the vertices are independent of the other
vertices and also of the arcs.

2. The attributes in the arcs are independent of the other
arcs and also of the vertices. However, it is mandatory
that all non-null arcs be linked to a non-null vertex at
each extreme in every AG covered by an FDG. In other
words, any outcome AG of the FDG has to be structurally
consistent.

With these assumptions, the probability density functions
are themselves independent since the attributes in the arcs
do not depend on the attributes in the vertices that they con-
nect, but only on the existence of the extreme vertices. Con-
sequently, associated with each graph element in an FDG,
there is a random variable that represents the semantic in-
formation distribution of the corresponding graph elements
in the set of outcome AGs. A random variable has a prob-
ability density function de4ned over the same attribute do-
mains of the AGs, including the null value �, that denotes
the non-instantiation of an FDG graph element in an out-
come AG.

(2) Second-order functions in the FDGs:
In order to tackle the problem of the over-generalisation

of the sample, we introduce the antagonism, occurrence and
existence relations in FDGs, which apply to pairs of vertices.
In this way, random vertices are not assumed to be mutually
independent, at least with regard to the structural informa-
tion. These second-order relations, that suppose a little in-
crease of the amount of data to be stored in the prototype,
are useful for two reasons. Firstly, they constrain the set of
outcome graphs covered by the prototype and tend to cut
down notably the structural over-generalisation. Secondly,
they reduce the size of the search space of the AG-to-FDG
matching algorithm, decreasing the global temporal cost of
the recognition [1]. Antagonism, occurrence and existence
relations in the FDGs represent a qualitative information
of the second-order joint probability functions of a pair of
vertices. To de4ne these second-order relations it is neces-
sary to split the domain of the joint probabilities in four re-
gions (see Fig. 2a). The 4rst one is composed of the points
that belong to the Cartesian product of the sets of actual
attributes of the two elements, corresponding to the cases
where both elements are de4ned in the initial non-extended
AG and therefore their value is not null. The second and
third regions are both straight lines in which only one of the
elements has the null value. This covers the cases when one
of the two elements does not belong to the initial AG and has
been added in the extending process. Finally, the fourth re-
gion is the single point where both elements are null, which
includes the cases when none of them appear in the initial
AG. The second-order relations are de4ned as follows:
Antagonism relations: Two vertices of the FDG are an-

tagonistic if the probabilities in the 4rst region are all zero,
Pr(�i �=� ∧ �j �=�) = 0, which means that, although these
vertices are included in the prototype as diGerent elementary
parts of the covered patterns, they have never taken place
together in any AG of the reference set used to synthesise
the FDG. Fig. 2b shows the joint probabilities of the vertices
!i and !j de4ned as antagonistic.
Occurrence relations: There is an occurrence relation if

the joint probability function equals zero in the second re-
gion, Pr(�i �=�∧�j=�)=0. That is, it is possible to assure
that if the element �i does appear in any AG of the refer-
ence set, then the element �j must appear too. The case of
the third region is analogous to the second one with the only
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Fig. 2. (a) Split of the joint domain of two random vertices in four regions. Second-order density function of (b) two antagonistic vertices,
(c) two occurrent vertices and (d) two existent vertices.

diGerence of swapping the elements. Fig. 2c shows the joint
probabilities of the vertices!i and!j , there is an occurrence
relation from !i to !j .
Existence relations: Finally, there is an existence relation

between two vertices if the joint probability function equals
zero in the fourth region, Pr(�1 =�∧�j=�)=0, that is, all
the objects in the class described by the FDG have at least
one of the two elements. Fig. 2d shows the joint probabilities
of the vertices !i and !j .

3.1.1. Mapping joint probabilities to second-order
relations

Fig. 3 shows 16 diGerent combinations of the joint proba-
bility of two vertices if it is considered that the probabilities
of the four regions can be zero or greater than zero. An X
is written on a region if and only if the sum of the proba-
bilities in that region is greater than zero. For each one of
the 16 cases, the second-order relations obtained from the
corresponding joint probability density function are shown.

Note that it is not “logical” for both occurrence and an-
tagonism relations to be satis4ed at the same time between
two elements. If two elements cannot exist in the same AG
(antagonism), one of them cannot always exist when the
other exists (occurrence). This combination only appears in
cases in which one of the elements is null (cases 1–5); that
is, it is a synthetically created element. Moreover, the 16th
combination is impossible in a correct FDG since the sum
of the joint probability throughout the four regions equals 1.
Therefore, the four second-order relations cannot appear be-
tween two graph elements at the same time.

3.2. An example of modelling 3D-object described by
views using FDGs

In this simple example, FDGs are used to represent
3D-objects with planar faces. The knowledge of the
3D-object represented by an FDG depends on the views
taken from it. The representation of 3D-objects by means
of FDGs is a useful application to show the meaning
of the probabilities in the vertices and arcs and also of
second-order relations. Fig. 4 shows object A, four diGerent
perspective views and their corresponding AGs. Vertices
and arcs represent faces and adjacency between faces, re-
spectively. The attribute of the vertices is chosen to be the
average hue of the planar face discretised in 7 colours and

the attribute of the arcs is chosen to be the cyclic distance
between hues discretised in 4 categories. The direction of
the arcs (from tail to head) is set by the combination of both
nodes that gives lower cyclic distance. In this example, we
will suppose that the extraction of graph elements and their
attributes is robust enough to obtain the same discrete value
(colour) in all the vertices that represent the same face
and the same discrete value (colour similarity of adjacent
regions) in all the arcs that represent the same edge.

