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Abstract— The inverse/direct kinematics of trilaterable se-
rial/parallel manipulators can be stated as a system of distance
constraints whose set of solutions can be determined using a
sequence of trilaterations, possibly involving points at infinity.
It is possible to decide whether a mechanism is trilaterable
by relying only on its topology. Based on this fact, we here
enumerate all trilaterable serial and in-parallel robots with
six degrees of freedom. The relevance of the obtained family
of manipulators is established when it is shown to contain
the best-known commercial serial robots. As a result of this
analysis, we come up with a general method to solve the
inverse/direct kinematics of a wide family of manipulators.

Index Terms— Trilateration, Cayley-Menger determinants,
position analysis of robots.

I. INTRODUCTION

Locating a point in space from its distances to three other
known points is a common geometric operation known as
trilateration. It is well-known that the direct kinematics of
the 3-2-1 and 3/2 in-parallel manipulators can be solved by
a sequence of trilaterations. These manipulators were first
identified by Hunt and Primrose [7] and their kinematics
was further elaborated by Bruyninckx [1]. Song and Kwon
have also identified some parallel mechanisms with multi-
connected joints whose direct kinematics can also be solved
by a sequence of trilaterations [9]. Surprisingly enough, no
trilaterable serial manipulators have been previously iden-
tified and, most importantly, no systematic classification of
all trilaterable manipulators, either serial or parallel, has
been carried out. One of the main goals of this paper is to
provide such a classification.

Recently, the Theory of Distance Geometry [2] is attract-
ing considerable attention from robot kinematicians as it
allows coordinate-free formulations for most position anal-
ysis problems. Using such formulations, the inverse/direct
kinematics of a mechanism can be performed by using a
distance matrix, one whose entries are squared distances
between pairs of points selected on the axes or legs of
the mechanism. While some of these distances are known
(such as the distances between points on the same axis or
between points on consecutive axes, when dealing with se-
rial manipulators, or the distances between leg-attachment
points, when dealing with in-parallel ones), many others are
unknown. Then, finding all solutions to an inverse or direct
kinematics problem boils down to finding values for these
unknown distances that permit completing the matrix into

“proper” Euclidean distance matrix [10]. If, by any means,
the unknown distances are obtained, one can then easily
assign coordinates to the selected points and trivially derive
the possible configurations of the mechanism at hand.

The determination of all values for the unknown dis-
tances is usually done via a bound smoothing process: a
large range is initially assigned to the unknowns and their
bounds are progressively reduced in an iterative manner,
by applying triangular inequalities and other necessary
conditions [8]. Finding all possible solutions for a given
incomplete distance matrix can be extremely complex in
general, as this problem is known to be NP-complete. In
this paper, we focus on a subclass of distance constraint
solving problems, the trilaterable ones, where the values of
all unknown distances can be derived following a construc-
tive process in which the distance matrix is progressively
completed by deducing the value of one unknown at a time,
using trilaterations.

In order to identify all robots whose position analysis can
be translated into a trilaterable problem, we first character-
ize the family of distance matrices that encode all serial and
in-parallel robots with six degrees of freedom (DoF). Then,
we exhaustively search within this family for those matrices
that correspond to trilaterable problems. To this end, we
employ a constructive algorithm that also determines a
trilateration sequence if at least one exists. The result is
the identification of the family of all trilaterable serial and
in-parallel robots with six DoF. We show that this family
includes the best-known serial robots.

This paper is organized as follows. In the next section,
we describe how to translate a position analysis problem
into a distance constraint satisfaction problem. Section III,
defines the concept of trilaterable distance matrices and
shows how, under certain circumstances, an incomplete
distance matrix can be completed by using a sequence of
trilaterations. Section IV presents a comprehensive study of
all serial and in-parallel 6-DoF trilaterable robots, that is, of
those robots whose position analysis, when translated into
a set of distance constraints, leads to a trilaterable distance
matrix. All these concepts are then applied in Section V
to the resolution of the inverse kinematics of a Puma 560
manipulator. Finally, Section VI summarizes some points
deserving further attention.
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Fig. 1. Modelling a link as a set of points with some fixed distances between them.

