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Abstract— This paper describes an efficient approach to (self)
collision detection and distance computations for complex ar-
ticulated mechanisms such as molecular chains. The proposed
algorithm called BioCD is particularly designed for sampling-
based motion planning on molecular models described by long
kinematic chains possibly including cycles. The algorithm con-
siders that the kinematic chain is structured into a number
of rigid groups articulated by preselected degrees of freedom.
This structuring is exploited by a two-level spatially-adapted
hierarchy. The proposed algorithm is not limited to particular
kinematic topologies and allows good collision detection times.
BioCD is also tailored to deal with the particularities imposed
by the molecular context on collision detection. Experimental
results show the effectiveness of the proposed approach which
is able to process thousands of (self) collision tests per second
on flexible protein models with up to hundreds of degrees of
freedom.

I. I NTRODUCTION

Collision detection (CD) is a classical problem in robotics
and also computer graphics. See [8], [12], [4] for recent
surveys. It has been widely studied during the past decades
and several efficient collision detection packages are now
available1. An important application of CD algorithms is robot
motion planning. In particular, the sampling-based planners
(e.g. [9], [10]) extensively use CD techniques for checking the
validity of the sampled configurations and of the local paths
computed between the samples. It is well known that these
planners spend most of the computing time for these validity
tests. Therefore, their overall performance for exploring con-
strained and possibly highly dimensional configuration spaces
strongly relies on efficient geometric CD techniques.

Most of the current CD approaches were designed to face
the geometric complexity of scenes composed by a large
number of possibly complicated obstacles. Self-collisions of
the robot are generally handled by simply testing the mutual
collisions between the bodies considered as a set of inde-
pendent rigid objects. While such approach is sufficient for
simple robots with a limited number of articulated bodies, it
turns out to become inefficient when applied to more complex
articulated mechanisms (e.g. humanoid robots [11]).

Motion planning techniques are applied today in diverse do-
mains such as graphic animation [18], [16] and computational

1e.g. see http://gamma.cs.unc.edu

Fig. 1. A protein can be seen as a complex articulated chain.

biology [2], [1], [17], [5] that involve articulated systems with
many degrees of freedom (DOF) which require new classes of
CD algorithms. In computational biology applications, colli-
sion detection is a challenging problem since macro-molecules
such as proteins can be described as highly articulated chains
with up to thousands of DOF. Figure 1 shows the model of an
intermediate-size protein and gives an idea of the complexity
of the corresponding articulated mechanism. The requirement
for specific CD techniques is therefore crucial to circumvent
the high quadratic cost of enumerating all non-bonded atom
pairs in models with thousands of atoms. In particular, the
number of pairs to be considered for self-collision can be
substantially reduced by considering the structural constraints
imposed by the kinematic chain structure. Only a few works
in CD literature [7], [13] addressed the specific problem of
testing self-collisions for such complex kinematic chains.

This paper describes the BioCD algorithm that we devel-
oped for efficient collision and distance computations between
highly articulated molecular chains, including efficient self-
collision detection inside each chain. BioCD is currently
integrated into the path-planning based approach investigated
in [6] for computing large-amplitude motions of flexible
molecules.

BioCD considers a mechanical model of macromolecules.
They are described as long serial chains with short side chains
along, but also with cycles to represent structural features of



the molecule (Section II). After stating our motivation with
respect to the close related work (Section III), we describe
the approach used in BioCD (Section IV). The bodies of
the articulated molecular model are composed of rigid atom
groups that correspond to structural elements. The algorithm
relies on two-levels of bounding volume hierarchies grouped
according to spatial proximity. The first level organizes the
rigid groups of the articulated model and the second one or-
ganizes the atoms inside each rigid group. Such data-structure
is not attached to particular topologies of the kinematic
chain. It can be efficiently tested for collision and updated
with a moderate cost. Finally, BioCD is also tailored to the
particularities imposed by the molecular context on collision
detection (Section V). First, atoms are not characterized by an
unique geometry; their size varies depending on the type of
interaction with the other atom tested for collision. In addition,
collisions must not be checked between all atom pairs, but
only between pairs of non-bonded atoms that are separated
by at least four covalent bonds. Experimental tests show the
practical efficiency of BioCD to process thousands of collision
tests per second for flexible protein models with hundreds of
DOF (Section VI).

