
- 1 -

Second-order random graph
for modeling sets of attributed graphs

and their application to object learning and recognition
Alberto Sanfeliu1, Francesc Serratosa2 and René Alquézar3

1 Universitat Politècnica de Catalunya, Inst. de Robòtica i Informàtica Ind., Spain

sanfeliu@iri.upc.es
2 Universitat Rovira i Virgili, Dept. d’Enginyeria Informàtica i Matemàtiques, Spain

Francesc.Serratosa@etse.urv.es
3 Universitat Politècnica de Catalunya, Dept. de Llenguatges i Sist. Informàtics, Spain

 alquezar@lsi.upc.es

Abstract. The aim of this article is to present a random graph

representation, that is based on 2nd order relations between graph elements,

for modeling sets of attributed graphs (AGs). We refer to these models as

second-order random graphs (SORGs). The basic feature of SORGs is that

they include both marginal probability functions of graph elements and 2nd-

order joint probability functions. This allows a more precise description of

both the structural and semantic information contents in a set of AGs and,

consequently, an expected improvement in graph matching and object

recognition. The article presents a probabilistic formulation of SORGs that

includes as particular cases the two previously proposed approaches based

on random graphs, namely the first-order random graphs (FORGs) and the

function-described graphs (FDGs). We then propose a distance measure

derived from the probability of instantiating a SORG into an AG and an

incremental procedure to synthesize SORGs from sequences of AGs.

Finally, SORGs are shown to improve the performance of FORGs, FDGs

and direct AG-to-AG matching in three experimental recognition tasks: one

- 2 -

in which AGs are randomly generated and the other two in which AGs

represent multiple views of 3D objects (either synthetic or real) that have

been extracted from color images. In the last case, object learning is

achieved through the synthesis of SORG models.

1 Introduction

Attributed Graphs (AGs) has been used to solve computer vision problems

for decades and in many applications. Some examples include recognition

of graphical symbols [13], character recognition [18], shape analysis [5,17],

3D-object recognition [29,25] and video and image database indexing [27].

In these applications, AGs represent both unclassified objects (unknown

input patterns) and prototypes. Moreover, these AGs are typically used in

the context of nearest-neighbour classification. That is, an unknown input

pattern is compared with a number of prototypes stored in the database. The

unknown input is then assigned to the same class as the most similar

prototype. A number of similarity measures on AGs and related

computational procedures have been proposed in this context

[3,4,7,10,14,15,20,28].

Nevertheless, the main drawback of representing the data and prototypes by

AGs is the computational complexity of comparing two AGs. The time

required by any of the optimal algorithms may in the worst case become

exponential in the size of the AGs. The approximate algorithms, on the

other hand, have only polynomial time complexity, but do not guarantee to

- 3 -

find the optimal solution [2,23]. For some applications, this may not be

acceptable. Moreover, in some applications, the classes of objects are

represented explicitly by a set of prototypes which means that a huge

amount of model AGs must be matched with the input AG and so the

conventional error-tolerant graph matching algorithms must be applied to

each model-input pair sequentially. As a consequence, the total

computational cost is linearly dependent on the size of the database of

model graphs and exponential (or polynomial in subgraph methods) with the

size of the AGs. For applications dealing with large databases, this may be

prohibitive.

To alleviate these problems, some attempts have been made to try to reduce

the computational time of matching the unknown input patterns to the whole

set of models from the database. Assuming that the AGs that represent a

cluster or class are not completely dissimilar in the database, only one

structural model is defined from the AGs that represent the cluster, and thus,

only one comparison is needed for each cluster.

We distinguish two different methodologies depending on whether they

keep probabilistic information in the structure that represent the cluster of

AGs (a) or not (b).

(a) In the first methods, the models, which are usually called Random Graph

(RG), are described in the most general case through a joint probability

space of random variables ranging over graph vertices and arcs. They are

- 4 -

the union of the AGs in the cluster, according to some synthesis process,

together with its associated probability distribution. In this manner, a

structural pattern can be explicitly represented in the form of an AG and an

ensemble of such representations can be considered as a set of outcomes of

the RG. In this paper, we briefly recall the two most important probabilistic

methods, which are First-Order Random Graphs (FORGs) [30] and

Function-Described Graphs (FDGs) [25,26]. The approach presented in the

paper by Sengupta et al. [21] can be regarded as similar to the FORG

approach. Finally, we introduce the Second-Order Random Graphs

(SORGs), which can be seen as a generalisation of both of them [24].

(b) In the non-probabilistic methods, we comment four different

approximations. The self-organizing map (SOM) is a useful method to

cluster sets of objects. It consists of a layer of units (neurons), that adapt

themselves to a population of input patterns. SOM was first presented by

Kohonen with the limitation that patterns had to be represented in terms of

feature vectors only. Afterwards, the same authors presented an extension of

this method to strings [10] and then Günter & Bunke presented in [9] a

generalisation of the clustering method applied to AGs. Moreover, Seong et

al. [22], Cordella et al. [6] and Jiang et al. [12] presented three different

methods to cluster sets of AGs. In the first one, a hierarchical model that

summarises and organises the input instances incrementally is built up with

a succession of AGs. In the second one, the set of AGs is represented by the

- 5 -

maximally general prototype that can be seen as the union of the AGs. And

in the third one, the set of AGs is represented by the generalised median of

the AGs that belong to the set.

