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1. The Problem of Coupled Stochastic 
1.1 State Estimation 
1The study of stochastic models for Simultaneous Localization and Map Building (SLAM) 
in mobile robotics has been an active research topic for over fifteen years. Within the 
Kalman filter (KF) approach to SLAM, seminal work (Smith and Cheeseman, 1986) 
suggested that as successive landmark observations take place, the correlation between the 
estimates of the location of such landmarks in a map grows continuously. This observation 
was later ratified (Dissanayake et al., 2001) with a proof showing that the estimated map 
converges monotonically to a relative map with zero uncertainty. They also showed how 
the absolute accuracy of the map reaches a lower bound defined only by the initial vehicle 
uncertainty, and proved it for a one-landmark vehicle with no process noise. 
From an estimation theoretic point of view, we address these results as a consequence of 
partial observability. We show that error free reconstruction of the map state vector is not 
possible with typical measurement models, regardless of the vehicle model chosen, and 
show experimentally that the expected error in state estimation is proportional to the 
number of landmarks used. Error free reconstruction is only possible once full 
observability is guaranteed. 
Explicit solutions to the continuous time SLAM problem for a one-dimensional vehicle 
called the monobot appear in (Gibbens et al., 2000, Kim, 2004). Both give closed form 
asymptotic values of the state error covariance P. Kim observed that, for the case when not 
all landmarks are observed at all times, the asymptotic value on the determinant of P
reaches a constant value greater than zero. Gibbens et al. on the other hand, observed that 
the rate of convergence of P is proportional to the number of landmarks used, and that its 
asymptotic value is independent of the plant variance. In their solution to the 1-d 
Brownian motion case, the state error covariance is linked to the total number of 
landmarks in the form of the total Fisher information 2
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indicates the “informational equivalence of the measurements and the innovations” (Bar-Shalom 
et al., 2001), and was derived from a simple likelihood function, one that does not contain 
the fully correlated characteristics of the measurement model. This Chapter contains a 
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more general expression for the total Fisher information in SLAM that shows explicitly the 
unobservable directions of the state space. 
To speed up the performance of Kalman filterbased SLAM algorithm, some authors have 
proposed the use of covariance inflation methods for the decorrelation of the state error 
covariance (Guivant and Nieto, 2003), subject to suboptimality of the filter. Adding 
pseudo-noise covariance to the landmark states is equivalent to making the system 
controllable. However, full decorrelation of a partially observable system might lead to 
filter unstability (Julier, 2003). In this Chapter we also show how to diagonalize only part 
of the state error covariance to obtain a suboptimal filter that is both linear in time, and 
stable, at the same time.  
In summary; in SLAM, the state space constructed by appending the robot pose and the 
landmark locations is fully correlated, a situation that hinders full observability. Moreover, 
the modelling of map states as static landmarks yields a partially controllable state vector. 
The identification of these problems, and the steps taken to palliate them, are covered in 
this Chapter.  
The Chapter is structured as follows. In Section 2 we present the Simultaneous 
Localization and Map Building problem as a stochastic state estimation problem, and 
choose the Extended Kalman Filter algorithm as an alternative for solving it. The steady 
state of the filter will always depend on the initial noise parameters. The effect of partial 
observability is known as marginal stability (Todling, 1999), and is in general an 
undesirable feature in state estimation. In Section 3 we show that marginal filter stability is 
a consequence of having a coupled state estimation problem, by anylizing the poles of the 
state error dynamics. In Section 4 we derive an expression for the total Fisher information 
in SLAM. The analysis yields a closed form solution that shows, explicitly, the 
unobservable directions of the map state. 
Marginal filter stability and the singularity of the Fisher information matrix are 
equivalently consequences of having partial observability. In Section 5 we develop 
expressions for the observable and controllable subspaces for a non-holonomic velocity 
controlled planar mobile platform. The result is that as the number of landmarks increases, 
the state components get closer to being reconstructible.  
In Section 6 we show how partial observability in SLAM can be avoided by adding a fixed 
external sensor to the state model, or equivalently, by setting a fixed landmark in the 
environment to serve as global localization reference. Full observability yields the 
existence of a (not necessarily unique) steady state positive semi-definite solution for the 
error covariance matrix, guaranteeing a steady flow of the information about each state 
component, and preventing the uncertainty (error state covariance) from becoming 
unbounded (Bar-Shalom et al., 2001).
In Section 7 we show how as a consequence of having a partial controllability, filtering of 
the landmark state estimates is terminated after a small number of iterations, i.e., their 
corresponding Kalman gain terms tend to zero. In subsection 7.1 we show a situation in 
which the filter becomes unstable during covariance inflation. In subsection 7.2 we 
introduce a method for covariance decorrelation that preserves the stability of the filter. 
Furthermore, we show in subsection 7.3 another solution for a stable covariance inflation 
algorithm, consisting on first recovering full observability prior to decorrelating the entire 
state error covariance matrix. Conclusions are presented in Section 8. 