II. MODELLING ROBOTS AS DISTANCE CONSTRAINTS

The position analysis of a mechanism can usually be
translated into a set of distance constraints fixing the
relative positions between n points p1; : : : ;pn, selected
on its links. Such constraints are usually represented by
means of a distance matrix D, whose (i; j) entry is Di;j =
kpi�pjk

2, i.e., the square of the distance between pi and
pj . Some matrix entries are a priori known, and the goal
is to solve for the remaining unknowns.

We next show how one can perform this translation
for any serial or in-parallel manipulator, and how one
can compute the coordinates of the selected points, with
reference to an absolute frame, once all distances in D

have been solved for.
On the one hand, a serial robot is simply an open

chain of seven rigid bodies (the links), pairwise articulated
through prismatic or revolute joints. The inverse kinematics
problem is to find all valid configurations of this chain
that are compatible with a specified pose for the last link,
relative to the first. Since the first and last links ar mutually
fixed, the problem is equivalent to that of finding the valid
configurations of a closed loop of six pairwise articulated
links. The translation of each link into distance constraints
depends on the type of joints it connects, either prismatic
or revolute, and on whether the axes of these joints are
skew or concurrent.

A link connecting two skew revolute axes can be mod-
elled by taking two points on each of these axes, and by
connecting them all with rigid bars to form a tetrahedron
(Fig. 1-a). In this way, for example, a 6R linkage can be
modelled as a ring of six pairwise-articulated tetrahedra, as
indicated in Fig. 5.

If the two axes of the link are not skew but intersecting,
we can economize points and simply model the link as
a triangle of fixed distances (Fig. 1-b), thus reducing the
number of unknown entries in D. Note that the case of
parallel revolute axes can be seen as a specialization of the
previous one, where the point of intersection is an improper
point at infinity in the direction of the axes, instead of a
common proper point (Fig. 1-c). This will cause no trouble
in our analyis below, as a point at infinity can always be
approximated by a proper point, sufficiently far away in
some direction.

Similar transformations are applied to a link with one
or two prismatic joints: since a translation along direction
v can always be seen as a rotation about the line at
infinity of any plane � orthogonal to v, we can model
a prismatic joint as a revolute joint infinitely far away on
this plane. Computationally, we will represent such joint by
designating two points on �, placed sufficiently far away
along different directions (points p2 and p4 in Fig. 1-d).

On the other hand, an in-parallel robot is formed by
two rigid bodies, the base and the platform, joined by six
legs. Each leg is a linear actuator linked to the base and the
platform by spherical joints. The direct kinematics problem
is to compute all platform poses that are compatible with
some specified leg-lengths. The translation of this goal into
a set of distance constraints is trivial. We simply put a point
on each leg attachment point and specify the fact that all leg
lengths are known, and that the distances between any pair
of points lying both on the base, or both on the platform,
is also known.

The procedures detailed above can be used to define an
incomplete distance matrix from an arbitrary mechanism.
If, by any means (e.g. via trilateration, as explained in
the next section) we can complete D, then we will need
to assign coordinates to the selected points in order to
obtain the actual configurations of the robot. The standard
way to do so is by first computing the Gram matrix G

associated with D, whose entries are defined by Gij =
1

2
(D2

i;n
+ D

2

j;n
� D

2

i;j
). The Cholesky factorization of G

into G = XX
t yields the matrix X , whose rows yield

unique coordinates for p1; : : : ;pn, up to congruences and
mirror transformations. For further details see [10]. For
an in-parallel manipulator, the coordinates of p1; : : : ;pn

are sufficient to solve its direct kinematics. For the inverse
kinematics of a serial one, we further need to obtain all
angles between neighboring links from these coordinates.

III. TRILATERABLE DISTANCE MATRICES

As said, trilateration permits locating a point in space
from its distances to three other known points. If we denote
by p1, p2, and p3 the coordinate vectors of the known
points, the coordinate vector of the unknown point, say
p4, can be expressed in terms of known distances as:
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p4 = p1+
1

D(1; 2; 3)

�

�
�D(1; 2; 3; 1; 3; 4) � (p2 � p1)+

+D(1; 2; 3; 1; 2; 4) � (p3 � p1)+

�
p
D(1; 2; 3; 4) � ((p2 � p1)� (p3 � p1))

�
:

(1)

where

D(i1; : : : ; in; j1; : : : ; jn)