In the following section, we introduce the formal definitions used

throughout the paper. In section 3, we recall FORGs and FDGs, which are

the two main approximations of the general RG concept proposed in the

literature. In section 4, we present SORGs as a quite general formulation for

estimating the joint probability of the random elements in a RG synthesised

from a set of AGs. In sections 5 and 6, we show respectively that the FORG

and FDG approaches can be seen as different simplifications of SORGs. In

sections 7 and 8, we propose a distance measure between AGs and SORGs

and a method to synthesise SORGs, respectively. Finally, we present a

comparative study between SORGs and other probabilistic models

presented in the literature. They are applied on AGs randomly generated and

on 3D-object recognition. In the last section we provide some discussion

about our contribution.

2 Formal Definitions of Random-Graph Representation

Definition 1: Attributed Graph (AG). Let v and e denote the domains of

possible values for attributed vertices and arcs, respectively. These domains

are assumed to include a special value  that represents a null value of a

vertex or arc. An AG G over (v,e) is defined to be a four-tuple

- 6 -

 evevG  ,,, , where  nkvkv ,...,1 is a set of vertices (or nodes),

  jinjieije  ,,...,1, is a set of arcs (or edges), and the mappings
vvv :

and
eee : assign attribute values to vertices and arcs, respectively.

Definition 2: Random Graph (RG). Let v and e be two sets of random

variables with values in v (random vertices) and in e (random arcs),

respectively. A RG R over (v,e) is defined to be a tuple  Pevev ,,,,  ,

where  nkkv ,...,1  is a set of vertices,   jinjiije  ,,...,1, is a set of

arcs, the mapping vvv : associates each vertex
vk  with a random

variable  kvk   with values in v, and
eee : associates each arc

eij  with a random variable  ijek   with values in e. And, finally, P is a

joint probability distribution  mnP  ,,,,, 11  of all the random vertices

 niiii  1),(  and random arcs  mjkljj  1),( 
.

Definition 3: Outcome graph. An Outcome graph is any AG obtained by

instantiating all random vertices and random arcs of a RG in a way that

satisfies all the structural relations. Such instantiation is associated with a

structural isomorphism RG ': , where 'G is the extension of G to the

order of R (in which null-attribute vertices and arcs have been added to form

a complete AG [26]). Hence, a RG represents the set of all possible AGs

that can be outcome graphs of it, according to an associated probability

distribution.

- 7 -

Definition 4: Probability of an outcome graph. For each outcome graph G

of a RG R, the joint probability of random vertices and arcs is defined over

an instantiation that produces G. Let G be oriented with respect to R by the

structurally coherent isomorphism  ; for each vertex
i in R, let

  ivi  1a be the corresponding attribute value in G’, and similarly, for

each arc
kl in R (associated with random variable

j) let   klej  1b be

the corresponding attribute value in G’. Then the probability of G according

to (or given by) the orientation  , denoted by  GP , is defined as

       mnjj
m

jii
n

i
pGP bbaaba ,,,,,Pr 1111






 


  (1)

3 Approximating Probability Distributions in the Literature

If we want to represent the cluster of AGs by a probability distribution it is

impractical to consider the high order probability distribution

 mnP  ,,,,, 11  where all components and their relations in the

structural patterns are taken jointly (eq. 1). For this reason, some other more

practical approaches have been presented that propose different

approximations [25,26,30]. All of them take into account in some manner

the incidence relations between attributed vertices and arcs, i.e. assume

some sort of dependence of an arc on its connecting vertices. Also, a

common ordering (or labelling) scheme is needed that relates vertices and

arcs of all the involved AGs, which is obtained through an optimal graph

mapping process called synthesis of the random graph representation. In the

- 8 -

following sections, we summarise the two main such approaches, FORGs

and FDGs.

3.1 First-Order Random Graphs (FORGs)

Wong and You [30] proposed the First-Order Random Graphs (FORGs), in

which strong simplifications are made so that RGs can be used in practice.

They introduced three suppositions about the probabilistic independence

between vertices and arcs:

1) The random vertices are mutually independent;

2) The random arcs are independent given values for the random vertices;

3) The arcs are independent of the vertices except for the vertices that they

connect.

Definition 5: First-Order Random Graphs (FORGs). A FORG R is a RG

that satisfies the assumptions 1, 2, 3 shown above.

Based on these assumptions, for a FORG R, the probability  GP becomes

      



m

j
jjjj

n

i
ii qpGP

1
21

1

,aaba (2)

where     ,1,Prˆ nip ii  aa  are the marginal probability density

functions for vertices and    221121 ,Prˆ, jjjjjjjjq aabaab   , ,1 mj 

are the conditional probability functions for the arcs, where 21, jj  refer to

the random vertices for the endpoints of the random arc j .

- 9 -

The storage space of FORGs is  2mMNnNO  where N and M are the

number of elements of the domains
v and

e .

3.2 Function-Described Graphs (FDGs)

Serratosa et al. [1,23,25,26] proposed the Function-Described Graphs

(FDGs), which lead to another approximation of the joint probability P of

the random elements. On one hand, some independence assumptions (a) are

considered, but on the other hand, some useful 2nd-order functions (b) are

included to constrain the generalisation of the structure.

(a) Independence assumptions in the FDGs

1) The attributes in the vertices are independent of the other vertices and of

the arcs.

2) The attributes in the arcs are independent of the other arcs and also of the

vertices. However, it is mandatory that all non-null arcs be linked to a non-

null vertex at each extreme in every AG covered by an FDG. In other words,

any outcome AG of the FDG has to be structurally consistent [26].