Similar to AGs, vertices and arcs of FDGs represent in
this case faces and edges of the 3D-object. We assume that
there is a given labelling between vertices and arcs of the
AGs such that same faces in diGerent views are matched.
Then, vertices or arcs in the AGs that represent the same
face or the same edge are used to build only one vertex or
arc in the FDG (the synthesis of FDGs given a set of AGs
with a common labelling is explained in Ref. [21]). We have
to take into account that faces that cannot be seen together
in a view appear as diGerent vertices in the FDG. This fea-
ture of the 3D-object representation is characterised through
the probability density functions and the second-order rela-
tions. When a face is not visible in a view, then its AG does
not include its related vertex, but a null vertex, called v�, is
introduced in the extended AG with a null value, � (Sec-
tion 2). Similarly, a null arc e� is extended when at least
one of the adjacent faces of the corresponding edge is oc-
cluded in a view. Hence, the probability of a face or edge to
be occluded is represented by the probability of its related
vertex or arc of being null. Two faces are antagonistic when
it is not possible to see both in the same view. Translated
to representations, two vertices are antagonistic when there
is no AG that contains both of them. On the other hand, a
face is occurrent with respect to another if always the for-
mer is visible (its vertex appears in the AG) and the latter
is visible too. Finally, there is an existence relation between
two faces (vertices) if one of them or both appear in all the
views (in all the AGs).

The FDG Fa (Fig. 5) represents object A if we consider
only View1 and View2. Because only six faces of the object
have been seen, the object is considered to have only these
faces and thereforeFa has six vertices. Some faces are visible
in both views (i.e. face1 and face7), and thus, the probability
of the related vertices in the FDG of taking their colour is 1.
Other faces are only visible in one of both views (i.e. face2)
and for this reason, the probability of being null is 1

2 . There
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Fig. 3. The sixteen combinations of the joint probability. Antagonism, occurrence and existence relations are represented by ↔;→ and
•—-•, respectively.

Fig. 4. (a) Object A. Dashed lines are crossed out numbers represent non-visible edges and faces, respectively. (b) Four prespective
views of A and the obtained AGs {G1; G2; G3; G4}. (c) Attribute values of edge and nodes of the AGs: G1; G2; G3; G4. Attributes
on the edges are: VS = very similar; S = similar;D= dissimilar and VD= very dissimilar. Attributes on the nodes are: C = cyan;B= blue;
R = red;G = green;O = orange;Y = yellow and M = magenta.

Fig. 5. FDG Fa: (a) structure, (b) second-order relations. A(row, col)=antagonism (!row; !col), E(row, col)=existence (!row; !col) and
O(row, col)= occurrence (!row; !col). (c) Labelling between the two AGs: G1 and G2 and the obtained probabilities in the FDG. The 4
4rst columns are related to vertices and the other 4 are related to edges. The non-existence of a vertex or an edge in the AGs is represented
by the null vertex vR or the null edge eR, respectively. The column “lab” shows the labelling between the vertices and edges of the two
AGs:G1 and G2 and the ones in the FDG.
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Fig. 6. FDG Fb generated by 4 views of object A or AGs: G1; G2; G3 and G4: (a) second-order relations; (b) structure; (c) probabilities
of FDG nodes; (d) probabilities of FDG arcs.

is an antagonism between face2 and face6 because they have
not been seen at the same time (they cannot be seen together
indeed). There is an occurrence from face2 to face7 because
when face2 has not been occluded, neither face7. There are
existence relations between all the vertices, except !2 and
!4 because both are occluded at view2. Note that !2 and !6

are related with both antagonism and existence relations. It
is proved in Ref. [1] that it is not possible that two vertices
be related through the three second-order relations.

The FDG Fb (Fig. 6) represents again object A but con-
sidering now the four views (View1–View4). Fb incorpo-
rates a new vertex representing face8 of the object, which
is visible in View3 and View4. Face5 is not visible in any
of the four views, and therefore there is no vertex in the
FDG representing this face. Face7 is visible in View1 and
View2 but it is occluded in View3 and View4. For this rea-
son, Face7 has a zero probability of being null in Fa but the
probability of being null in Fb is 1

2 .
Moreover, some occurrence and existence relations disap-

pear, e.g. the occurrences in which !7 is the second element.
It is easily proved that, when new AGs are incorporated in
FDGs, relations between previously existing vertices can be
kept or disappear, but they cannot be incorporated. New re-
lations appear only when at least one of the involved vertices
has just been incorporated in the FDG.

4. Distance measure between AGs and FDGs

Two distance measures are presented in this section to
provide a quantitative value of the match between an AG G

(data graph) and an FDG F (model graph). They are some-
how related to the maximum a posteriori probability P(f|G)
of a labelling function f :G → F given the measurements
and structure of the data graph G. The Bayes theorem al-
lows the maximisation of the product P(G|f)P(f) instead
of the posterior probability P(f|G) to arrive at an optimal
matching f∗. And assuming a uniform probability distribu-
tion among the valid labelling functions (those that satisfy
the required structural constraints), the problem is reduced
to that of 4ltering the invalid mappings and maximising
P(G|f) within the remaining set H of allowable con4gura-
tions. Alternatively, we may attempt to minimise a global
cost measure Cf of a morphism f in the set H , by taking
the cost as a monotonic decreasing function of the condi-
tional probability of the data graph given the labelling func-
tion, Cf = func(P(G|f)). For instance, Cf =−ln(P(G|f))
would be a possible choice.