II. M ACROMOLECULES AS ARTICULATED MECHANISMS

A. Kinematic structure

Biological macromolecules such as proteins have a complex
and flexible structure. They can be represented as a graph
in which vertices are the atoms and the edges are bonds.
Molecular modeling approaches usually assume for reducing
the number of variables that bond lengths and bond angles
are constant parameters. Under this assumption, the molecular
chain can be seen as an articulated mechanism with revolute
joints that correspond to bond torsions.

A protein is composed of one or several long polypeptide
chains, folded in a globular manner. The mechanical model of
a polypeptide is composed of a set of kinematic chains: the
main-chain (or backbone) and the side-chains of the amino
acid residues.

Fig. 2. Mechanical model of a protein residue (phenylalanin). Groups
of rigidly bonded atoms form the bodies. The articulations between bodies
correspond to bond torsions.

Fig. 3. Multiple closed chain illustrating a protein model.

Figure 2 shows the mechanical model for one flexible amino
acid residue of a protein. It is composed of five rigid bodies,
classified in: backbone rigid groups{Rb1, Rb2, Rb3} and side-
chain rigid groups{Rs1, Rs2}. The rotation angles between
them areφ and ψ for the backbone, andγ1 and γ2 for the
side-chain. These angles are the dihedral angles classically
used in molecular modeling.

There is clearly a linear structure in the topology of a protein
given by the sequence of amino acids. However, the chains are
affected by loop closure constraints due to structural features
induced by molecular interaction such as hydrogen bonds or
disulphide bonds. Thus, the mechanical model of a protein
is a complex multi-loop with many DOF, similar to the one
illustrated by the simple planar example of Figure 3.

B. Rigid groups of atoms

The bodies of the articulated molecular model are formed
by groups of rigidly bonded atoms. These groups may have
very different size. Taking advantage of a known secondary
structure (see Figure 4),α-helices andβ-sheets are often con-
sidered as rigid elements by molecular modeling approaches.
Rigid groups of atoms can be even larger, for example when
they involve all the secondary structure elements in a domain.
In contrary, in flexible protein portions such as protein loops,
the rigid groups are much smaller and they only concern a
few atoms inside a residue, as illustrated in Figure 2.

Following a classical robot kinematics approach, a cartesian
coordinate frame can be attached to each rigid body. The
relative location of consecutive frames is defined by an homo-
geneous transformation matrix that is a function of the rotation
angle between them. The position of an atom in a rigid group
with relation to the corresponding frame is simply defined by
a vector. A similar modeling approach was proposed in [19].

C. Steric model

CD applied to molecular model is aimed to act as a
geometric filter that rejects conformations with prohibitively
high van der Waals (VDW) energy. The filter needs to be
as selective as possible, but not at the cost of rejecting valid
conformations. We discuss below how the energetic constraints
can be translated into geometric distance constraints between
the atom positions.

The VDW interaction between atomi and j depends on
their relative distance,d, and on an equilibrium distance,d0,
determined by the type of the two atoms. The associated force



Fig. 4. Secondary structure elements of a protein model.

is slightly attractive at medium distances, null atd = d0 and
exponentially repulsive at short distances. Also, there exists
a VDW energy limit that cannot be compensated by any
other energy component. That energy is reached at a fraction
0 < ρ < 1 of the equilibrium distance (ρ ≈ 0.8). Therefore,
the collision detector must reject any conformation for which
d < ρ · d0 for any atom pair.

Two molecular constraints need to be handled by the
collision detector to avoid rejecting valid conformations. First,
VDW interactions that only concern non-bonded atoms are not
relevant between atoms separated by three or less chemical
bonds. Therefore, only pairs of atoms separated by four or
more bonds have to be considered for collision. This is one
of the particularities that any molecular CD must take into
account. The evaluation of the distances between topologically
close atoms is in consequence useless, and must be avoided as
far as possible instead of computing all interactions and then
filtering the relevant one in a postprocessing stage.

Another specific constraint of molecular applications is that
the collision distanceρ · d depends on the type of the two
interacting atoms. For example, this is necessary to model
the presence of hydrogen bonds that shorten the equilibrium
distance between specific atom pairs. In summary, the collision
criterion can be stated as :

d < Mt(i),t(j) andTopDist(i, j) > 3 (1)

whereM is a square symmetric matrix of threshold dis-
tances indexed by the atom types andTopDist(i, j) is the
chemical topological distance between the atomsi andj, i.e.,
the minimal number of chemical bonds that separates them.
Note that a variable-geometry criterion such as the matrix
condition in (1) is more general than the usual one in CD
literature.