(b) 2nd-order functions in the FDGs

In order to tackle the problem of the over-generalisation of the sample, the

antagonism, occurrence and existence relations are introduced in FDGs,

which apply to pairs of vertices or arcs. In this way, random vertices and

arcs are not assumed to be mutually independent, at least with regards to the

structural information, since the above relations represent a qualitative

- 10 -

information of the 2nd-order joint probability functions of a pair of vertices

or arcs.

To illustrate the meaning of the FDG 2nd-order relations it is convenient to

split the domain of the joint probabilities in four regions (see Figure 1.a).

(a) The four regions (b) Antagonism (c) Occurrence (d) Existence

Figure 1. 2nd-order probability of two FDG vertices

The first one is composed by the points that belong to the Cartesian product

of the domains of actual attributes of the two vertices, v, corresponding to

the cases where both elements are not null. The second and third regions are

one-dimensional (shown as straight lines) in which only one of the vertices

has the null value. Finally, the fourth region is the single point where both

vertices are null. The 2nd-order relations are defined as follows:

Antagonism relations: wi and wj are antagonistic if the probabilities in the

first region are all zero (figure 1.b),     0Pr1,  jijiA  . In the

3D-object modelling case, two faces are antagonistic if it is not possible to

see both in a same view.

Occurrence relations: There is an occurrence relation if the joint

probability function equals zero in the second region (figure 1.c),

    0Pr1,  jijiO 
. The case of the third region is

v
v i

j

 jiP  ,

R egion 2
R egion 4

R eg.3




v
v i

j

 jiP  , 


v

v i

j

 jiP  , 


v

v i

j

 jiP  ,





- 11 -

analogous to the second one with the only difference of swapping the

elements. In the 3D-object modelling case, a face is “occurrent” with respect

to another if always that the former is visible, the latter is visible too.

Existence relations: Finally, there is an existence relation between two

vertices if the joint probability function equals zero in the fourth region

(figure 1.d),     0Pr1,  jijiE 
. In the 3D-object modelling

case, there is an existence relation between two faces if one of them or both

appear in all the views used to synthesise the model of the object.

Definition 6: Function-Described Graphs (FDGs). An FDG F is a RG that

satisfies the assumptions 1 and 2 shown above and contains the information

of the 2nd-order relations of antagonism, occurrence and existence between

pairs of vertices or arcs.

Based on these assumptions, for an FDG F,  GP becomes

      



m

j
jj

n

i
ii qpGP

11

ba (3)

where  aip is defined as in FORGs and     21 ,Prˆ jjjjq  bb .

However, the isomorphism  not only has to be structurally coherent but

also has to fulfil the 2nd-order constraints (antagonism, exitence and

occurrence) [25,26]. Otherwise,  GP is considered to be zero. The basic

idea of these constraints is the satisfaction by an AG to be matched of the

antagonism, occurrence and existence relations inferred from the set of AGs

used to synthesise the FDG.

- 12 -

The storage space of FDGs is  22 mnmMnNO  where N and M are the

number of elements of the domains
v and

e , respectively.

4 Second-order Random-Graph Representation

We show next that the joint probability of an instantiation of the random

elements in a RG can be approximated as follows:

        


 


1

1 11
1 ,,,,

s

i

s

ij
jiij

s

i
iis rppGP ddddd (4)

where  iip d are the marginal probabilities of the random elements
i ,

(vertices or arcs) and ijr are the Peleg compatibility coefficients [16] that

take into account both the marginal and 2nd-order joint probabilities,

    
   jjii

jjii
jiij pp

r
dd

dd
dd




Pr
, (5)

The Peleg coefficient, with a non-negative range, is related to the “degree”

of dependence between two random variables. If they are independent, the

joint probability is defined as the product of the marginal ones, thus, rij = 1

(or a value close to 1 if the probability functions are estimated). If one of the

marginal probabilities is null, the joint probability is also null. In this case,

the indecisiveness 0/0 is solved as 1, since this do not affect the global joint

probability, which is null.

Eq. (4) is obtained by assuming independence in the conditional

probabilities (section 4.1) and rearranging the joint probability expression

using Bayes rule (section 4.2)

- 13 -

4.1 Conditional Probabilities

The conditional density probability   siip  ,...,/ 1 of a random element i

is used to compute the joint density probability  sp  ,...,1
. Applying the

Bayes rule to the conditional probability, the following expression holds,

        
 si

isii
sii p

pp
p




,...,

/,...,
,...,/

1

1
1







 (6)

Due to the fact that this (s+1-i)-order probability can not be stored in

practice, we have to suppose at this point that the conditioning random

variables 1i to s are independent to each other. In that case, an estimate

is given by

       
     

   


 


s

ij ij

ij
i

s

ij j

ij
isii pp

p
p

p

p
pp

11
1

,/
,...,/








 (7)

Thus, if we use the Peleg compatibility coefficients then the conditional

probability is,

       


 
s

ij
jiijiissiiii rpprob

1
11 ,,...,/ dddddd  (8)

4.2 Joint Probability

Using the Bayes theorem, the joint probability density function  sp  ,,,1

can be split into the product of another joint probability function and a

conditional one,

       sss ppp  ,,,/,,,,,, 2121  (9)

- 14 -

and applying n-1 times the same theorem on the remaining joint probability,

       





1

1
11 ,,,/,,,

s

i
siiss ppp  (10)

If we use eq. (8) to estimate the conditional probabilities, then the joint

probability p(d1,,,ds) can be estimated as p*(d1,,,ds) where,

           


 










1

1 1
1 ,,,,*

s

i

s

ij
jiijiisss rpppGP dddddd (11)

and introducing the first factor into the product, we have

        