Once a cost measure Cf is de4ned, a measure of dissim-
ilarity between G and F (from here, distance measure) and
the optimal labelling f∗ are de4ned respectively as

d=min
f∈H

{Cf} and f∗ = argmin
f∈H

{Cf}: (1)

Note that the joint probability P(G|f) cannot be estimated
directly and has to be approximated by the product of the
4rst-order probabilities of the elements,

P(G|f) =
∏
∀x

Pr(�(y) = �(x) |f(x) = y); (2)

where x and y are graph elements in the AG and the FDG
respectively, �(y) is the random variable associated with
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y; �(x) is the attribute value in x, and all the elements of
both graphs have to appear in the productory (possibly by
extending the mapping with null elements).

Thus, the previous choice for the global cost Cf gives

Cf =−
∑
∀x

ln(Pr(�(y) = �(x) |f(x) = y)): (3)

However, only if that one graph element had a probability
of zero, the joint probability would be zero and Cf would
be in4nite. Since this may happen due to the noisy pres-
ence of an unexpected element (insertion) or the absence
of a model’s element (deletion), only if that one graph ele-
ment were not properly mapped, the involved graphs would
be wrongly considered to be completely diGerent. We must
therefore admit the possibility of both extraneous and miss-
ing elements in the data graphs, since the data extracted from
the information sources (e.g. images) will usually be noisy,
incomplete or uncertain. As a consequence, the matches for
which P(G|f)=0 should not be discarded since they could
be the result of a noisy feature extraction and graph for-
mation. In addition, a model (FDG) should match to a cer-
tain degree not only the objects (AGs) in its learning set
but also the ones that are “near”. Hence, for practical pur-
poses it is more appropriate to decompose the global cost
Cf into the sum of some bounded individual costs, one for
each of the graph element matches. Although it has the ma-
jor Maw that Cf is no longer a monotonically decreasing
function of the probability P(G|f) considered as a whole, it
has the advantage that clutter aGects only locally the global
cost. An individual cost C(x; y) represents the dissimilar-
ity between two mapped elements x and y, and it could be
based still on the 4rst-order probabilities of the graph ele-
ments, C(x; y) = func(Pr(�(y) = �(x)|f(x) = y)), as far as
it is bounded by some 4xed constant, C(x; y)6Max, for
instance C(x; y)6 1.
Moreover, for the sake of robustness, the mapping will

not be de4ned from the initial AG which represents the pat-
tern to the initial FDG which represents the class or model,
but from the k-extended AG to the k-extended FDG, to con-
template the possibility of some missing graph elements or
some extraneous graph elements introduced by noisy eGects.
A missing element in the AG will be represented by a null
element in the extended AG, and an extraneous element in
the AG should be mapped to a null element in the extended
FDG. The number of vertices k in the extended graphs is
theoretically set to the sum of the number of vertices in both
initial graphs. Hence, the limit situations in which all the
graph elements in the FDG are missing in the AG or all the
graph elements in the AG are extraneous are covered.

Let G′ be a k-extension of the AG G with an underlying
structure (�v; �e) and F ′ be a k-extension of the FDG F
with an underlying structure (�!; ��). Then, G′ and F ′ are
structurally isomorphic and complete with the same number
of vertices k, and they also share a common attribute domain
(�v; �e). The labelling function f :G′ → F ′ is actually
de4ned as a pair of morphismsf=(fv; fe), wherefv :�v →

�! is a mapping de4ned on the vertices and fe :�e → ��
is a mapping de4ned on the arcs.

Now, we de4ne the individual cost of matching a pair of
elements as a normalised function depending on their dis-
similarity, as given by the negative logarithm of the proba-
bility of instantiating the random element of the FDG to the
corresponding attribute value in the AG,

C(x; y) =




−ln(Pr(�(y) = �(x) |f(x) = y))

−ln(KPr)
if Pr(�(y) = �(x)|
f(x) = y)¿KPr ;

1 otherwise;
(4)

where the cost C(x; y) is bounded by [0; 1], and the positive
constant KPr ∈ [0; 1] is a threshold on low probabilities that
is introduced to avoid the case ln(0), which gives negative
in4nity. Hence, C(x; y) = 1 will be the cost of matching
a null element of the FDG to a non-null element of the
AG or matching an FDG element to an AG element whose
attribute value has a very low probability of instantiation,
i.e. Pr(�(y) = �(x)|f(x) = y)6KPr .

In the case of the vertices, the cost is de4ned using the
probabilities stored in the FDG as

Cfv (vi; !q) =




−ln(pq(ai))
−ln(KPr)

if pq(ai)¿KPr;

1 otherwise;
(5)

where fv(vi) = !q and �v(vi) = ai. And in the case of the
arcs, we de4ne the cost as

Cfe (eij ; �ab) =




−ln(qn(bm))
−ln(KPr)

if qn(bm)¿KPr;

1 otherwise;
(6)

wherefe(eij)=�ab; �e(eij)=bm in the AG arc and ��(�ab)=�n
in the matched FDG arc.