III. C OLLISION DETECTION FOR MOLECULAR CHAINS

This section states the motivation of our technique described
in the rest of the paper in relation to the closest related work :
techniques developed for the efficent maintenance and self-
collision detection of large kinematic chains [7], [13], [14] and
the classical Grid algorithm [15] widely used in computational
biology for finding interaction pairs in large molecular models.

A. Related work

ChainTree [13], [14] and the algorithm for deforming
necklaces [7] both consider long serial linkages composed
of n links and n − 1 joints. Both techniques also rely on
Bounding Volume Hierarchies (BVH) based on the chain
topology, i.e. hierarchies built by grouping togethertopologi-
cally closed elements of the chain. This kind of hierarchies
allows to perform collision detection inO(n4/3) for well-
behaved chains2. The approach in [7] considers problems for
which all links move simultaneously in a continuous way. In
such situations, the worst case maintenance time for updating
the chain isO(n log n), but in practice it becomes close to
linear complexity under smooth deformation of the chain.

ChainTree was designed to speed up Monte-Carlo Simula-
tions (MCS) that applycontrolled changesto a few randomly
chosen DOF in each step. It exploits that only a few (k << n)
DOF’s change in each MCS step (and also the linear form of
the chain) to identify the parts of the molecule that remain
rigid. The update phase takes advantage of this to only process
the strictly concerned nodes of the hierarchies, allowing a
total update time ofO(k log nk ) that never exceedsO(n).
This is also used during the collision detection phase to avoid
checking atom pairs not affected by the DOF change. Thus,
only new collisions are reported at each step.

In addition to the techniques above, the classical Grid
algorithm from computational biology can be used to find
interacting atom pairs in linear time by indexing the atoms
in a regular grid using a hash table.

B. Our Contribution

Our aim is to propose an efficient technique adapted to the
model and requirements discussed in Section II, and also that
operates well on what we dubsampling-based motion planning
(SBMP) conditions. These conditions can be enunciated as
follows:

• Only a pre-selected set ofk DOF change in each iteration.
This set, obtained from the structural knowledge of
the chain (and possibly other biological knowledge), is
always the same (or at least the same for many iterations).

• The configuration before each iteration isarbitrary, and
the selected DOF change arbitrarily.

• The number of DOF is limited, but much larger than for
MCS conditions (from a few tens to one hundred).

None of the method in related works is satisfactory enough
for the requirements listed above. First, we do not want to

2The well-behaved assumption means the the chain cannot contain two
spheres whose centers are closer than a small fixed distance.



limit us to self-collision of linear chains. We need a more gen-
eral tool for testing both self-collision and collision between
molecular chains without restrictions about their topology.
Also, the expected continuity of the deforming necklaces and
the incremental collision detection of ChainTree does not fit
well with random sampling methods. We need to know if a
configuration resulting from a radical change in the selected
DOF is in collision, independently of the colliding pairs in
common with the previous query. Grid satisfies the constraints
above. However, it is unable to exploit the fact that, when
limited DOF are changed, most of the distances between
atoms remain constant. This ability makes a great difference
in practice, and is only well addressed by ChainTree. How-
ever, since our SBMP conditions assume that the same DOF
change from one iteration to another, the exploitation of the
permanence of the rigid groups can be simpler. This may allow
to build hierarchies with better properties. Finally, none of
the previous methods consider the two particularities of the
collision criterion (1) to deal with them efficiently.

IV. T HE BIOCD ALGORITHM

A. Two-level hierarchy

The algorithm relies on a two-level hierarchy organized
around the concept ofrigid groups of atoms, for taking
advantage of the SBMP conditions stated above: only a set
of k DOF is allowed to change while all the other remain
blocked. The preselected DOF may changeoccasionally(when
defining a new motion planning problem on the molecular
chain), but many CD queries will be performed with the
same set of selected DOF. While the selected DOF do not
change, many atoms in the molecular chain do not undergo
any relative displacement with respect to other atoms. The
two-level hierarchy allows a simple way to avoid useless tests
between such pairs of atoms.