 


1

1 11
1 ,,,,*

s

i

s

ij
jiij

s

i
iis rppGP ddddd (12)

In the approximations of the joint probability in the FDG and FORG

approaches, random vertices and random arcs are treated separately, for this

reason the above expression can be split considering vertices and arcs

separately as follows

             


  



 


1

1 11 1

1

1 111
11 ,,,,,,,,*

m

i

m

ij
jiij

n

i

m

j
jiij

n

i

n

ij
jiij

m

i
ii

n

i
iimn rrrpppGP bbbaaababbaa (13)

5 Approximation of the joint probability by FORGs

In the FORG approach, the Peleg coefficients between vertices and between

arcs do not influence on the computation of the joint probability. That is, by

assumption 1 and 2 (section 3.1),   1, jiijr aa and   1, jiijr bb for all the

vertices and arcs, respectively. On the contrary, assumption 3 (sec 3.1)

makes that the probability on the arcs be conditioned on the values of the

vertices that the arc connects,  21, jjjjq aab . In a similar deduction to that of

- 15 -

section 4.3, and considering assumption 1, we arrive at the equivalence:

       jjjjjjjjjjjjjj rrpq baba ,,,
221121 baab  . Thus,

         
 


m

j jji
jiij

m

j
jj

n

i
ii rppGP

1 ,11 21

,baba (14)

6 Approximation of the joint probability by FDGs

In the FDG approach, the 2nd-order probabilities between vertices can be

estimated from the marginal probabilities and the 2nd-order relations as

follows (a similar expression is obtained for the arcs, see [25]),

  
     otherwisepp

QConditionif

jjiijjii

ndjjii

aaaa

aa









Pr

0Pr 2 (15)

where the Condition Q2nd is

      
     









jijijiij

jijijiji

nd EO

OA
Q

aaaa

aaaa









,,

,,
:2

 (16)

Note that, in the first case, it can be assured that the joint probability is null,

but in the second case, we assume that the random elements are independent

and the probability is estimated as a product of the marginal ones.

Thus, the Peleg coefficients are simplified as 'ijr , using eq. (15),

      


 


otherwise

ppQif
r

jjiind
jiij

1

000
,'

2 aa
aa (17)

Moreover, due to the independence assumption 2 (sec 3.2), it is not possible

to have a non-null arc and a null vertex as one of its endpoints in an

outcome graph. Thus, we have   01  jjp  and   02  jjp  .

In the other cases, by assumption 1, they are assumed to be independent and

- 16 -

so computed as the product of the marginal ones. The Peleg coefficients

between vertices and arcs are simplified as

    


 


otherwise

jjiif
r

ji

jiij
1

0
,"

21 ba
ba (18)

The final expression of the joint probability of an outcome AG with respect

to an FDG is

             
   


m

j jji
jiij

m

i

m

j
jiij

n

i

n

j
jiij

m

j
jj

n

i
ii rrrppGP

1 ,1 11 111 21

,",',' babbaaba (19)

7 Distance measure between AGs and SORGs

The distance measure presented in this section provides a quantitative value

of the match between an AG G (data graph) and a SORG S (model graph)

similar to the one presented in [1]. It is related to the probability of G

according to the labelling function SG : , denoted  GP in eq. (4). We

may attempt to minimise a global cost measure C of the morphism  in the

set H of allowable configurations, by taking the cost as a monotonic

decreasing function of the conditional probability of the data graph given

the labelling function,   GPfC  . For instance,   GPC ln would

be a possible choice. Thus, considering eq. (4),

      







 



 

1

1 11

,ln
s

i

s

ij
jiij

s

i
ii rpGC ddd (20)

However, only that one graph element had a probability of zero, the joint

probability would be zero and C would be infinite. Since this may happen

- 17 -

due to the noisy presence of an unexpected element or the absence of a

model’s element, only that one graph element were not properly mapped,

the involved graphs would be wrongly considered to be completely

different. We must therefore admit the possibility of both extraneous and

missing elements in the data graphs, since the data extracted from the

information sources (e.g. images) will usually be noisy, incomplete or

uncertain. As a consequence, the matches for which   0GP should not

be discarded since they could be the result of a noisy feature extraction and

graph formation. In addition, a model (SORG) should match to a certain

degree not only the objects (AGs) in its learning set but also the ones that

are “near”.

Hence, it is more appropriate for practical purposes to decompose the global

cost C into the sum of some bounded individual costs, one for each of the

graph element matches (first-order costs) and one for each Peleg

compatibility coefficient or pair of element matches (second-order costs)

        


 


1

1 1
,

1

,
s

i

s

ij
jijir

s

i
iip rCpCGC ddd (21)

where first- and second-order costs are given respectively by

      iiiip pCostpC dd  (22)

  








otherwisepCostpCostpCost

KpKp
rC

jjiijiji

jjii

jijir))(())(()),((

)()(if0
,

,

PrPr

, dddd

dd
dd (23)

- 18 -

and the function  PrCost yields a bounded normalised cost value between 0

and 1 depending on the negative logarithm of a given probability Pr and

parameterised by a positive constant  1,0Pr K , which is a threshold on low

probabilities that is introduced to avoid the case  0ln , which would give

negative infinity. This is,

  











 




otherwise1

Prif
)ln(

ln(Pr)

Pr

Pr
Pr

K
K

Cost (24)

In the first case of equation (23), both the joint probability and at least one

of the marginal probabilities are practically zero, and as commented before,

the indecisiveness 0/0 is solved as 1 for the Peleg coefficient, yielding a null

second-order cost, since ln(1)=0. Note that the global cost given by equation

(21) is not an edit operation cost. Moreover, second-order costs may be

positive or negative, thus correcting (if necessary) the sum of first-order

costs and using, to this end, the information stored in the second-order joint

probability functions.