= 2

�
�1

2

�n

��������

0 1 : : : 1
1 Di1;j1

: : : Di1;jn

1 : : : : : : : : :

1 Din;j1
: : : Din;jn

��������
; (2)

with Di;j = kpi � pjk
2, is known as the Cayley-Menger

bi-determinant of the point sequences pi1
; : : : ;pin

, and
pj1

; : : : ;pjn
. Since in many cases of interest the two

point sequences will be the same, it will be convenient
to abbreviate D(i1; : : : ; in; i1; : : : ; in) by D(i1; : : : ; in),
which is simply called the Cayley-Menger determinant
of the involved points. Observe that the squared distance
between pi and pj can be denoted either as Di;j or D(i; j).
See [11] for the details on the derivation of Eq. (2) and its
advantages with respect to other formulations.

p1p1

p2p2

p3 p3

p4p4

p5

p5

D4;5

D4;5

Fig. 2. Computing the location of p4 and p5 from their distances to p1 ,
p2 , and p3 by applying two trilaterations permits finding kp5 � p4k.
Two solutions are possible that depend on the relative location of p4 and
p5 with respect to the plane defined by points p1 , p2 , and p3.

Now, let us suppose that we compute the location of
two points, say p4 and p5, from their distances to three
points whose locations are given by p1, p2, and p3 by
applying two trilaterations (Fig. 2). Then, the expression for
the squared distance D4;5 = kp5�p4k

2 can be derived by
substituting the expressions for p5 and p4, obtained from

the application of (2), which leads to:

D4;5 =
a
2
D(1; 2) + b

2
D(1; 3) + 2abD(1; 2; 1; 3)

D2(1; 2; 3)

+
c

D(1; 2; 3)
; (3)

where

a =D(1; 2; 3; 1; 3; 5)�D(1; 2; 3; 1; 3; 4);

b =D(1; 2; 3; 1; 2; 4)�D(1; 2; 3; 1; 2; 5);

c =D(1; 2; 3; 4) +D(1; 2; 3; 5)

� 2
p
D(1; 2; 3; 4)D(1; 2; 3; 5):

Observe that no point coordinates appear in the result,
only inter-point distances, and that two solutions are pos-
sible (Fig. 2), corresponding to the two possible signs for
the square root.

The Cayley-Menger determinant D(i1; : : : ; in) is ((n�
1)!)2 times the squared hypervolume of the simplex
spanned by the points pi1

; : : : ;pin
in R

n�1 [6]. This
permits to realize that only when D(1; 2; 3) = 0 —i.e.
when p1, p2, and p3 are aligned— the distance D4;5 is
undefined, and only when D(1; 2; 3; 4)D(1; 2; 3; 5) = 0 —
i.e when p4 or p5 lie on the same plane as p1, p2, and p3—
the solution for D4;5 is unique (i.e., the mechanism is in
a singularity). If D(1; 2; 3; 4) < 0 or D(1; 2; 3; 5) < 0 one
of the tetrahedra can not be assembled with the assigned
distances, meaning that the problem is inconsistent.

In what follows, we will say that a distance matrix is
trilaterable if, and only if, its unknown distances can be
determined only by using Formula (3) repeatedly. In other
words, we can determine whether a distance matrix is
trilaterable by applying an iterative process where, in each
iteration, we try to determine one of the unknown distances
via Formula (3), possibly using distances determined in
previous iterations. Fig. 3 shows an algorithm that imple-
ments this idea. It takes as input an adjacency matrix A

that provides information about the known distances, with
Ai;j = 1 if Di;j is known, and 0 otherwise, and returns a
trilateration sequence or an empty sequence, depending on
whether A is trilaterable or not.

IV. TRILATERABLE ROBOTS

A trilaterable robot is one whose corresponding distance
matrix is trilaterable. Obviously, trilaterable robots are a
restricted class of all possible robots, as the set of trilater-
able distance matrices is a sub-class of all possible distance
matrices. However, although focusing on trilaterable robots
could be regarded as too restrictive, we will later see that
this class includes most industrial robots.