225

2. Kalman Filter Based SLAM 
2.1 System Model

Figure 1.  State estimation approach to simultaneous localization and map building

Formally speaking, the motion of the robot and the measurement of the map features are 
governed by the discrete-time state transition model  
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The state vector xk contains the pose of the robot xr,k at time step k, and a vector of 
stationary map features xf, i.e.,
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The input vector uk is the vehicle control command, and vk and wk are Gaussian random 
vectors with zero mean and psd covariance matrices Q and R, respectively, representing 
unmodeled robot dynamics and system noise the former; and measurement noise the 
latter. See Figure 1. 

2.2 Algorithm

Provided the set of observations 1,...,k
kZ z z  was available for the computation of the 

current map estimate |k kx , the expression
                                                                             

1
( , ,0)kk k k kx f x u   (4) 

gives an a priori noise-free estimate of the new locations of the robot and map features 
after the vehicle control command ukis input to the system. Similarly,  

1| 1|( )k k k kz h x  (5) 

constitutes a noise-free a priori estimate of sensor measurements. 
Given that the landmarks are considered stationary, their a priori estimate is 
simply

, 1 ,f k k f k kx x ; and the a priori estimate of the map state error covariance showing 

the increase in robot localization uncertainty is  

                                                                           
T

1 1 1k k k k k kP E x x  (6) 
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T T

k kFP F GQG  (7) 
The Jacobian matrices F and G contain the partial derivatives of f with respect to the state 
x and the noise v, evaluated at , ,0kk kx u .

Assuming that a new set of landmark observations zk+1 coming from sensor data has been 
correctly matched to their map counterparts, one can compute the error between the 
measurements and the estimates with 1| 1 1|k k k k kz z z . This error, known as the 
innovation, aids in revising both the map and robot locations. The a posteriori state 
estimate is

1| 1 1| 1|k k k k k kx x Kz  (8) 
and the Kalman gain is computed with

T 1
1|k kK P H S  (9) 

where S is the measurement innovation matrix,  
T

1|k kS HP H R  (10) 
and H contains the partial derivatives of the measurement model h with respect to the 
state x evaluated at 1|( )k kx .
Finally, the a posteriori estimate of the map state error covariance must also be revised 
once a measurement has taken place. It is revised with the Joseph form to guarantee 
positive semi-definiteness.  

T T
1| 1 1|k k k kP I KH P I KH KRK  (11) 

3. Convergence 
Substituting the linearized version of (4) in (8), we may rewrite the KF in the one-step 
ahead prediction form

1| | 1k k k k kx F KH x Kz  (12) 

and with the appropriate substitutions, using (6) and (12), the corresponding prediction 
error dynamics becomes

1| | 1( )k k k k k kx F KH x Gv Kw  (13) 

In general, only for a stable matrix F-KH, the estimation error will converge to a zero 
mean steady state value. However, in SLAM, F-KH is marginally stable, thus the steady 
state error estimate is bounded to a constant value, subject to the filter initial conditions. 
To show F-KH marginally stable, consider the one landmark monobot from Figure 2. F=I,

T[1,0]G , and 1,1H . For any value of
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the Kalman gain, computed with (9), is  
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where
                                                                        

2 2 22r f r f ws  (16) 
is the innovation variance. Consequently, 
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with eigenvalues  
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One of the eigenvalues being on the unitary circle yields marginal stability, i.e., constant 
bounded non-zero mean error state estimate convergence. Moreover, the marginal 
stability of F-KH guarantees at least one psd steady state solution to the Riccati equation 
for the one-step ahead state error covariance (Vidal-Calleja et al., 2004b, Kailath et al., 
2000).