Once a cost measure C is defined, a distance measure between an AG and a

SORG and the optimal labelling * are defined respectively as

   


GCd
H

 min and   


GC
H

 minarg* (25)

The algorithm we use to calculate d and * is a classical recursive tree

search procedure, where the search space is reduced by a branch and bound

technique (not described here due to lack of space).

- 19 -

8 Synthesis of Second-Order Random Graphs

Below, we present the Incremental-synthesis-of-SORGs method (Algorithm

1) to synthesise an SORG from a sequence of AGs. The algorithm uses two

procedures: SORG-synthesis-from-labelled-AGs, to transform an AG into an

equivalent SORG, and SORG-synthesis-from-labelled-SORGs to build a

SORG from two SORGs with a given labelling. The synthesis method is

parameterised by a matching algorithm  FGM , that is supposed to return

an optimal (or a “good” suboptimal) labelling between an AG G and an

SORG F, according to an appropriate distance measure. In practice, we use

as algorithm  FGM , the branch-and-bound method aforementioned that

calculates the distance measure described in the previous section.

Algorithm 1: Incremental-synthesis-of-SORGs

Inputs: A sequence of AGs G Gm1 ,... , m  1 , over a common domain.

 A matching algorithm  FGM , between an AG and an SORG that finds an

 optimal or sub-optimal labelling

Output: An SORG F that represents the given set of AGs.

Begin

F := SORG-synthesis-from-labelled-AGs(1G) { build the first SORG from 1G }

for 2:i to m do

 let FGd i ,: and FGi : be the distance and labelling found by  FGM i ,

  ',',' FG i :=Extend-labelling-AG-SORG  ,, FGi { It extends the AG and the

 SORG with null elements to make them structurally isomorphic and also extends

 the given labelling accordingly }

- 20 -

 H := SORG-synthesis-from-labelled-AGs('G) { build an auxiliary SORG H from 'G }

 let HG ': be a bijective mapping used in the previous synthesis

 let ': FH  be the bijective mapping determined by the

 composition  '

 F := SORG-synthesis-from-labelled-SORGs  ,', FH { build F using synthesis

 from 2 SORGs }

endfor

end-algorithm

The algorithm presented above is similar to the one described in [26] for the

incremental synthesis of FDGs. The only difference with the case of

synthesising FDGs is that, instead of inferring the FDG second-order

constraints, second-order joint probability density functions must be

estimated now. To this end, it is enough to modify as follows the procedures

that carry out the synthesis of a new model (now an SORG) from a set of

AGs (SORG-synthesis-from-labelled-AGs) or from a set of previous models

(SORG-synthesis-from-labelled-SORGs) when a common labelling scheme

is given [26].

Let  zgGD g  1| be a set of AGs defined over a common attribute

domain. Assuming that a common labelling between all the AGs in D is

given, let g
iv be the node labelled i in the AG gG' (the extension of gG to a

minimum common order).

- 21 -

The second-order joint probability density functions of pairs of vertices

 jinjnipP ij  ,1,1),(21 a,a can be estimated in the

maximum likelihood sense using frequencies of attributes and null values in

D as

z

vvzgg
p

g
j

g
v

g
i

g
v

jiij
21

2121

aa
aaa,a




)()(:1:#
)Pr()(


 (26)

If the SORG synthesis is from a set of previous SORGs  hkF k 1| with

a given common labelling, let kt be a weight for each kF given by

 ,1,
1

hkzzt
h

g

gkk  


 (27)

where kz is the (stored) number of AGs that was used to synthesise the

SORG kF . Then  jinjnipP ij  ,1,1),(21 a,a can be

estimated from the corresponding probability density functions in the

previous SORGs as

  



h

k

k
ij

k
jiij ptp

1

)Pr()(212121 a,aaaa,a  (28)

The joint probability functions of pairs of vertices and edges

 mjniP ij  1,1),(ba, and the joint probability functions of

pairs of edges  jimjmiqP ij  ,1,1),(21 b,b can be

estimated in both cases (set of AGs or set of SORGs) similarly.

9 Results

We carried out three different types of experiments to assess the usefulness

of our new representation and to compare it with some other representations

presented in the literature. In the first experiments, the AGs were

synthetically generated varying some parameters such as the number of

vertices or the distance between the AGs in their clusters. In the second

- 22 -

experiments, we used 3D-objects artificially created by a CAD program. In

the last experiments, we used a real application in which AGs represent

coloured 3D objects. They were extracted and recognised from some 2D

images. We present these two applications on 3D-objects due to the fact that

in the first one, the 3D objects and the images are less complex and there is

no segmentation process that distorts the obtained AGs and the run time

needed to compute the classification. Thus, the first experiments are useful

to study our representation from the theoretical point of view, the second

ones are useful to apply our methods on a 3D-object non-noisy

representation and the third ones are useful to apply the representation on

noisy, real and complex images.

We present the experiments in the following three sections. In each

experiment, we compare SORGs with three other methods: FDGs, FORGs

and AG-to-AG matching. First, we show some information of the AGs and

the structures obtained in the synthesis process and then we show the run

time and ratio of correctness of the classification processes for each method.