A. Trilaterable In-Parallel Robots

According to Section II, the distance constraints model
of an in-parallel manipulator with m points in the base and
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Trilateration Sequence
Input: A, an n� n matrix with Ai;j = 1 if distance

Di;j is known and 0 otherwise.
Output: A trilateration sequence, empty if A is not

trilaterable.
Process:

1 T  ;

2 do
3 found  false
4 8i; j; 1 � i < j � n

5 if Ai;j = 0

6 8a; b; c; 1 � a < b < c � n; a; b; c 6= i; j

7 s A
a:b

+Aa;c +A
b;c

8 +Aa;i +A
b;i

+Ac;i

9 +Aa;j +A
b;j

+Ac;j

10 if s = 9

11 found  true
12 Ai;j  1

13 T  T [ f(a; b; c)! (i; j)g

14 endif
15 endif
16 while found
17 if 8i; j (1 � i < j � n); Ai;j = 1

18 return T

19 else
20 return ;

Fig. 3. An algorithm that returns a trilateration sequence to complete a
distance matrix D if at least one exists. The known entries of D are input
in the form of an adjacency matrix A. A trilateration to derive D

i;j
from

the distances to points a, b and c is symbolically represented in line 13
as (a; b; c)! (i; j).

n points in the platform will lead to an adjacency matrix
P of the form

P =

�
1m L

L
T

1n

�
; (4)

where 1m and 1n are, respectively, m � m and n � n

matrices of ones, encoding the fact that all points in the
base and the platform are mutually rigid, and L is an m�n
matrix encoding the connections established by the legs.
Thus, Li;j = 1 if there is a leg connecting point i in the
base and point j in the platform and, consequently, matrix
L includes at least one 1 for each row and column. For the
general case where m = n = 6, L is a diagonal matrix.
All other in-parallel robots are specializations of this case
where some points in the base and/or in the platform are
coincident. Note further that the minimum number of points
either in the base or in the platform must be three. Taking
all this into account, it is easy to derive the adjacency
matrices of all in-parallel robots with m;n 2 f3; : : : ; 6g
and m � n, and check whether they are trilaterable using
the algorithm in Fig. 3. The result of this exploration, after
removing isomorphic structures, is shown in Fig. 4. Each
robot is represented here as a bipartite graph, where the
edges correspond to the legs of the robot, and the two
vertex sets correspond to their attachment points in the base
and the platform.

P9-A (3-2-1) P9-B (3/2)

P8-A P8-B P8-C P8-D P8-E

P7-A P7-B P7-C P7-D

P6-AP6-B

Fig. 4. Schematic representation of all trilaterable in-parallel robots.

Examining the figure, we can see that we have 13
in-parallel trilaterable robots divided into four categories
according to the total number of points needed to define
the base and the platform. There are no trilaterable in-
parallel robots with more than 9 points. Note that the
two configurations with 9 points correspond to the well-
known 3-2-1 and 3/2 in-parallel robots, already identified
as trilaterable by other authors [7].

B. Trilaterable Serial Robots

A 6 Dof serial robot whose end effector is fixed relative
to its base, can be seen as a closed chain of six rigid bodies
pairwise articulated, that is, as a 6R closed mechanism
(Fig. 5-a). Since translations can be seen as rotations
centered at infinity, this representation is general enough
for our purposes. By taking two points on each axis, this
6R mechanism can be translated into a set of distance
constrains between 12 points, as explained in Section II,
which correspond to the edge lengths of six pairwise
articulated tetrahedra (Fig. 5-b). If two consecutive axes
meet at a point (possibly at infinity if they are parallel),
the tetrahedron can be substituted by a triangle. However,
note that no more than three axes can meet at a point if
we want the corresponding serial robot to have 6 DoF.

p1 p1

p2 p2
p3

p3

p4
p4

p5 p5p6

p6

q1 q1

q2
q2

q3 q3

q4
q4

q5
q5

q6
q6

(a) (b)

Fig. 5. A general 6R mechanism (a), and its representation in terms of
distance constraints (b).
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In Fig. 5-b, we have two cycles of points, fp1; : : : ;p6g
and fq1; : : : ;q6g, where the couples (pi;qi) define the
rotation axes. Since we allow that two or more consecutive
axes meet at a point, consecutive points in these cycles can
actually coincide and, thus, in general, the two cycles will
be fp1; : : : ;pmg and fq1; : : : ;qng with m;n � 6. Then,
the adjacency matrix S representing all interconnections
has the form:

S =

�
Cm A

A
T

Cn

�
; (5)

where Cm and Cn are the adjacency matrices for the points
in the cycles fp1; : : : ;png and fq1; : : : ;qmg, respectively
(i.e., they are cyclic tridiagonal matrices), and A is the
matrix encoding the connections between points lying in
different cycles. Now, all candidates for matrix A can be
readily enumerated by realizing that the connections they
encode should only correspond to a sequence of tetrahedra
and triangles. The number of options can be further reduced
taking into account that at least one tetrahedron must be
included in the sequence because the robot end-effector can
be placed arbitrarily with respect to its base. The result
of this enumeration leads to 243 candidates. Discarding
those that have more than three co-punctual axes and those
that do not pass the trilaterability test, we finally obtain
8 non-isomorphic configurations that correspond to the 8
serial robots shown in Fig. 6. Each robot is represented
here as a bipartite graph made out of two vertex sets, each
corresponding to one of the vertex cycles fp1; : : : ;pmg
and fq1; : : : ;qng. Edges between the vertices represent
the robot’s joint axes.

S9-A (Stanford)

S8-A S8-B (Elbow) S8-C (Puma) S8-D

S7-A S7-B S7-C (Nokia)

Fig. 6. Schematic representation of all trilaterable serial robots.

A close look to this family of serial robots reveals that
all of its members have three co-punctual axes. Thus,
all serial trilaterable robots are decoupled, that is, their
inverse kinematics can be decomposed into rotational and
translational components.

We note that the family of trilaterable serial robots,
although small, includes most popular 6 DoF serial manip-
ulators such as the Stanford, Cincinnati Milacron, Puma
and Nokia manipulators, as shown in Fig. 7.

Serial Parallel
S9-A P9-A, P9-B

S8-A P8-A
S8-B P8-B, P8-E
S8-C P8-C
S8-D P8-D

S7-A P7-B
S7-B P7-C
S7-C P7-D

TABLE I

CORRESPONDENCE BETWEEN TRILATERABLE IN-PARALLEL AND

SERIAL ROBOTS.

C. Relating the serial and the in-parallel families

Comparing Figs. 4 and 6 we observe that the schematic
representations for the in-parallel and serial robots are
similar. Indeed, there exists a correspondence between
these two families.

Every trilaterable serial robot, defined as two point cy-
cles, fp1; : : : ;pmg and fq1; : : : ;qng, plus some distance
constraints on them, can be converted to a trilaterable in-
parallel one proceeding as follows. First, remove all the
fixed distances of the serial robot except those correspond-
ing to point pairs (pi;qj) lying on the same joint axis.
(These will play the role of the legs in the parallel robot.)
Then, let the point cycles fp1; : : : ;pmg and fq1; : : : ;qng
represent, respectively, the points on the base and the
platform of the in-parallel robot. Finally, let the base and
platform be rigid by placing as many distance constraints
as point pairs in the base and the platform. Doing this on
each serial trilaterable robot, we obtain the correspondences
shown in Table I.

Unfortunately, the converse is not true. That is, not
every trilaterable in-parallel robot can be converted to a
trilaterable serial one. Note that the parallel robots P7-A,
P6-A, and P6-B have no counterpart in the serial family.

V. WORKING OUT THE PUMA 560 ROBOT

The presented methodology has been fully implemented
in MATLAB. As an example, we here follow in detail how
it can be used to solve the inverse kinematics of a PUMA
560 manipulator.

First, each link of the robot must be modelled as a set
of distance constraints between a set of points. Fig. 7-b
shows this robot in its home position, and the points that
should be selected to derive such constraints. Coordinates
for all points can be easily obtained in terms of the Denavit-
Hartenberg parameters of this robot, shown in Table II.