However, if either vi or vj is a null extended vertex in the
AG, then the conditional probability qn(bm) is not applicable,
since it depends on the existence of the two extreme vertices.
But if we consider that the AG is structurally correct, eij has
to be a null arc in that case, then we apply Pr(�n = �|�a =
� ∨ �b = �) = 1, which gives Cfe (eij ; �ab) = 0.

The global cost of a given mapping f based only
on 4rst-order information is therefore computed as the sum
of the individual costs of all the matches between graph
elements,

Cf =
∑
∀x
C(x; f(x)) =

∑
∀vi∈�v of G′

Cfv (vi; fv(vi))

+
∑

∀eij∈�e of G′
Cfe (eij ; fe(eij)): (7)

Now, in order to take into account the second-order infor-
mation included in the FDG boolean functions, there are two
options, which lead to the two diGerent distance measures
that are presented in the following subsections.
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4.1. Distance measure between AGs and FDGs using
second-order constraints

The 4rst approach is to consider the antagonism, occur-
rence and existence relations in the FDG as second-order
constraints that must be ful4lled by any valid morphism
f∈H . We say that f∈Fv;e, if the morphism is bijective
and structurally correct, and f∈FA; f∈FO and f∈FE ,
if the antagonism, occurrence and existence constraints are
met, respectively. More precisely, the three second-order
constraints are de4ned as follows:

f∈FA
⇔ (Av(!p; !q) = 1 ∧ fv(vi) = !p ∧ fv(vj) = !q)
⇒ (ai = � ∨ aj = � ∨ pp(�) = 1 ∨ pq(�) = 1); (8)

f∈FO
⇔ (Ov(!p; !q) = 1 ∧ fv(vi) = !p ∧ fv(vj) = !q)

⇒ (ai = � ∨ aj �=� ∨ pp(�) = 1 ∨ pq(�) = 1); (9)

f∈FE
⇔ (Ev(!p; !q) = 1 ∧ fv(vi) = !p ∧ fv(vj) = !q)

⇒ (ai �=� ∨ aj �=� ∨ pp(�) = 1 ∨ pq(�) = 1); (10)

where �v(vi)= ai and �v(vj)= aj refer to the attribute values
of nodes vi and vj in the AG. The two right-most terms in the
consequent of the above rules allow the match of a non-null
vertex of the AG to an extended null vertex of the FDG
(insertion) when a second-order relation involving the FDG
null vertex is not satis4ed. Otherwise, the FDG null vertices
would never be matched to actual vertices in the AG and,
consequently, they would be of no help in bringing some
Mexibility to the matching process.

Finally, the 4rst distance measure between an AG and an
FDG is de4ned as the minimum cost achieved by a valid
morphism f∈Fv;e ∩ FA ∩ FO ∩ FE , i.e.
df = min

f∈{Fv;e∩FA∩FO∩FE}
{Cf};

where (11)

Cf =
∑

∀vi∈�v of G′
Cfv (vi; fv(vi))

+
∑

∀eij∈�e of G′
Cfe (eij ; fe(eij)): (11)

A comparison of the distance above with a distance based on
edit operations [14] is presented in Ref. [22]. In summary,
substitution and deletion costs are variable depending on
the probability density functions of the random elements,
whereas the insertion cost is constant.

4.2. Distance between AGs and FDGs relaxing
second-order constraints

In real applications, AGs can be distorted or noisy, and
therefore, the constraints associated with the second-order

relations have to be relaxed to avoid a noisy AG being mis-
classi4ed due to non-ful4lment of any of them. For instance,
the deletion of a strict non-null vertex of the FDG (with a
zero probability of being null) will almost always imply the
non-ful4lment of some of the existence or occurrence con-
straints induced by that strict non-null vertex.

To gainmore Mexibility and robustness, some non-negative
costs can be added to the global cost of the labelling when
second-order constraints are not met. Given that fv(vi)=!p
and fv(vj) = !q, Eqs. (12)–(14) show these additional
costs, which can be only 1 or 0, associated with the three
relations of antagonism, occurrence and existence between
pairs of vertices. These equations cover, respectively, the
three following qualitative cases: presence of two vertices
in the AG, presence of only one of them, and absence of
both vertices:

CAv (vi; vj; !p; !q) =




Av(!p; !q) if (ai �=� ∧ aj �=
� ∧ pp(�) �=
1 ∧ pq(�) �=1);

0 otherwise;

(12)

COv (vi; vj; !p; !q) =




Ov(!p; !q) if (ai �=� ∧ aj = �
∧pp(�) �=
1 ∧ pq(�) �=1);

0 otherwise;
(13)

CEv (vi; vj; !p; !q) =




Ev(!p; !q) if (ai = � ∧ aj = �

∧pp(�) �=
1 ∧ pq(�) �=1);

0 otherwise:
(14)

Now, the global cost Cf of the labelling function f is re-
de4ned by CR

f with two terms that depend on the 4rst-order
probability information, which are the original ones, and
three more terms that depend on the second-order costs:

CR
f = Kv ∗

∑
∀vi∈�v of G′

Cfv (vi; fv(vi))

+Ke ∗
∑

∀eij∈�e of G′
Cfe (eij ; fe(eij))

+KA ∗
∑

∀vi ;vj∈�v of G′
CAv (vi; vj; fv(vi); fv(vj))

+KO ∗
∑

∀vi ;vj∈�v of G′
COv (vi; vj; fv(vi); fv(vj))

+KE ∗
∑

∀vi ;vj∈�v of G′
CEv (vi; vj; fv(vi); fv(vj)): (15)

The 4ve terms are weighted by non-negative constants
Kv; Ke; KA; Ko and KE , to compensate for the diGerent num-
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Fig. 7. View’1, which is similar to View1, with the spurious face6 and the resulting AGG’1.