T T T T
1| | 1( ) ( )k k k kP F KH P F KH GQG KHRH K  (18) 

Figure 2. Monobot, a one-dimensional mobile robot 

4. Total Fisher Information 
Under the Gaussian assumption for the vehicle and sensor noises, and for linear vehicle 
and measurement models, the Kalman filter is the optimal minimum mean square error 
estimator. And, as pointed out in (Bar-Shalom et al., 2001), minimizing the least squares 
criteria T

| |[ ]E k 1 k 1 k 1 k 1x x  is equivalent to the maximization of a likelihood function 
( )x given the set of observations kZ ; that is, the maximization of the joint probability 

density function of the entire history of observations
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where x is the augmented map state (vehicle and landmark estimates), and zi the entire 
observation vector at time i.
Given that the above pdfs are Gaussian, and that | 1[ ]i i iE z Hx , the pdf for each 
measurement in SLAM is  

                                                                     
1

1
( ) ( ;0,S )i
i ii ip z Z N z  (20) 

with T
| |[ ]i E i i 1 i i 1S z z .

In practice however, it is more convenient to consider the log likelihood function ln ( )x .
The maximum of ln ( )x is at the value of the state x that most likely gave rise to the 
observed data kZ , and is obtained by setting its derivative with respect to x equal to zero, 
which gives  
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An intuitive interpretation of the maximum of the log-likelihood is that the best estimate 
for the state x, in the least squares sense, is the one that makes the sum of the entire set of 
Mahalanobis distances T 1

1 11

k
ii i i ii

z S z  as small as possible. A measure that is consistent 
with the spatial compatibility test described in (Neira and Tardós, 2001). The Fisher 
information matrix, a quantification of the maximum existing information in the 
observations about the state x, is defined in (Bar-Shalom et al., 2001) as the expectation on 
the dyad of the gradient of ln ( )x , that is

                                                                  
T( ln ( ))( ln ( ))x xJ E x x  (22) 

Taking the expectation on the innovation error in the above formula gives the sum  

                                                                       
T T 1

1

( )
k

i
J H HPH R H  (23) 

It is easy to verify that in the linear case, this expression for the total Fisher information is 
only a function of

,0 0rP , Q, and R. If, on the other hand, the EKF is used, the Jacobian H in 
(23) should be evaluated at the true value of the states x0.,…xk Since these are not 
available, an approximation is obtained at the estimates | 1i ix . The pre and post 
multiplying H is, in this context, also known as the sensitivity matrix.
A necessary condition for the estimator (the Kalman filter) to be consistent in the mean 
square sense is that there must be an increasing amount of information about the state x in 
the measurements. That is, as k , the Fisher information must also tend to infinity. 
Figure 3 shows this for the monobot with constant parameters 

r,0 0
P =Q=R=1, and various 

sizes for the observation vector.  
Notice how, as the total number of landmarks grows, the total Fisher information also 
grows, directly relating the number of landmarks to the amount of information available 
for state estimation in SLAM. Solving for the k-th sum term in J for the monobot,  