According to the process explained in Section II, link 1
can be modelled by the fixed distances between three
points, 1, 6, and 2, as it connects two intersecting axes.
Similarly, link 2 is modelled by the fixed distances between
points 6, 2, and 7, but point 2 must be placed at infinity,
as the axes of this link are parallel. Link 3 has two skew
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Fig. 7. (a) Elbow manipulator or Cincinnati Milacron (S8-B). (b) Puma manipulator (S8-C). (c) Nokia manipulator (S7-C). (d) Stanford manipulator
(S9-A). In (a), (b), and (c), parallelism between axes is exploited to simplify its analysis, but note that, even if this artifact is not introduced, (a) and (b)
are still trilaterable. Robot (d) includes a translational degree of freedom that, according to our formalism, is represented by a rotation axis at infinity,
becoming then trilaterable. (Figure partially adapted from [5].)
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D =

0
BBBBBBBBBB@

0 101:05 D1;3 D1;4 1:314 1 D1;7 1:877

101:05 0 97:077 D2;4 D2;5 100:05 100:05 97:264
D1;3 97:077 0 1:186 D3;5 D3;6 0:023 0:186
D1;4 D2;4 1:186 0 2 D4;6 D4;7 1
1:314 D2;5 D3;5 2 0 0:596 D5;7 1

1 100:05 D3;6 D4;6 0:596 0 0:186 0:318

D1;7 100:05 0:023 D4;7 D5;7 0:186 0 0:209
1:877 97:264 0:186 1 1 0:318 0:209 0

1
CCCCCCCCCCA

triangular base distance
(2; 6; 8) ! (1; 7)
(1; 6; 8) ! (2; 5)
(2; 7; 8) ! (3; 6)
(2; 6; 7) ! (1; 3)
(2; 6; 8) ! (3; 5)
(1; 2; 6) ! (5; 7)
(3; 5; 8) ! (1; 4)
(3; 5; 8) ! (2; 4)
(3; 5; 8) ! (4; 6)
(3; 5; 8) ! (4; 7)

(a) (b)

sol. # D1;3 D1;4 D1;7 D2;4 D2;5 D3;5 D3;6 D4;6 D4;7 D5;7

1 0.9001 2.3787 0.8859 112.2223 86.2746 0.7010 0.1865 0.5491 1.0313 0.9265
2 0.9001 3.3748 0.8859 84.3052 86.2746 0.7010 0.1865 2.0875 1.3875 0.9265
3 0.9255 2.2916 0.8859 93.3075 115.0944 0.8136 0.2262 0.5337 1.2383 0.5647
4 0.9255 3.4620 0.8859 103.2200 115.0944 0.8136 0.2262 2.1029 1.1804 0.5647
5 2.1126 0.8838 2.0421 112.7286 86.2746 0.7507 0.2262 0.5143 0.9574 0.9187
6 2.1126 4.8697 2.0421 83.7989 86.2746 0.7507 0.2262 2.1223 1.4613 0.9187
7 1.9842 0.6262 2.0421 88.3026 115.0944 1.1000 0.1865 0.7653 1.4018 0.8902
8 1.9842 5.1273 2.0421 108.2249 115.0944 1.1000 0.1865 1.8712 1.0170 0.8902
9 0.9255 2.1864 0.8859 112.7964 86.2746 0.7587 0.2262 0.5166 0.9566 0.9265

10 0.9255 3.5672 0.8859 83.7311 86.2746 0.7587 0.2262 2.1199 1.4622 0.9265
11 0.9001 2.5523 0.8859 94.4065 115.0944 0.7948 0.1865 0.5828 1.3148 0.5647
12 0.9001 3.2012 0.8859 102.1210 115.0944 0.7948 0.1865 2.0537 1.1040 0.5647
13 1.9842 0.7981 2.0421 112.1319 86.2746 0.6936 0.1865 0.5467 1.0329 0.9187
14 1.9842 4.9555 2.0421 84.3956 86.2746 0.6936 0.1865 2.0899 1.3859 0.9187
15 2.1126 0.6337 2.0421 88.1064 115.0944 1.1479 0.2262 0.7051 1.3226 0.8902
16 2.1126 5.1199 2.0421 108.4211 115.0944 1.1479 0.2262 1.9314 1.0962 0.8902

(c)

sol. # �1 �2 �3 �4 �5 �6

1 11.75 200.37 171.57 133.73 124.20 28.30
2 11.75 200.37 171.57 313.73 235.80 208.30
3 228.62 339.63 14.67 283.19 115.57 30.58
4 228.62 339.63 14.67 103.19 244.43 210.58
5 11.75 97.66 14.67 221.40 239.70 77.82
6 11.75 97.66 14.67 41.40 120.30 257.83
7 228.62 82.34 171.57 58.262 264.26 106.19
8 228.62 82.34 171.57 238.26 95.74 286.19