Fig. 8. Labellings f and g between G′
1 and Fb with their associated probabilities and costs.

ber of elements in the additions as well as to balance the
inMuence of second-order costs with respect to 4rst-order
costs in the overall value. Finally, the second distance
measure proposed between an AG and an FDG, dRf, is de-
4ned as the minimum cost CR

f achieved by a bijective and
structurally valid function f:

dRf = min
f∈Fv;e

{CR
f}: (16)

Note that both distance measures df and dRf will be equiv-
alent in practice if we set KA = KO = KE = BigNumber,
since in this case, the optimal labelling is forced to satisfy
the second-order constraints, i.e. f∗ ∈{FA ∩ FO ∩ FE}.

4.3. An example of matching a 3D-object using the
proposed distance measure

We are interested in matching the AG G′
1, correspond-

ing to View′
1 (Fig. 7) against the FDG Fb (Fig. 6). This

view is similar to View1 (Fig. 4) but the segmentation
process has generated a new region represented by the
spurious face6. Its hue has been assigned to the average
hue of their adjacent faces. Since this region has never
appeared in any view used to learn the object B, it should
be matched to an FDG null vertex in the optimal isomor-
phism.

When one attempts to recognise a 3D-object from a single
view, the occluded parts of the object should not have an
inMuence on the distance value (i.e. we are looking for a
subgraph isomorphism rather than a graph isomorphism). In
our approach this can be accomplished by not taking into
account the costs of deleting vertices of the FDG (matching
AG vertices to null FDG vertices).

Fig. 8 shows two sub-graph isomorphisms between G′
1

and Fb. Labellingf is represented by arrows→ and and
labelling g is represented by → and . The diGerence
between both functions is in the matching of v6. In f, it

cetto
Rectangle



F. Serratosa et al. / Pattern Recognition 36 (2003) 781–798 791

1

2

3

45

1

2

3

4

6
7

8

VIEW1 Object A

ARG1 FDGb
f

Antagonism

1

2

3

45

1

2

3

47

6 8
Search tree

f(v1) w1

f(v2)

w6 w8

w2 w6 w8w1

Fig. 9. Tha mapping (v1; !6) and (v2; !2) is rejected due to the antagonism relation, and the search tree is pruned.

is matched to !6, although p6(brown) = 0, and in g, it is
matched to a null FDG vertex.

The table shows the probabilities and costs of the match-
ing elements for the sub-graph isomorphisms f and g. The
threshold on the probabilities used to calculate the costs is
Kpr = 0:1 (Eqs. (5) and (6)). The arcs e1;5 and �6;2 are ex-
tended null arcs since the edge between face1 and face5 in
View′

1 and the edge between face6 and face2 in the object,
do not exist. In the case of the labelling f, vertices !2 and
!6 are matched and then the antagonism between both ver-
tices has to be considered with a cost KA. If antagonisms
are not considered, KA = 0, then the optimal labelling is f
with a cost of 3.903. But, if KA¿ 1 then the cost of f is
bigger than the cost of g and so f is discarded as the best
labelling and the spurious Face6 is rejected. In the case of
KA = 1, the computed labelling depends on the implemen-
tation of the algorithm since the minimum cost is 4.903 in
both labellings.

5. Algorithms for computing the distance measures

An algorithm for error-tolerant graph matching that cal-
culates the distance measure and the optimal morphism be-
tween an AG and an FDG was presented in Ref. [23]. We
de4ned an approach based on a tree search by A∗ algorithm
reminiscent of the algorithm presented in Ref. [5], where
the search space is reduced by a branch and bound tech-
nique. We showed that by incorporating some second-order
constraints (antagonism relations), the search tree can be
somewhat pruned, although the exponential combinatorial
complexity remains. To overcome this drawback, we pre-
sented in Ref. [19] an e6cient algorithm that computes a
sub-optimal distance between an AG and an FDG, together
with its corresponding morphism, in polynomial time.

Nevertheless, we refer again to the 3D example to show
that antagonism relations not only are useful for recogni-
tion purposes but also to prune the search tree computed in
the matching algorithm and thus to decrease the time used
to compute the distance. Fig. 9 shows a partial labelling
between G1 (Fig. 4) and Fb (Fig. 6) and the search tree
computed by the matching algorithm. When the algorithm
considers the mapping (v1; !6), the mapping (v2; !2) is

Fig. 10. Expanded vertex of an AG (a) and an FDG (b).

rejected and the matching algorithm backtracks, since there
is an antagonism between !2 and !6 and therefore, it is
not possible that these two FDG vertices be matched with
two AG vertices. One of the FDG vertices does not have to
be matched (it is considered to be matched with a null AG
vertex).

The e@cient algorithm to compute the distance between
AGs and FDGs reduces enormously the search space of
our branch and bound algorithm [23] by initially discard-
ing most of the mappings between vertices, using a func-
tion based on the distance between the sub-units of the
graphs to be matched. The match of a pair of vertices is
discarded if the distance between their related sub-units is
higher than a threshold. Thus, the graphs are broken down
into manageable sub-units that overlap, so that two adja-
cent sub-units contain information about each other through
the mutual graph elements they contain, similar to the dis-
crete relaxation method presented in Ref. [24]. We refer
to these sub-units as expanded vertices (Fig. 10) and they
are structured by a central vertex and all the adjacent ver-
tices connected to it by an outgoing arc (of the central
vertex).