                                                                         
T 1

ij
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with ij  the ij-th entry in 1

kS , and 1 ,...,i ni

Figure 3.  First entry in the total Fisher information matrix ij for a monobot with variance parameters 

r,0 0
P =Q=R=1 , and various sizes for the measurement vector 
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Citing Bar-Shalom (Bar-Shalom et al., 2001): “a singular Fisher information matrix means total 
uncertainty in a subspace of the state space, that is, the information is insufficient for the estimation 
problem at hand.” Unfortunately, it can be easily shown, at least for the monobot case, that 
the first row (or column) of J is equivalent to the sum of the rest of the rows (or columns), 
producing a singular total Fisher information matrix. Thus, SLAM is unobservable. 
This is a consequence of the form of the Jacobian H, i.e, of the full correlation in SLAM. 
Zero eigenvalues of T 1H S H  are an indicator of partial observability, and the 
corresponding vectors give the unobservable directions in state space. 
So for example, for a one-landmark monobot, the innovation variance is the scalar (16), 
and since H=[-1,1], the Fisher information matrix in (23) evaluates to  

                                                                              
1

1 1 1
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k
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s
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The unobservable direction of the state space is the eigenvector associated to the null 
eigenvalue of J, we denote it  since it represents a basis for null space of the 
observability matrix , and evaluates to  

 =
1
1

 (26) 

5. Relationship Between Observable and Controllable Subspaces
for a Velocity Controlled Non-linear Planar Robot 

We have developed closed form expressions for the bases of the observable and 
controllable subspaces in SLAM for a monobot and for a simple position controlled planar 
vehicle (Andrade-Cetto and Sanfeliu, ). 
In this Section we derive the observable and controllable subspace bases for the planar 
robot shown in Figure 4, a nonlinear nonholonomic velocity controlled wheeled vehicle 
with three degrees of freedom, and an environment consisting of two-dimensional point 
landmarks located on the floor. 

Figure 4. Two-dimensional mobile robot 
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The vehicle is controlled by a linear velocity v and a steering velocity . The process 
model used to predict the trajectory of the center of projection of the laser range scanner is 
given by  

                                         

, .
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where l is the distance from the center of the wheel axle to the center of projection of the 
laser range scanner,  is the time constant, and ,vv v  are zero mean Gaussian model 
noises.
The observation model is  

2 2

,

,

1,
,tan
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i i
f k f k r ki

r k
ii f kk

k ki
f k

x x y y w
z

y yz w
x x

 (28) 

with i
rz  and  the distance and bearing of an observed point landmark with respect to the 

laser center of projection. i
fx  and i

fy are the absolute coordinates of such landmark, and i is 
used for the labelling of landmarks. i=0 indicates an anchor feature not under estimation 
in order to guarantee full observability. rw  and w  are zero mean Gaussian measurement 
noises.
The Jacobian matrices F, G, and H are obtained by differentiating Equations (27) and (28) 
with respect to states and noises. That is,
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with
2 2i i

f k f kd x x y y
2 2i i

f k f kd x x y y .
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The dimensionality of the controllable subspace is dim xr=3, and for the specific case in 
which only one landmark is available, a basis for the controllable subspace is simply  

2x3

I
0

The dimensionality of the observable subspace is, for this particular configuration, rank 
=3. This last result is easily verified with simple symbolic manipulation of the 

expression resulting from substituting expressions (29) and (31) in the observability matrix

1dimx

H
HF

HF

                         (32) 

Possible bases for , and for the null space of  (the unobservable subspace) are

                                                    

1 0 0
0 1 0
0 0 1
1 0 0

0 1 0

     

1 0
0 1
0 0
1 0
0 1

The only independently observable state is the one associated to the robot orientation .
The other four states, the Cartesian coordinates of the robot and landmark locations span a 
space of dimension 2. Even when  and  both span 3 , we see that the inequality 

 still holds, as in the case of the monobot. That is, the observable and 
controllable subspaces for this one-landmark 3dof-robot SLAM problem correspond to 
different three-dimensional subspaces in 5 ; and, their intersection represents the only 
fully controllable and observable state, i.e., the robot orientation.