SORGs, FDGs and FORGs were synthesised using the dynamic clustering

in which the models are incrementally updated from a sequence of AGs that

represent the same cluster or 3D-object [26] (We used the order of

presentation of AGs that obtained the best results). In the SORG method,

AGs were classified using the distance measure described in this paper. In

the FDG method, the AGs were classified applying the distance measure

- 23 -

between AGs and FDGs relaxing second-order constraints (moderate costs

on the antagonisms, existences and occurrences), without the efficient

module, presented in [23,25]. FORGs were compared using the methods

presented in [25]. Finally, in the direct AG-to-AG matching method, we

used the edit-operations distance between AGs presented in [20]. The

algorithms presented here were implemented in visual C++ and run on a

Pentium IV (1.6Ghz).

9.1 Experiments with randomly generated AGs

The AGs used in this section were generated by the random graph generator

process shown in figure 2 (this graph generator was also used and explained

in depth in [26]). We first generated 10 initial AGs randomly, one for each

model, that had 15 vertices and 5 arcs per vertex. From these AGs, the

reference and test sets were derived in the following way. For each initial

AG, a reference and a test set of 10 AGs was built by randomly deleting 3

vertices and replacing the attribute of the other vertices by adding gaussian

noise with variance V to the attribute values. Then, from each set of 10

reference AGs, an FDG was synthesised.

- 24 -

Initial
AG 1

AG1 1

Initial
AG10

AG1 2
AG1 10 AG10

1 AG10
10AG10

2

Reference set: 100 elements

AG1
1 AG1 2

AG1 10 AG10
1

AG10
10

Test set:

FDG 1 FDG10

100 elements

Figure 2. Random generation of reference and test sets and FDG synthesis.

Figure 3 shows in (a) the ratio of recognition correctness and in (b) the time

in seconds spent to compute an AG classification in average applying 4

different classification methods: SORGs, FDGs, FORGs and direct AG-AG

matching. We have seen that the second-order knowledge kept in the

SORGs is higher than in the FDGs and than in the FORGs. We see, through

the results, that this knowledge is useful to represent the cluster of AGs and

so to increase the recognition ratio. The direct AG-AG matching methods

have similar results than SORGs and FDGS only when there is few noise in

the test set. When the variance of the noise increases, the AGs in the tests

set are very different from the AGs in the reference sets and then the ratio of

classification decreases. While considering the run time, we see that the

higher differences appear when the variance of the noise is large. FDGs is

the fastest method since the antagonisms are useful to prune the search tree

- 25 -

(see [25] for more details). Nevertheless, the Peleg coefficients computed in

the distance between AGs and SORGs are also useful to prune the search

tree. For this reason, SORGs obtain better results than FORGs. Finally, the

direct AG to AG matching is the slowest method when the variance is

bigger than 0.6. This is due to the fact that the AGs in the test set are very

different to those in the reference set and so the branch and bound algorithm

can scarcelly prune the search tree.

Figure 3. (a) Ratio of recognition correctness (b) run time spent in the

classification. SORG: ; FDG: ; FORG: ; AG-AG:

9.2 Experimental validation using synthetic 3D objects

In the second experimental validation of our representation, we designed

five objects by a CAD program (Figure 4) and then, we took all the

topologically different views from these objects (21 views from the first and

second object and 12, 24 and 23 from the other three; in total, 101views).

Furthermore, we built an AG from each view in which the vertices represent

the planar faces (their attribute value is the actual face area) and the arcs

represent the edges between faces (their attribute value is the edge length).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2Variance of Gausian Noise

Ratio of Recognition Correctness

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2Variance of Gausian Noise

Recognition Run Time in seconds

- 26 -

Figure 5 shows the average number of vertices of the AGs. From each set of

AGs that represent one 3D-object, we synthesised an FDG, thus, 5 FDGs

were built. To built the AGs that composed the test set, we modified the

attribute values of the vertices and arcs of the initial 101 AGs by adding

some Gaussian noise with variance V. The advantage of this controlled

experiment is that the generated structures represent the 3D-objects without

the uncertainty of the segmentation process. For instance, in the FDG case,

an antagonism relation between two vertices appears when these elements

have never seen together in the same view. And also, an occurrence relation

appears when a vertex is visible in all the views in which another one is

visible too. See [26] for more details of the synthetic data used. Moreover,

there is no time spent on the segmentation process.

Figure 4. 10 different views extracted from the 5 objects created by a CAD

program. Each object is represented by the 2 images of a column. The first

line of views are the more representative of the 3D-object and the second

line are the simplest views.

- 27 -

Figure 5. Ratio of the number of vertices in average of the AGs extracted

from the 5 objects. AGs have from 1 to 9 vertices and the average is 5.

The results obtained on the ratio of classification and run time are similar

than the ones obtained in the previous section (figure 6). In this case, we

have shown that SORGs and FDGs are useful methods to represent 3D-

objects although the extracted AGs have lost part of the three-dimensional

information of the objects. Only when the variance is higher than 1.0, the

classification ratio decreases drastically.