A rigid group is defined as the maximal set of connected
atoms in which no internal distance can change. The rigid
groups can have very different sizes depending on the selected
DOF (see Section II). The smallest rigid groups correspond

a) b)

Fig. 5. Representation of a fully articulated protein segment (a) and the
same segment with only two articulated side-chains (b). The plain grey
boxes contain the rigid groups of atoms. The dashed boxes correspond to
the basic atom groups handled by BioCD to check short-range interactions
(see explanations in Section V-A).

to the bodies of the articulated residue model. Larger atom
groups are created along the rigid backbone segments of the
chain, e.g.α-helices orβ-sheets of the secondary structure.
Also note that nearby rigid groups whose relative positions
remain fixed (e.g.β-sheet pairs) are gathered into one group.
Figure 5 illustrates how the atoms of a protein segment form
the rigid groups depending on the selected DOF.

BioCD identifies the rigid groups of the molecular model
and builds a hierarchy for each of them as explained next.
These are thelow-levelhierarchies. Each of them arranges the
atoms of the rigid group and the root represents the group
itself. Theupper-levelhierarchy arranges the roots of the low-
level ones. Discarding the atom pairs whose interaction does
not change from one iteration to another (i.e., that take place
inside a rigid group) is simply performed by not testing the
root node representing the rigid group with itself.

The two-level hierarchy is induced by the requirement to
have a single node representing the each whole rigid group
of atoms. This is the best way to exclude tests between atoms
with fixed relative position. It also allows to nearby isolate the
parts of the hierarchy that must not be rebuilt (see Section??),
maximizing its size in a way that a flag in a one-level hierarchy
would not be able to do.

B. Spatially-adapted hierarchies

Both hierarchy levels group bounding volumes according
to spatial proximity, in akd-tree-like way [3]. The interest
of spatially-adapted hierarchies is twofold. First, they allow
fast self-collision detection,O(n) in the worst case (see [14])
and also, they are not bounded to any particular topology.
However, they require a worst caseO(n log n) building time.
As discussed in Section IV-E, the building time is in practice
lower under our SBMP conditions.

The hierarchies are represented by binary trees of Axis
Aligned Bounded Boxes (AABBs), chosen because they allow
very fast overlap tests, while being more tight bounding
volumes than spheres. Their purpose is to organize a set of
basic AABBs in such a way that the depth of a node is a good
indicator of the spatial proximity of its bounded elements.

For the low-level hierarchies, the basic AABBs (i.e. the
leaves) are formed by basic atom groups determined by the
topology of the molecule (see Section V-A) to efficiently
handle the “separated by more than 3 covalent bonds” rule
stated in the collision criterion (1). The basic AABBs of the
upper-level hierarchy are simply the AABBs of the rigid atom
groups.

Each node in the hierarchies owns a list of all the basic
AABBs below it, and it also maintains an AABB bounding
all the basic AABBs of its list. The root node contains all the
basic AABBs to be organized by the hierarchy.

C. Lazy hierarchy building

Both levels of hierarchies are built (and updated) using a
lazy procedure. Only the roots are computed in a first stage,
then the hierarchies are partially (re)-built depending on the
need for solving the CD queries.



Split(N)
//Splits nodeN into two children.

1 SplitDim := Max Dimension(N .AABB)
2 SplitVal :=

(N .AABB.max[SplitDim] - N .AABB.min[SplitDim])/2
3 LList := {AABB∈ N .listAABB | (N.AABB.max[SplitDim]

- N .AABB.min[SplitDim])/2 < SplitVal }
4 RList := {AABB∈ N .listAABB | (N.AABB.max[SplitDim]

- N .AABB.min[SplitDim])/2 > SplitVal}
5 N .left:= Create New Node() // creates left child
6 N .right:= Create New Node() // creates right child
7 N .left.listAABB:= LList
8 N .right.listAABB:= RList
9 N .left.AABB:= Bound(LeftList)
10N .right.AABB:= Bound(RightList)

Fig. 6. Node split procedure.

The building procedure first checks which rigid groups have
moved since the last collision request (all rigid groups for the
initial building). The “static” ones keep their old hierarchy.
The hierarchies of the other are destroyed. Then a new root is
created for each of them by first updating all the basic AABBs
and recomputing their bounding AABB that is assigned to
the rigid group root. Afterwards, the upper-level hierarchy
is destroyed, and a new root is created, with an associated
bounding AABB computed from the roots of the first level.

After this stage, the development of the hierarchies is
intertwined with the CD query. The splitting procedure is
launched on demand of the CD algorithm (see next section)
to develop the hierarchies only in the partitions of the space
requiring finer resolution.