6. Complete Observability 
In Section 4 we characterized the unobservable subspace in SLAM as the subspace 
spanned by the null eigenvectors of the total Fisher information matrix. Furthermore, we 
showed in Section 5 how the unobservable part of the state space is precisely a linear 
combination of the landmark and robot pose estimates. 
In order to gain full observability we propose to extend the measurement model doing 
away with the constraint imposed by full correlation by letting one landmark serve as a 
fixed global reference, with its localization uncertainty independent of the vehicle pose. 
The principle behind is that full observability requires an uncorrelated measurement 
Jacobian, or equivalently, a full rank Fisher information matrix. The use of a fixed global 
reference as anchor guarantees that. 
The measurement model of a global reference fixed at the origin, for the nonlinear vehicle 
from Figure 4. is  
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and its corresponding Jacobian is  
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The symbolic manipulation of  

                                                                                         
0

i

H
H

H
 (35) 

with a commercial algebra package, produces a full rank observability matrix. That is, for 
the linearized nonholonomic velocity controlled planar mobile robot platform used, the 
simultaneous measurement of one anchor as global reference, and any other landmark, is 
sufficient to attain full observability in SLAM. 

7. Suboptimal Filter Stability 
When a stochastic system is partially controllable, such as in the case of SLAM, the 
Gaussian noise sources vk do not affect all of the elements of the state space. The diagonal 
elements of P corresponding to these incorruptible states will be driven to zero by the 
Kalman filter, and once this happens, these estimates will remain fixed and no further 
observations will alter their values. The dynamics of the model assume the landmarks are 
fixed elements, for which no process noise is considered. Therefore, their associated noise 
covariance (its determinant) will asymptotically tend to zero (Dissanayake et al., 2001). 
The filter gain for the landmark states will also tend to zero. Figure 5 shows two new 
simulations for a linear SLAM case, a monobot under Brownian motion with one and two 
landmarks. The simulations show the evolution of the localization errors for both the 
monobot and the landmarks, and the reduction of the landmark part of the Kalman gain, 
due to the uncontrollability of the system. The only way to remedy this situation is to add 
a positive definite pseudo-noise covariance to those incorruptible states (Bar-Shalom et al., 
2001).
In Figure 5, the vehicle location is indicated by the darkest curve at the -1m level in the 
first row of plots. In the same set of plots, and close to it, is a lighter curve indicating the 
vehicle location estimate as computed by the filter, along with 2  bounds on such 
estimate shown as dotted lines. The dark straight lines at the 1m level indicate the 
landmark location estimates; and the lighter curves are noise corrupted signals of sensor 
measurements. Also shown, are a pair of dotted lines for 2  bounds on the landmark 
location estimates. The second row of plots shows the vehicle location error only, and its 
corresponding variance, also on the form of 2  dotted bounds. 
See how the localization error has non-zero mean due to partial observability, an 
undesirable feature in Kalman filtering. The third row shows non-zero mean landmark 
state estimate errors. And, the last row shows the Kalman filter gains both for the vehicle 
and landmark revision terms. The Kalman gains for the revision of the landmark estimates 
rapidly tend to zero, the reason being that these states are uncontrollable. 
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1 landmark 2 landmarks 

a) Robot and landmark position 

b) Robot localization error 

c) Landmark localization error 

d) Kalman gains 

Figure 5. Partially observable SLAM for a monobot during Brownian motion with 100 iterations (see text) 
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7.1  O(N) but Unstable Partially Observable SLAM 

One way to add pseudo-noise to the model is by diagonalizing the state error covariance 
matrix (Guivant and Nieto, 2001, 2003, Julier, 2003). This technique is often used to reduce 
the time complexity of the algorithm from O(N2) to O(N). The result is a suboptimal filter 
that will compute inflated estimates for the vehicle and landmark covariances, that has the 
computational advantage of being uncorrelated. The addition of a covariance term P to 
the a priori state covariance estimate
                                                                   

T T
1k k k kP FP F GQG P (36)

is equivalent to providing a new form to the plant noise Jacobian ,G G I

                                                                 
T , ,T

1k k k k

Q
P FP F G G

P
(37)

P may be chosen, for example, such as to minimize the trace of a resulting block 
diagonal P in (36) (Julier, 2003). 
Choosing a full rank P is equivalent to having noise input to more states than those that 
can be observed with the filter. In this case, because of partial observability, both vehicle 
and landmark variance estimates become unbounded. Figure 6 shows this for the same 
monobot experiment as in the previous simulation. This phenomena was first observed in 
(Julier, 2003) using relative maps. Not only both the vehicle and landmark state estimation 
variances become unbounded. Also, thanks to the full controllability of the system, the 
Kalman gain for the revision of the landmark states is greater than zero; but still, does not 
converge to a steady state value. We believe that the addition of pseudo-noise should be 
performed only at most, in the amount of states equal to the dimension of the observable 
subspace. 