Fig. 11 shows the basic scheme of the method proposed to
compute a sub-optimal approximation of the distance mea-
sure dRf(G; F) between an AG G and an FDG F , that will
be denoted dR ˆf (G; F). The method consists of three main
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Fig. 11. Scheme of an e6cient algorithm to compute the distance
between AGs and FDGs.

modules. The 4rst one computes all the distances be-
tween expanded vertices using the distance measure,
df(EVi; EWj). Note that an expanded vertex of an AG or
an FDG is also an AG or an FDG and for this reason, the
distance between AGs and FDGs can be computed. The
thresholding module decides which matches of vertices
are discarded depending on an externally imposed thresh-
old /. The last module computes the sub-optimal distance
dR ˆf (G; F) using the branch and bound algorithm presented
in Ref. [23] but only on the set of vertex mappings allowed
by the thresholding module.

6. Application of FDGs for modelling and recognition
of objects

We present two diGerent applications of FDGs to assess
the validity of our approach: 3D-object recognition and face
identi4cation. In both applications, there is a set of images
of each class (of a 3D-object or a person) and an adjacency
graph is extracted from each image. The learning process
is based on synthesising an FDG per each class (or a set
of adjacency graphs) and the classi4cation process matches
the unclassi4ed pattern (represented by an adjacency graph)
with a class (represented by an FDG).

6.1. Application of FDGs to 3D-object recognition

FDGs are applied here to 3D-object representation and
recognition. Similar to the example that we have been us-
ing throughout the paper, views are structured by adjacency
graphs. The attribute of the vertices is the average hue of
the region (cyclic range from 0 to 49) and the attribute of
the edges is the diGerence between the colours of the two
neighbouring regions.

We 4rst present an experimental validation of FDGs us-
ing arti4cial 3D-objects in which the adjacency graphs have
been extracted manually and afterwards we present a real
application on an image database in which the graphs have
been extracted automatically. The advantages of the exper-
imental validation are that the results do not depend on the
segmentation process and that we can use a supervised syn-
thesis [21], since we know which vertices of the AGs repre-
sent the same planar face of the object. Thus, we can discern
between the eGects of computing the distance measure using
diGerent values of the costs on the second-order relations.

In the real application, we show the capacity of FDGs to
keep the structural and semantic knowledge of an object de-
spite the noise introduced by the segmentation process and
an automatic synthesis [22].

In both experiments, we want to show the inMuence of
the antagonism and occurrence costs on the recognition ra-
tio and the time spent to classify the objects. Thus, we 4rst
tested combinations of the antagonism and occurrence costs
considering three cases (Tables 1 and 3): with cost null
(K3=0 or K4=0), with high costs (K3=1000 or K4=1000)
and with moderate costs (K3 = 1 or K4 = 1). When these
costs are null, the second-order relations are not considered
and the system is similar to FORGs. When a high cost is
imposed, the non-ful4lment of only one antagonism or oc-
currence restriction causes the labelling to be rejected. Con-
versely, when a moderate cost is used, the non-ful4lment
of a second-order restriction causes only a slight increase
of the global cost. The cost associated with the existence
relations is not involved because no existence relations are
synthesised in these experiments (there is no pair of nodes
such that one or the other can be seen in all the views). From
the recognition ratio results, we arrived at the conclusion
that the best combination is the one that has both moder-
ate costs. Then we compared FDGs to two other classical
methods (Tables 2 and 5). The 4rst one was the 3-nearest
neighbours (3-NN) classi4er: The edit-operations distance
[25] was used as the distance between elements. In this
case, the costs of insertion and deletions were set to 1 and
the cost of substitution was 0 if cyclic dist(hue1; hue2)= 0;
cost = 1

2 if cyclic distance(hue1; hue2) = 1 and cost = 1
if cyclic dist(hue1; hue2)¿ 1. And the second classical
method compared was random graphs.

6.1.1. Supervised synthesis on artiAcial objects
We designed 4ve objects using a CAD program (Fig. 12).

After that, we took 4ve sets of views from these objects
and from these views we extracted a total of 101 adjacency
graphs. To obtain the AGs of the test set and of the refer-
ence set, we modi4ed the attribute values of the vertices and
arcs of the adjacency graphs by adding zero-mean Gaus-
sian noise with diGerent variances. Moreover, some vertices
and arcs were inserted and deleted randomly in some cases.
The FDGs were synthesised using the AGs that belonged
to the same 3D-object and using the synthesis given a com-
mon labelling from a set of AGs described in Ref. [21].
Table 1 shows the ratio of correctness (%) for diGerent
levels of noise and applying several costs on the antago-
nisms and occurrences. We see that the best results appear
always when we use moderate second-order costs. Further-
more, when noise increases, the recognition ratio decreases
drastically when we use high costs but there is only a slight
decrease when we use moderate costs. Moreover, in Ta-
ble 2 we compare the FDGs (with second-order costs) with
other two methods. The FDG classi4er always obtains bet-
ter results than the 3-NN and the random graph classi4ers.
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Table 1
FDGs ratio of correctness %

No. of vertices ins. and del. 0 0 0 0 0 1 2 1
Standard deviation 0 2 4 8 12 0 0 8
Cost on antag. Cost on occu.