Figure 6. (a) Ratio of recognition correctness (b) run time spent in the

classification. SORG: ; FDG: ; FORG: ; AG-AG:

0

0,05

0,1

0,15

0,2

0,25

0 1 2 3 4 5 6 7 8 9 10
Distribution of Number of Vertices extracted from objects

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Variance of Gusian Noise

Ratio of Classification Corrctness

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
Variance of Gausian Noise

Classification Run Time in Seconds

- 28 -

9.3 Application of graph structures to 3D object recognition

Finally, we present a real application to recognise coloured objects using 2D

images. Images were extracted from the database COIL-100 from Columbia

University (www.cs.columbia.edu/CAVE/research/ softlib/coil-100.html). It

is composed by 100 isolated objects and for each object there are 72 views

(one view each 5 degrees). AGs are obtained by the segmentation process

presented in [8]. AG nodes represent regions and their attribute value is their

average hue and arcs represent adjacent regions and their attribute value is

the distance between average hues. Figure 7 shows the 20 objects at angle

100 and their segmented images with the AGs. These AGs have from 6 to

18 vertices and the average number is 10 (figure 8). The test set was

composed by 36 views per object (taken at the angles 0, 10, 20 and so on),

whereas the reference set was composed by the 36 remaining views (taken

at the angles 5, 15, 25 and so on). We made 6 different experiments in

which the number of clusters that represents each 3D-object varied. If the

3D-object was represented by only one cluster, the 36 AGs from the

reference set that represent the 3D-object were used to synthesise the

SORGs, FORGs or FDGs. If it was represented by 2 clusters, the 18 first

and consecutive AGs from the reference set were used to synthesise one of

the SORGs, FORGs or FDGs and the other 18 AGs were used to synthesise

the other ones. A similar method was used for the other experiments with 3,

4, 6 and 9 clusters per 3D-object.

- 29 -

Figure 7. The 20 selected objects at angle 100 and the segmented images
with the AGs.

Figure 8. Ratio of the number of vertices in average of the AGs.

Figure 9.a shows the ratio of correctness of the four classifiers varying the

number of clusters per each object. When objects are represented by only 1

or 2 clusters, there are too much spurious regions (produced in the

segmentation process) to keep the structural and semantic knowledge of the

object. For this reason, different regions or faces (or vertices in the AGs) of

different views (that is, AGs) are considered to be the same face (or vertex

in the AGs). The best result appears when each object is represented by 3 or

0

0,05

0,1

0,15

0,2

0,25

0,3

0 2 4 6 8 10 12 14 16 18 20
Distrib. of Number of Vertices extracted from objs

- 30 -

4 clusters, that is, each cluster represents 90 degrees of the 3D-object. When

objects are represented by 9 clusters, each cluster represents 40 degree

views of the 3D-object and 4 AGs per cluster, there is poor probabilistic

knowledge and therefore there is a lack of discrimination between objects.

Figure 9.b shows the average run time spent to compute the classification.

When the number of clusters per object decreases, the number of total

comparisons also decreases but the time spent to compute the distance

increases since the structures that represent the clusters (SORGs, FORGs or

FDGs) are bigger.

Figure 9. (a) Ratio of recognition correctness (b) run time spent in the

classification. SORG: ; FDG: ; FORG: ; AG-AG:

10 Conclusions and future work

We have presented SORGs as a general formulation of an approximation of

the joint probability of random elements in a RG, that describes a set of

AGs, based on 2nd-order probabilities and marginal ones. We have seen that

the FORG and FDG approaches are two specific cases of SORGs. In both

cases, the marginal probabilities of the random vertices and arcs are

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 6 9

Number of clusters for 3D-object

Ratio of Classification Corrctness

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 6 9
Number of clusters for 3D-object

Classification Run Time in Seconds

- 31 -

considered, but the difference between them is in how are the 2nd-order

relations between vertices or arcs estimated. FORGs keep only the 2nd-order

probability between arcs and their extreme vertices, since the other joint

probabilities are estimated as a product of the marginal ones. On the

contrary, FDGs keep only a qualitative and structural information of the 2nd-

order probabilities between all the vertices and arcs. If we compare both

methods, FORGs have local (arc and endpoint vertex) 2nd-order semantic

knowledge of the set of AGs but do not use any 2nd-order structural

information of the set of the AGs. FDGs do not keep any 2nd-order semantic

information but include the 2nd-order structural information of all the set of

AGs. For this reason, the storage space of FORGs increases to the square on

the size of the random-element domain but the FDGs increases to the square

on the number of vertices and arcs.

However, the most important implication of the given general formulation

of the 2nd-order random graph representation is that it opens the door to the

development of other probabilistic graph approaches, either full 2nd-order or

not. In addition, it is interesting to study empirically the relation between the

amount of data to be kept in the model and the recognition ratio and run

time in several applications. That is, to know in which applications is

worthwhile to use explicitly the 2nd-order probabilities or is enough to

estimate them by other ways less costly in space requirements, such as

FORGs and FDGs.

- 32 -

References

1. R. Alquézar, F. Serratosa, A. Sanfeliu, “Distance between Attributed

Graphs and Function-Described Graphs relaxing 2nd order restrictions”.

Proc. SSPR’2000 and SPR’2000, Alicante, Spain, Springer LNCS-1876,

pp. 277-286, 2000.

2. S.Berretti, A.Del Bimbo & E.Vicario, “Efficient matching and indexing

of graph models in content-based retrieval”, IEEE Trans. on PAMI, Vol.

23, No. 10, pp: 1089-1105, 2001.

3. H. Bunke, “Error-tolerant graph matching: a formal framework and

algorithms”. Proc. Workshops SSPR’98 & SPR’98, Sydney, Australia,

Springer LNCS-1451, pp.1-14, 1998.

4. H.Bunke & G.Allerman, “Inexact graph matching for structural pattern

recognition”, Pattern Recognition Letters, 1 (4), pp: 245-253, 1983.

5. V.Cantoni et al., “2D object recognition by multiscale tree matching”,

Pattern Recognition, 31, pp: 1443-1455, 1994.