7.2 O(N) and Stable Partially Observable SLAM 

One solution to the problem of instability during covariance inflation, is to decorrelate 
only the landmark state estimates, and to preserve all vehicle to landmark correlations 
(Vidal-Calleja et al., 2004a). 

                                                                              
0

f
P Q (38)

such that Pf +Qf , the map part of the state error covariance, is block diagonal. 
Figure 7 shows a partially observable monobot under Brownian motion for which only the 
landmark part of the state error covariance matrix has been decorrelated. The algorithm 
does converge to a steady state solution under this circumstances, and still can be 
implemented in real time. The one landmark case is identical than the original case, since a 
linear one landmark map is already diagonal (scalar actually). 
For the two-landmark case, the landmark variance estimate is greater than the optimal 
solution shown in the third column in Figure 5 since the covariance has been inflated 
during decorrelation. Furthermore, now that the system is controllable, the Kalman gains 
for the landmark state estimates do not become zero, and they converge to a steady state 
value.
Moreover, we , that the covariance inflation suboptimal partially observable SLAM 
converges only when

rank P rank  (39) 
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1 landmark 2 landmarks 

a) Robot and landmark position 

b) Robot localization error 

c) Landmark localization error 

d) Kalman gains 

Figure 6. Partially observable SLAM for a Brownian motion monobot with 100 iterations. The entire state 
error covariance is decorrelated with the minimal trace solution (Julier, 2003). By decorrelating the entire 
state error covariance matrix, the covariance estimates become unbounded 
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a) Robot and landmark position 

b) Robot localization error 

c) Landmark localization error 

d) Kalman gains 

Figure 7.  Partially observable SLAM for a Brownian motion monobot with 100 iterations. The state error 
covarance is decorrelated only for the landmark part of the state vector, with the minimal trace solution. By 
decorrelating only the map part of the state error covariance matrix, we preserve filter stability 
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b) Vehicle error 

c) Landmark localization error 

d) Kalman gains 

Figure 8.  Fully observable SLAM for a Brownian motion monobot with 100 iterations. The entire state error 
covarance is decorrelated with the minimal trace solution. In the linear case, it is possible to decorrelate the 
entire state error covariance matrix, and still preserve filter stability 
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a) Vehicle localization error b) Vehicle covariance 

c) Landmark localization errors d) Landmark covariance 

Figure 9.  Partially observable SLAM for a car-like vehicle at the University of Sydney Car Park. The entire 
state error covariance matrix is decorrelated with the minimal trace solution (Julier, 2003) 

7.3 O(N) and Stable Fully Observable SLAM 

Consider now the fully observable case from the previous Section. If we add pseudo-noise 
to the vehicle as well as to the landmark states, the covariance will reach a steady-state 
value, and the Kalman gain will not be zero, at least, in the linear case. Figure 8 shows this 
results diagonalizing the whole state error covariance (not only the landmark part of P). 
In this latter experiment, the state error variances reach lower values than those in the 
partially observable case. The solution of the Riccati equation is now independent of the 
initial covariance estimate P0|0. We have observed experimentally however, that with a 
nonlinear vehicle model, it is best to also decorrelate only the map part of the state error 
covariance, even in the fully observable case. 