Moderate Moderate 100 98 97 95 92 89 85 83
High Null 100 92 89 87 84 61 54 57
Null High 100 91 89 88 85 62 59 59
High High 100 95 90 86 80 60 53 56
Moderate Null 100 92 91 91 87 80 75 75
Null Moderate 100 95 92 91 86 81 77 76
Null Null 100 90 89 88 86 70 67 68

Table 2
FDGs (moderate second-order costs), FORGs and 3-NN ratio of correctness (%)

No. of vertices ins. or del. 0 0 0 0 0 1 2 1
Standard deviation 0 2 4 8 12 0 0 8
FDGs (moderate costs) 100 98 97 95 92 89 85 83
Random graphs (FORGs) 100 90 89 88 86 70 67 68
3-NN (edit op. distance) 100 98 82 62 52 90 58 58

Fig. 12. Two views of 5 arti4cial objects designed by a CAD program.

The diGerence of the ratio between FDGs and the other two
methods increases when the noise also increases. FORGs
obtain better results than the 3-NN only when the noise
is high.

6.1.2. Unsupervised synthesis on real life objects
Images were extracted from the database COIL-100

from Columbia University (www.cs.columbia.edu=CAVE=
research=softlib=coil-100.html). It is composed of 100 iso-
lated objects and for each object there are 72 views (one
view each 5 degrees). Adjacency graphs are obtained by
the segmentation process presented in Ref. [26]. Fig. 13
shows 20 objects at angle 100 and their segmented images
with the adjacency graphs. The test set was composed of
36 views per object (taken at the angles 0,10, 20 and so
on), whereas the reference of set was composed of the 36
remaining views (taken at the angels 5, 15, 25 and so on).
FDGs were synthesised automatically using the AGs in the
reference set that represent the same object. The method of
incremental synthesis, in which the FDGs are updated while
new AGs are sequentially presented, was applied [22]. We

made 6 diGerent experiments in which the number of FDGs
that represents each 3D-object varied. If the 3D-object
was represented by only one FDG, the 36 AGs from the
reference set that represent the 3D-object were used to syn-
thesise the FDG. If it was represented by 2 FDGs, the 18
4rst and consecutive AGs from the reference set were used
to synthesise one of the FDGs and the other 18 AGs were
used to synthesise the other FDG. A similar method was
used for the other experiments with 3, 4, 6 and 9 FDGs per
3D-object.

Table 3 shows the ratio of correctness of the FDG clas-
si4er varying the number of FDGs per each object. Similar
to the previous experimental results (Table 2), the correct-
ness is higher when second-order relations are used with a
moderate cost. The best result appears when each object is
represented by 4 FDGs, that is, each FDG represents 90◦

of the 3D-object. When objects are represented by 9 FDGs,
each FDG represents 40◦ of the 3D-object and 4 AGs per
FDG, there is poor probabilistic knowledge and therefore the
costs on the vertices and arcs are coarse. Moreover, when
objects are represented by only 1 or 2 FDGs, there are too
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Fig. 13. The 20 selected objects at angle 100 and the segmented images with the AGs.

Table 3
Ratio of correctness (%) using several costs on antagonisms and occurrences

Number of FDGs per object 9 6 4 3 2 1
Number of AGs per FDG 4 6 9 12 18 36
Cost on antag. Cost on occu.

Moderate Moderate 65 69 79 70 60 54
High Null 60 51 47 41 32 12
Null High 59 49 45 37 25 10
High High 52 41 43 33 18 8
Moderate Null 62 60 65 61 52 45
Null Moderate 61 59 63 57 45 42
(FORGs) 40 44 45 53 27 14
3-NN (edit op. distance) 63

much spurious regions (produced in the segmentation pro-
cess) to keep the structural and semantic knowledge of the
object.

Moreover, Table 4 shows the average time in millisec-
onds spent to compute the classi4cation of a new AG. The
algorithms were implemented in Visual C++ and run on a
Pentium 800 MHz. The higher the cost on the antagonisms
(KA), the search tree is more pruned and so, the faster is the
computation of the distance. Moreover, when the number
of FDGs per object decreases, the number of comparisons
also decreases but the time spent to compute the distance
increases since the FDGs are bigger.

Table 4
Average time in milliseconds for each AG

No. of FDGs
per object 9 6 4 3 2 1

No. of AGs per FDG 4 6 9 12 18 36
FDG (high, high) 125 89 32 44 64 59
FDG (moderate,

moderate) 150 101 47 56 72 82
FORG 187 123 253 392 814 1203
3-NN 93
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Fig. 14. Identi4cation and location of the pre-established points and four selected faces.

Table 5
Correctness (%) for diGerent representations of the 3D-object applying FORGs, FDGs and 3-NN. We used 3 levels of occlusion of the test
images: 0%, 20% and 30%

Occlusion 0% 20% 40%

Number of FDGs per object 9 6 4 3 2 1 9 6 4 3 2 1 9 6 4 3 2 1
Number of AGs per FDG 4 6 9 12 18 36 4 6 9 12 18 36 4 6 9 12 18 36
FDGs (moderate costs) 65 69 79 70 60 54 62 65 77 60 61 45 51 59 62 58 49 34
Random graphs (FORGs) 40 54 45 33 27 14 33 49 40 37 19 10 29 24 25 23 20 10
3-NN (edit op. distance) 63 54 33

And 4nally, Table 5 shows that FDGs with moderate
second-order costs obtain the best results independent of
the occlusion on the test image. The best results using
FORGs are obtained when 6 AGs are used to synthesise
the FDGs, in contrast to the FDGs where the best results
are obtained when 9 AGs are used. This is because FORGs
do not have the second-order information. Note that FDGs
obtained much better results than FORGs and the 3-NN.