The principle of the splitting mechanism is outlined in
Figure 6. To split a node, the widest dimension of its AABB is
selected jointly with a split value. All the basic boxes whose
center component in the splitting dimension is less than the
split value are owned by the left child and the remaining ones
by the right child. The splitting value may be any one such
that the two children own the same number of basic boxes,
producing a perfectly balanced tree. We prefer, however, to
simply take the middle value of the splitting dimension, be-
cause it produces more discriminating hierarchies. Moreover,
since the rigid groups are generally compact sets of atoms,
the hierarchies with this splitting value remain very reasonably
balanced. When one of the boxes occupies more than half the
length of the node BB splitting dimension, that box goes alone
with the left child and all the other boxes are owned by the
right one, thus avoiding infinite recursion when one of the
boxes occupies completely the largest dimension of the node.

D. Collision detection

The CD phase follows a standard algorithm to test the
collisions between two BVHs. The algorithm first starts with
the upper hierarchy of the concerned molecules and tests
whether their roots boxes overlap. For self-collision, the root
of the molecule is checked against itself. In the absence of
overlap the algorithm simply returns that there is no collision.

When the roots do overlap, it splits the node with the largest
number of basic AABBs (if not split yet) and continues testing
recursively the children with the other, smallest node. The
algorithm skips the test of a node with itself. When this node
is not a leaf, the auto-test is substituted by the three children
combination tests (left-left, right-right and left-right). When
the node is a leaf, then the auto-test is simply discarded,
because it corresponds to the collision of a rigid group with
itself, which must be avoided. Finally, a test between two
different leaves whose AABBs overlap, launches a call to
the collision detection algorithm between the two low-level
hierarchies.

The test of two low-level hierarchies is done in a similar
recursive way. However, when the algorithm reaches a leaf-
leaf pair, a fast test is made to check whether the interactions
between the two associated subsets of atoms have been already
treated by the functions in charge of computing relevant short
range interactions (see Section V-A). If the answer is positive,
nothing is done. Else, all the combinations between the atoms
of the two subsets are tested for collision.

Simple variants of this basic algorithm allow to integrate
other operation modes in BioCD, e.g. to report all the colliding
atom pairs, to retrieve all the atoms whose surface is at a
distance minor than a constant, or to compute the closest pair
of atoms. When a conformation is checked to be in collision,
this last mode allows to determine the more interpenetrating
pair of atoms, which can be a useful information for the motion
planning algorithms.

E. Performance Analysis

We next discuss our choice of spatially-adapted hierarchies
and show that the worst caseO(n log n) updating time pointed
in [14] can be lower in practice for our SBMP applications.

Let us consider that thek preselected DOF for a kinematic
chain of lengthn createO(k) rigid groups with a size of
O(nk ). Building the upper hierarchy for theO(k) rigid groups
therefore requiresO(k log k) in worst case (but generally less
in practice because of the lazy building mechanism). Now
concerning the low-level hierarchies, the first query requires
to build in worst case all thek hierarchies, each of sizeO(nk ).
Then, the initial building takesO(n log nk ).

It is however important to note that the following updates
can be performed much more efficiently in practical situations
for which the displaced atoms between two queries are associ-
ated to small rigid groups. This is for example the case when
the protein model has a rigid secondary structure with large
rigid segments involvingO(n-k) residues, connected by few
flexible loops made byO(k) residues. In such situations, only
theO(k) small hierarchies have to be rebuilt, each having a
constant complexity (one residue). Then, the total rebuilding
time for all changed hierarchies decreases toO(k).

In such situations, the overall update time of the algorithm
then decreases toO(k + k log k). This relates favorably
to the good update time of chain-aligned hierarchies used
in ChainTree [14] which requiresO(k log nk ) update time.
However, for situations werek ≈ n DOF are changed, the



Fig. 7. Circles represent atoms and fine lines between atoms represent
covalent bonds. Only the interaction indicated by the bold arrow must be
considered for this exemple.

worst case of our updating phase remainsO(n log n). Then,
when most DOF of the chain are selected, the update of
our two-level spatially-based hierarchy is less efficient than
with ChainTree whose update complexity never exceedsO(n).
This is however compensated by the efficientO(n) collision
detection stage of spatially-adapted hierarchies, instead of
O(n4/3) with ChainTree.