6. L.P.Cordella, P.Foggia, C.Sansone & M.Vento, “Learning structural

shape descriptions from examples”, Pattern Recognition Letters, Vol.

23, pp: 1427-1437, 2002.

7. W.J. Christmas, J. Kittler and M. Petrou, “Structural matching in

computer vision using probabilistic relaxation”, IEEE Transactions on

PAMI, vol. 17, pp. 749-764, 1995.

- 33 -

8. P.F. Felzenswalb and D.P. Huttenlocher, “Image Segmentation Using

Local Variation”, Proc. of the IEEE Computer Soc. Conf. on Computer

Vision and Pattern Recognition, pp. 98-104, 1998.

9. S.Günter & H.Bunke, “Self-organizing map for clustering in the graph

domain”, Pattern Recognition Letters, Vol. 23, pp: 405-417, 2002.

10. B.Huet & E.R.Hancock, “Relational object recognition from large

structural libraries”, Pattern Recognition, Vol. 35, pp: 1895-1915, 2002.

11. T. Kohonen & P.Somervuo, “Self-Organising Map on symbol strings”,

Neurocomputing 21, pp: 19-30,1998.

12. X.Jiang, A.Münger and H. Bunke, “On median graphs: Properties,

algorithms and applications”, IEEE Trans. on Pattern Analysis and

Machine Intelligence, Vol. 23, No. 10, pp: 1144-1151, 2001.

13. J. Lladós, E. Martí, J.J. Villanueva, “Symbol Recognition by Error-

Tolerant Subgraph Matching between Region Adjacency Graphs”, IEEE

Trans. on Pattern Analysis and Machine Intelligence, Vol. 23, No. 10,

pp: 1137-1143, 2001.

14. B.T. Messmer & H. Bunke, “A new algorithm for error-tolerant

subgraph isomorphism detection”, IEEE Trans. on Pattern Analysis and

Machine Intelligence, Vol. 20, pp: 493-504, 1998.

15. R.Myers, R. Wilson & E.Hancock, “Bayesian graph edit distance”,

IEEE Trans. on PAMI, Vol. 22, pp: 628-635, 2000.

- 34 -

16. S. Peleg and A. Rosenfeld, “Determining compatibility coefficients for

curve enchancement relaxation processes”, IEEE Transactions on

Systems, Man and Cybernetics, vol. 8, pp. 548-555, 1978.

17. M.Pelillo, K.Siddiqi & S.Zucker, “Matching hierarchical structures

using associated graphs”, IEEE Trans. on Pattern Analysis and Machine

Intelligence, Vol. 21, pp: 1105-1120, 1999.

18. J.Rocha & T.Pavlidis, “A shape analysis model with applications to a

character recognition system”, IEEE Trans. on Pattern Analysis and

Machine Intelligence, pp: 393-404, 1994.

19. A. Sanfeliu, R. Alquézar, J. Andrade, J.Climent, F. Serratosa &

J.Vergés, “Graph-based Representations and Techniques for Image

Processing and Image Analysis”, Pattern Recognition, vol. 35, pp: 639-

650, 2002.

20. A. Sanfeliu and K. Fu, “A distance measure between attributed

relational graphs for pattern recognition”, IEEE Transactions on

Systems, Man and Cybernetics, vol. 13, pp. 353-362, 1983.

21. K.Sengupta & K.L.Boyer, “Organizing large structural model bases,”

IEEE Trans. on PAMI, Vol. 17, No. 4, pp: 321-331, 1995.

22. D.S. Seong, H.S. Kim & K.H. Park, “Incremental Clustering of

Attributed Graphs”, IEEE Transactions on Systems, Man and

Cybernetics, vol. 23, pp. 1399-1411, 1993.

- 35 -

23. F. Serratosa, R. Alquezar & A. Sanfeliu, “Efficient algorithms for

matching attributed graphs and function-described graphs”, in

Proceedings ICPR’2000, 15th Int. Conf. on Pattern Recognition,

Barcelona, Spain, Vol.2, pp. 871-876, 2000.

24. F. Serratosa, R. Alquézar & A. Sanfeliu, “Estimating the Joint

Probability Distribution of Random Vertices and Arcs by means of

Second-order Random Graphs”, Proc. Syntactic and Structural Pattern

Recognition, SSPR’2002, LNCS 2396, pp: 252-262, 2002.

25. F. Serratosa, R. Alquézar & A. Sanfeliu, “Function-described graphs for

modeling objects represented by attributed graphs”, Pattern

Recognition, 36 (3), pp. 781-798, 2003.

26. F. Serratosa, R. Alquézar & A. Sanfeliu, “Synthesis of Function-

Described Graphs and clustering of Attributed Graphs”, International

Journal of Pattern Recognition and Artificial Intelligence, Vol. 16, No.

6, pp. 621-655, 2002.

27. K.Shearer, S.Venkatesh & H.Bunke, “Video indexing and similarity

retrieval by largest common subgraph detection using decision trees”,

Pattern Recognition, 34 (5), pp: 1075-1091, 2001.

28. W.D.Wallis, P.Shoubridge, M.Kraetz & D.Ray, “Graph distances using

graph union”, Pattern Recognition Letters, Vol. 22, pp: 701-704, 2001.

29. E.K. Wong, “Model matching in robot vision by subgraph isomorphism”

Pattern Recognition, Vol. 25, pp: 287-304, 1994.

- 36 -

30. A.K.C. Wong & M. You, “Entropy and distance of random graphs with

application to structural pattern recognition”, IEEE Trans. on PAMI, vol.

7, pp. 599-609, 1985.