6.2. Application of FDGs to face identiAcation

In our approach, faces were de4ned by AGs, in which
vertices and arcs represented pre-established points and the
distances between them, respectively. Fig. 14 shows the
identi4cation of the pre-established points in one of the im-
ages and the location of 36 points, and also, four faces of
the database.

In the learning process, FDGs were obtained by the
supervised synthesis [21] and the AGs obtained by the
faces of the same person. To carry out the identi4cation
experiments, we used images of 100 people and 10 im-
ages per person. Half of the images were composed of the
reference set and the other half the test set. These images
were taken from the database at the address http://cswww.
essex.ac.uk/projects/vision/allfaces/faces94. See Ref. [20]
for more details. We compared the FDG approach with the
RG and the 5-NN approach, where the distance between el-
ements was de4ned as the edit-operations distance between
AGs [25]. Table 6 shows the correctness ratio varying the ra-
tio of occlusion of the faces in the test set. In all the cases, the

Table 6
Correctness ratio (%) using FDGs, random graphs and 5-NN

Occlusion Full face 20% 40% 60% 80%

FDGs (moderate second- 95 92 88 82 64
order costs)
Random graphs (FORGs) 89 85 70 63 47
5-NN (edit op. distance) 91 90 83 78 61

FDG classi4er obtained better results than the other classical
approaches.

7. Conclusions

FDGs are a type of compact representation of a set of AGs
that borrow from Random Graphs the capability of prob-
abilistic modelling of structural and attribute information,
while improving the capacity of FORGs to record structural
relationships that consistently appear through the data. This
is achieved by incorporating some qualitative knowledge of
the second-order probabilities of the elements that are ex-
pressed as relations (boolean functions) between pairs of
vertices in the FDG.

If only the relations between vertices are considered, the
space complexity of the FDG representation does not aug-
ment with respect to a 4rst-order random graph, n2, since

http://cswww.essex.ac.uk/projects/vision/allfaces/faces94.
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all the relations de4ned (antagonism, occurrence, existence)
can be obtained easily from the 4rst-order marginal proba-
bilities and just one second-order probability for each pair of
vertices (namely, the probability of both vertices being null
at the same time). However, if arc relations were consid-
ered as well, the space complexity obviously would rise to
a2, where a is the number of arcs, and for dense graphs, this
would imply a storage (and a time complexity of arc relation
creation, maintenance and veri4cation) of order n4 instead
of n2, which would be a severe drawback in practice. This is
the reason why second-order constraints between arcs have
not been discussed in this work.

A distance measure between an AG and an FDG has been
proposed to be used in the problem of matching an AG to an
FDG for recognition or classi4cation purposes. Although,
in the origin, a distance measure was derived from the prin-
ciple of maximum likelihood in a Bayesian framework [1],
a more robust measure has been described by considering
the eGects of extraneous and missing elements only locally
and relaxing the second-order hard constraints into moder-
ate costs, at the expense of losing the theoretical link with
the maximum likelihood source [27]. These second-order
relations are useful not only for increasing the correctness
in the classi4cation process but also to reduce the computa-
tional time of the labelling process. Nevertheless, the com-
binatorial complexity of computing the presented distance
measure remains. For this reason, an e6cient algorithm that
yields a suboptimal distance value is presented [23] to re-
duce dramatically the computational time at the expense of
losing the optimal labelling.

In this work, two diGerent methods to synthesise an FDG
from a set of AGs were used in the experiments. These meth-
ods, together with some others to synthesise an FDG from
a set of unlabelled AGs and to cluster, in a non-supervised
manner, a set of AGs into a set of FDGs representing sub-
classes, have been reported elsewhere [21,22].

Some experimental tests were carried out in a 3D-object
recognition problem for two diGerent scenarios, an arti4cial
one with a varying controlled noise level in feature extrac-
tion and a real-world one, in which the 4nal results are heav-
ily inMuenced by the image segmentation process. In both
cases, an FDG model has been synthesised for each object
from a set of views (AGs), including antagonism and oc-
currence relations between vertices (representing faces of
the object). Moreover, some tests on face identi4cation have
also been carried out, where an FDG is built from a set of
views of a person’s face.

In all the experiments, FDGs obtained better results than
the 3-NN classi4er, which means that it is useful to represent
the set of AGs (or object) by only one structure since this
object is seen as a whole. However, in the real 3D-object
recognition application, it has been shown that it is more
eGective and robust to partition a single 3D-object into a
few FDGs for recognition purposes. This is due to the rep-
resentation of the joint probability of vertices and arcs by
only the 4rst-order probabilities and second-order relations.

Furthermore, FDGs obtained also better results than FORGs
due to the use of the second-order relations. Since these re-
lations are a simpli4cation of the second-order probabilities,
results show that it is better to use moderate second-order
costs than high costs.

Finally, some arti4cial experiments were carried out
in Ref. [1] to show the sensibility of the method to failure
mismatch. In these experiments AGs were generated arti-
4cially and FDGs were built using the methods presented
in Ref. [22].
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