V. M OLECULAR CD SPECIFICITIES

This section deals with the two particular conditions for
collision on molecular models discussed in Section II-C.
These specificities have conditioned certain choices for the
algorithmic design of BioCD, in particular the choice for the
basic atom groups corresponding to the leaves of the low-level
hierarchies.

A. Short-range interactions

When checking self-collision in a molecular model, pairs
of atoms separated by less than four covalent bonds must be
disregarded (see Figure 7 for illustration). In the following,
we call such pairs of atomsexcludedpairs. However, it is
not obvious how to integrate this rule within algorithms based
on hierarchical bounding structures. A simple but inefficient
solution is to check all atom pairs, asking afterward if each
detected interaction belongs to the very long list of excluded
ones. Our solution is much more efficient thanks to a particular
choice of the basic elements handled in the BioCD structures
(i.e. the leaves).

In a natural way, the basic elements handled by BioCD
nearly correspond with the basic components of macro-
molecules. In the case of proteins, each amino acid residue
r is divided into two basic atom groups. One group, which
we refer to aspseudo-backboneBr, involves all backbone
atoms and the first side-chain atom (Cβ); the rest of the atoms
is grouped into thepseudo-side-chainSr. There are only two
exceptions to this rule for grouping protein atoms: 1) The
proline cycle is considered rigid, and thus all the atoms are
included in the pseudo-backbone unit. 2) In a disulphide bond,
the two cystein pseudo-side-chains form one only unit. The
dashed boxes in Figure 5 shows how this partition method is
applied on a protein segment.

MM 2131t ,t t ,t

Fig. 8. Collision distance depends on the atom types.

Using this basic partition of a protein, excluded atom pairs
only appear when checking collisions:
• Between the pseudo-backbone group and the pseudo-

side-chain group of a same residue (Br andSr).
• Between the pseudo-backbone groups of two consecutive

residues (Br andBr+1).
• Inside a pseudo-backbone or a pseudo-side-chain, only if

it is articulated.
Indeed, most atoms pairs in the three cases are excluded pairs.
During the inizialization of BioCD, a list of non-excluded
atom pairs is created for each couple of connected basic
groups{Br,Sr} and{Br,Br+1} belonging to different high-
level leaves, and for each articulated group. Collision detection
(or distance queries) in such cases is treated by a Short-
Range Interaction function (SRI) that symply tests collisions
in the corresponding list of non-excluded atom pairs, instead
of making a systematic test like in the rest of the cases.

B. Collision detection between different atom types

For a better accuracy of the geometric filtering of molecular
conformations, BioCD checks distances between atom pairs
that depend on the atom types. (see Section II-C). Figure 8
shows an example with three different atom types. This
condition does not imply a particular difficulty for collision
detection, however, it affects the definition of the BBs. The
AABBs used by BioCD have to be defined in a different
way than in classical collision detection algorithms that treat
geometric primitives with constant size.

The AABBs must be large enough to safely exclude the
possibility of collision if there is no overlap between them.
This condition can be simply guaranteed using the following
equations to compute the lower and upper bounds of the
AABB associated to each nodeN :

N.AABB .min[d] = min
i
{Xi[d]−Rt(i)| i ∈ N} (2)

N.AABB .max[d] = max
i
{Xi[d] +Rt(i)| i ∈ N} (3)

Xi[d] is the position of the atomi in dimensiond = {x, y, z}.
Rt(i) is a size associated with the type of atomi, and it is
calculated as:

Rt(i) = max
t(j)
{Mt(i),t(j)/2} (4)
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where thet(j) are all the atom types. This is equivalent to
cautiously assume, for the AABBs construction, a fixed size
for each atom type corresponding to the maximum it can take
in any context. Since for an atom typet(i) all the values
of Mt(i),t(j) are quite similar, such conservative AABBs are
sufficient. The exact collision test using the distance values in
M is only performed for the atom pairs tested at the leaf-leaf
level.

VI. EXPERIMENTS

In this section we present experimental results that show the
performance of BioCD for solving three types of problems:

• Determine whether a conformation is in collision or not.
• Compute the closest pair of atoms.
• Report the list of all colliding atoms pairs.

The indicated times were obtained on a 2.5 Ghz G5 Apple
computer and were averaged over 10.000 randomly sampled
conformations. Also remember thatρ is the fraction of the
VDW equilibrium radius allowed for penetration. The exper-
iments were carried out withρ = 0.8, a value typically used
in applications because it has a chemical significance.