(d)

d1 �1 �2 �3 �4 �5 �6

1 222.76 337.40 14.88 106.64 250.01 206.41
10 228.62 339.63 14.67 103.19 244.43 210.58

100 229.18 339.84 14.68 102.88 243.87 210.98
1000 229.24 339.86 14.68 102.84 243.82 211.02

10000 229.25 339.86 14.68 102.84 243.81 211.03
1 (exact) 229.25 339.86 14.68 102.84 243.81 211.03

(e)

Fig. 8. Solving the inverse kinematics of the PUMA 560 by the proposed method. (a) Input distance matrix. (b) Trilateration sequence needed to
complete it. (c) The sixteen possible completions. (d) The eight solutions to the problem, selected among the 32 possible coordinatizations derived from
the solutions in (c). (e) Evolution of the fourth solution, as we increase d1. Squared distances are expressed in m2 and angles in degrees.
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i �i (deg.) ai (m) �i (deg.) di (m)
1 90 0 �1 0

2 0 0:4318 �2 0

3 �90 0:0203 �3 0:15005

4 90 0 �4 0:4318

5 �90 0 �5 0

6 0 0 �6 0

TABLE II

DENAVIT-HARTENBERG PARAMETERS OF THE PUMA 560 ROBOT.

axes and, thus, it is modelled by the fixed distances of the
tetrahedron defined by 7, 2, 3, and 8. Links 4 and 5 connect
concurrent axes and are thus represented by the triangles
(3, 8, 4), and (4, 8, 5), respectively. These distances yield
the non-bold numeric entries of the D matrix, shown in
Fig. 8.

The usual formulation of the inverse kinematics further
considers a 0th and a 6th link, respectively modelling the
‘world’ and the ‘hand’, and a homogeneous transformation
positioning the hand with respect to the world. Note that,
in doing so, these two elements become mutually rigid,
and it is thus possible to consider them as a single link
constraining the relative position between the first and
last revolute axes. In our setting, this is equivalent to
fixing the distances of the tetrahedron (1, 6, 5, 8). Note
that these distances, while fixed, depend on the specific
pose of the end effector relative to the world, or, in
other words, on the specific inverse kinematics problem
to be solved. They correspond to the numeric bold en-
tries in D, computed in this example for a pose of the
hand given by the joint angles (�1; �2; �3; �4; �5; �6) =
(229:25Æ; 339:86Æ; 14:68Æ; 102:84Æ; 243:81Æ; 211:03Æ).

Now, by applying the algorithm in Fig. 3, one obtains
the trilateration sequence given in Fig. 8-b, which can be
used to complete D by iteratively applying Formula 3.
Since there are 10 trilateration steps, a total of 210 = 1024
possible completions exist for D. By examining them
all, only 16 yield consistent Euclidean matrices; that is,
only 16 have an associated Gram matrix that is positive
semidefinite of rank 3. These are enumerated in Fig. 8-c.
Following Section II, each such matrix yields two specular
coordinatizations of the points 1; : : : ; 8. If among these
coordinatizations we discard those where the orientation of
the tetrahedra (1; 6; 5; 8) and (2; 3; 7; 8) is different from
that in the actual robot, we finally obtain the expected 8
solutions for the joint angles �1; : : : ; �6, shown in Fig. 8-d.
The reader can check that the fourth such solution is very
close to the pose of the hand specified above, the small
error being due to the fact that point 2 is not sufficiently
far away from the robot (here it is placed at a distance
d1 = 10m from the line defined by points 6 and 7). The
last table in Fig. 8 shows how, by solving the same problem
at increasing values of d1, this solution tends to the exact
one.

VI. CONCLUSIONS

We have presented an explicit enumeration of all six
degrees-of-freedom in-parallel and serial manipulators and
a general method for their position analysis, that is, for
solving their direct/inverse kinematics. This method has
been implemented in MATLAB, and the resolution of the
inverse kinematics of a PUMA 560 robot has been reported
as an example. This method, if implemented in a symbolic
algebra package, would yield closed-form formulas for the
direct/inverse kinematics of any trilaterable in-parallel or
serial manipulator. This is a point that deserves further
efforts as it would permit to analyze the computational
efficiency of the resulting formulas, and their numerical sta-
bility, in front of other well-known formulations obtained
for particular architectures.
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