7.4  Experimental Results 

We show now results on a series of experiments for a nonlinear vehicle with an also 
nonlinear measurement model, using the ACFR - University of Sydney database (Nebot 
et al., 2002). The test run used corresponds to a car-like vehicle at the University Car Park. 
The landmarks used are tree trunks, as measured with a laser range finder. The 
reconstructed maps are compared to GPS ground truth for accuracy. The first experiment 
corresponds to a typical partially observable SLAM run, in which the entire state error 
covariance is being decorrelated as discussed in Section 7.1. Figure 9 plots results on this 
run, showing in rows b) and d) unbounded covariances both for the vehicle and landmark 
state estimates, due to the naïve covariance inflation method used. 
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The second experiment corresponds to the same partially observable SLAM conditions, 
but decorrelating only the map part of the state error covariance. Adding pseudo-noise to 
the landmark states during the inflation procedure amounts to making the system 
controllable; and doing so for as many states as those observable, produces both vehicle 
and landmark bounded state covariance estimates. This is shown in Figure 10, frames b) 
and d). Figure 12 frame a) shows the actual vehicle path and landmark location estimates 
recovered by the algorithm, compared to GPS ground truth for the beacons. Note that 
even when the “relative” map is consistent (Dissanayake et al., 2001), it is slightly rotated 
and shifted from the actual beacon locations. The amount of this shift depends on the 
initial vehicle uncertainty, i.e., the initial filter conditions, and can be seen in Figure 10, 
frame c). 
The last experiment shown corresponds to a fully observable SLAM run (using the first 
observed beacon as an anchor), and also decorrelating only the map part of the state error 
covariance. In this case, the vehicle and landmark covariance estimates do not depend on 
the initial filter conditions, and thus are significantly reduced. This is shown in frames b) 
and d) in Figure 11. The absolute landmark estimate error is also significantly reduced, as 
shown in Figure 11, frame c). Figure 12 frame b) shows the actual vehicle path and 
landmark estimates as recovered by the filter. The beacon shown in the center of the plot is 
used as an anchor to the map, and no state estimate is computed for it. This last map was 
obtained with a suboptimal linear-time SLAM algorithm that has both bounded 
covariance estimates, and independence on the filter initial conditions; thus producing a 
fast and accurate absolute map. 

a) Vehicle localization error b) Vehicle covariance 

c) Landmark localization errors d) Landmark covariance 

Figure 10. Partially observable SLAM for a car-like vehicle at the University of Sydney Car Park. Only the 
map part of the state error covariance matrix is decorrelated with the minimal trace solution. By adding 
controllability to as many states as those that are observable, the filter remains stable, and the estimated 
covariances remain bounded 
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a) Vehicle localization error b) Vehicle covariance 

c) Landmark localization errors d) Landmark covariance 

Figure 11. Fully observable SLAM for a car-like vehicle at the University of Sydney Car Park. Only the map 
part of the state error covariance is decorrelated with the minimal trace solution. Full observability 
guarantees independence of the filter initial conditions, and an accurate absolute map is obtained, with 
smaller covariance estimates than its relative counterpart 

a)
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b)
Figure 12.  Vehicle path and landmark location estimates, compared to GPS ground truth for an a) partially 
observable suboptimal SLAM run, and a b) fully observable suboptimal SLAM run; both with decorrelation 
of only the map part of the state error covariance matrix 

8.  Conclusions 
We have shown that full correlation of the map model in the Kalman Filter based 
approach to Simultaneous Localization and Map Building hinders full observability of the 
state estimate. A unit norm eigenvalue for the matrix F-KH makes the state error estimate 
converge to a non zero mean constant bounded value in the linear case SLAM. Marginal 
stability of such partially observable system produces also at least one psd solution to the 
steady state Riccati equation for the covariance error, provided the initial conditions of P
are also psd. Partial observability makes the final map dependant on the initial 
observations. This situation can easily be remedied either by anchoring the map to the first 
landmark observed, or by having an external sensor that sees the vehicle at all times.
Suboptimal techniques to improve the speed of the algorithm include covariance inflation 
methods to diagonalize the state error covariance matrix. These techniques may lead to 
instability if pseudo-noise is added in a higher state dimensionality than what can be 
observed. We propose in this Chapter to diagonalize only the map part of the state error 
covariance, thus guaranteeing convergence of P, and at the same time obtaining an O(N)
algorithm.
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