Figure 9 compares the performance of BioCD for testing the
self-collision of a medium size protein (1DO3, 153 amino acid
residues) with different number of free DOF. Five different
sets of preselected DOF were chosen, freeing completely the
internal DOF of 1, 5, 10, 35 and 153 residues in each case.
For 1 residue this corresponds to 7 effective DOF, and for
the 153 residues data to 773 effective DOF. The free residues
were always selected at regular intervals along the chain. For
example, in the case of 1 free residue, it is chosen as the
middle one of the chain, and in the case of 35 free residues,
3 blocked residues are systematically followed by one free
residue. The graphic shows that BioCD scales very gently with
the increase in the number of DOF. We can see that computing
time when all the DOF of the molecule are free is no more
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than twice the time required for only one free residue. Also
note that the times to report all collisions or to get the closest
pair of atoms remain very similar and do not require more
than twice the time of binary collision detection in the case
of the fully articulated test. This is a very good performance
specially if we consider that the random conformations were
sampled inside the full range of dihedral angles, resulting in
a very high number of average collisions per conformation.
For such cases, the recursion must test many leaves to get the
complete list of colliding pairs (in the order of thousands for
the fully articulated test). It is also important to mention that
when testing collision-free conformations the performance of
the algorithm slightly improves (factor up to 2) compared to
the times reported in the figure.

Figure 10 compares the performance for several proteins
of increasing size, tested with the same number of DOF. The
protein sizes span from small to medium-high: 36 (1PMC),
74 (1NEQ), 153 (1DO3), 310 (1BE0) and 628 (1G5A) amino
acid residues. The proportion between the size of any two
consecutive proteins in the graphic is approximately 2. Thus,
the scale of the abscissae is logarithmic on the size of the
protein. The rate between the collision detection time for the
first protein and second one is 6, while the rate between the
fourth and the last is only 2. Thus, at least for these sizes
of proteins, the computation time is almost linear in practice.
For larger sizes, the time to find all the colliding pairs (and
also the closest pair) is however expected grow faster since
the number of collisions to be reported (or tested) grows with
the size of the protein.

The comparison of the tests above with ChainTree results
shown in [14] seem to confirm a much lower dependence of
BioCD computing time with the number of DOF simultaneous
changes. Indeed, while a performance slow-down of a factor
of 30 is indicated in [14] when the number of DOF increases
from a few to one hundred, Figure 9 shows a much lower



performance degradation with BioCD. For only few DOF
changes, results in [14] (obtained on a 400MHz Sun Ultra
Enterprise with 4GB RAM) seem to indicate a slightly better
performance of ChainTree. This should be counterbalanced by
the fact that ChainTree tests did not consider the side-chains
of the molecular model. Consequently, for a same protein
model, BioCD (which deals with side-chains) handles about
twice the number of atoms than ChainTree. Moreover, in the
experiments above, BioCD does not take advantage of possible
rigid elements of the secondary structure. One could expect
some additional speed up for such applications with only some
flexible loops and side-chains.

VII. C ONCLUSION

Macromolecules such as proteins are complex mechanical
systems and their motion analysis is a highly challenging prob-
lem due to their huge number of DOF. MCS techniques clas-
sically used in molecular modeling search the conformational
space by slightly perturbing a few DOFs randomly chosen at
each step. Another promising way to tackle such problems is
to use motion planning techniques while considering the most
relevant DOF.

In this paper, we described a new BioCD algorithm spe-
cially designed for sampling-based motion planners applied
to molecular models. It assumes that molecules are composed
of a set of rigid elements determined by a limited number
of selected DOF. This permits the efficient use of two-level
data structure based on spatially-adapted hierarchies. The
algorithm is general, in the sense that it does not assume
particular topologies of the kinematic chains, while allowing
good collision and self-collision detection times. BioCD inte-
grates in an efficient way the particularities imposed by the
biomolecular context on collision detection. It is also very
versatile and offers several operation modes allowing to get
useful information (e.g. distances or closest atoms pairs) for
the motion planning algorithms. Our experiments performed
with real protein models shows a very good performance
for reporting self-collision in large protein models, with only
a limited overhead for also computing distances on all the
colliding atom pairs.

There remain several possible improvements. In particular
there are ways to improve the update time of the hierarchies
that must be compared. Although the current implementation
of BioCD is tailored to protein models, the approach can be
extended to other kinds of macromolecules such as DNA or
RNA.
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