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Abstract—
In this paper we consider a single hand-held camera perform-

ing SLAM at video rate with generic 6DOF motion. The aim
is to optimise both the localisation of the sensor and building
of the feature map by computing the most appropriate control
actions or movements. The actions belong to a discrete set (e.g.
go forward, go left, go up, turn right, etc), and are chosen so as to
maximise the mutual information gain between posterior states
and measurements. Maximising the mutual information helps
the camera avoid making ill-conditioned measurements appro-
priate to bearing-only SLAM. Moreover, orientation changes are
determined by maximising the trace of the Fisher Information
Matrix. In this way, we allow the camera to continue looking
at those landmarks with large uncertainty, but from better-
posed directions. Various position and gaze control strategies are
first tested in a simulated environment, and then validated in a
video-rate implementation. Given that our system is capable of
producing motion commands for a real-time 6DOF visual SLAM,
it could be used with any type of mobile platform, without the
need of other sensors.

I. INTRODUCTION

Impressive advances in 2D and, more recently, 3D simul-
taneous localisation and mapping (SLAM) for mobile robots
have been made over the last 15 years, largely using sonar
and laser range sensing [1]–[5]. Most recently, there has been
considerable interest in solving the SLAM problem using
visual sensing, both in order to obtain more accurate 3D
representations of the environment and to exploit its richer
potential for scene representation [6], [7]. In this communica-
tion, we consider the problem of SLAM with a single camera
carried by a human, and how to implement control strategies
in this context. In that sense, this work is different from
other control work because we can only give a human quite
approximate, low frequency, easy to understand commands
like ‘left’, ‘right’, ‘stay’.

One of the first active vision-based SLAM approaches used
feature correspondences from stereo image pairs [6]. The
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computational burden for the accurate detection and matching
of image pairs motivated the use of active visual sensing
for landmark selection in sparse feature maps. Their work
is different to ours because they only control orientations
of the stereo head, and we are now talking about actually
controlling translation as well. Other reported techniques to
visual SLAM — although with no control — include the
use of SIFT features, and matching over a trinocular rig [7].
More elegantly and economically, feature locations can also
be computed by tracking landmarks over multiple views from
only one camera, a process referred to a ‘bearing-only SLAM’.

One key issue in bearing-only SLAM is the initialisation
of feature locations. In [8] for example, the initial estimation
of a landmark’s location is achieved by sampling hypotheses
of a 1D particle distribution along the line of sight. Another
technique consists of using sums of Gaussian distributions
to parameterise 3D feature locations over a delayed state
representation [9].

When the sensor capabilities in SLAM are limited, camera
motion plays an important role in the quality of reconstruction
obtained. Driving the sensor to the locations that maximise the
expected information gain from acquiring an observation at
that location has been a common strategy [10]–[12]. However,
Sim has showed that maximising the expected information
gain leads to ill-conditioned filter updates in the bearing-only
SLAM [13]. In [14], Bryson et al. present simulated results
of the effect different vehicle actions have with respect to the
entropic mutual information gain. The analysis is performed
for a 6DOF aerial vehicle equipped with two cameras and an
inertial sensor, for which landmark range, azimuth, and eleva-
tion readings are simulated, and data association is known.

In this paper we are interested in the video-rate estimation
and control of a single camera’s motion, moving rapidly
with 6DOF in 3D in normal human environments, mapping
visual features with minimal prior information about motion
dynamics. Our aim is to localise the sensor and build a feature
map by computing the appropriate control actions in order to
improve overall system estimation.

However, insisting on video-rate performance using mod-
est hardware imposes severe restrictions on the volume of
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computation that can take place in each 33ms time step.
Re-estimation must take place of course, but making strictly
optimal camera movements would require in addition the
computation of the derivatives of a well-chosen performance
metric with respect to the inputs [15]. Such a computation
remains unfeasible for a 6DOF highly nonlinear system model.
Besides, human actions can only be approximate, and at
low frequency. So, instead of computing the optimal motion
command, we decide only upon a small set of choices.

Actions belong to a discrete set (eg. go forward, go left,
go up, turn right, etc.), and the particular movement chosen is
the one that maximises the mutual information gain between
posterior states and measurements. Using entropy for explo-
ration only makes sense if we can be certain that uncertainty is
reduced as landmarks are being discovered. To that, one must
have an idea first of the shape of the space to be mapped, and
filling it with randomly placed features with large uncertainty
[14]. Maximising the mutual information aims at reducing
the overall state uncertainty, and helps the camera move
away from making repeated ill-conditioned measurements.
Orientation changes are determined by maximising the trace
of the Fisher Information Matrix. In this way, we allow the
camera still to look at those landmarks with large uncertainty,
but from better-posed directions.

The remainder of the paper is ordered as follows. First we
briefly describe the system and the estimation scheme. Then
the metrics used as cost functions to choose the appropriate
actions are explained; and our control strategy is illustrated
through simulations. Lastly, we present the results of real-
time experiments with a hand-held wide-angle camera, where
a GUI feeds-back motion commands to the user.

II. 6 DOF BEARING-ONLY SLAM

A. Unconstrained Camera Motion

It is assumed that the camera could be attached to any
mobile platform — in our case the hand — and is free to
move in any direction in IR3 × SO(3). We adopt a smooth
unconstrained constant-velocity motion model, its translational
and rotational altered only by zero-mean, normally distributed
accelerations and staying the same on average. The Gaussian
acceleration assumption means that large impulsive changes of
direction are unlikely. The camera motion prediction model is

xv(k+1|k) =

⎡
⎢⎢⎣
p(k+1|k)

q(k+1|k)

v(k+1|k)

ω(k+1|k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
p(k|k) + (v(k|k) + a(k)Δt)Δt

Qq(k|k)

v(k|k) + a(k)Δt
ω(k|k) + α(k)Δt

⎤
⎥⎥⎦ ,

with p = [x, y, z]� and q = [q0, q1, q2, q3]� denoting the cam-
era pose (three states for position and four for orientation using
a unit norm quaternion representation), and v = [vx, vy, vz]�

and ω = [ωx, ωy, ωz]� denoting the linear and angular
velocities, respectively. The subscripts (k|k) and (k + 1|k)
denote the posterior at time k and the prior (before integrating
measurements) at k + 1. The input to the system is the
acceleration vector u = [a�,α�]� = [ax, ay, az, αx, αy, αz]�.

An Extended Kalman Filter propagates the camera pose
and velocity estimates, as well as feature estimates. A state
that includes the features y is made of x = [x�v ,y�]�.
The model Q for the prediction of change in orientation
is inspired by [16] and is detailed in the Appendix. The
redundancy in the quaternion representation is removed by a
||q|| = 1 normalisation at each update, accompanied by the
corresponding Jacobian modification.

B. Feature Extraction

In this work we are interested in mapping the 3-D coordi-
nates of salient point features from images, and need to do
so at video-rate. As in previous work, we use the Shi-Tomasi
saliency operator, and match correspondences in subsequent
frames using normalised sum-of-squared differences [6], [8].
Although more robust detectors such as SIFT have become
widely popular for their ability to find and match features
with higher degree of uniqueness, they come at the expense
of heavier computational load.

Image projection is modelled using a full perspective wide
angle camera. The position of a 3D scene point yi is trans-
formed into the camera frame as yc

i
= [xc, yc, zc]� =

R�(yi − p) , with R the rotation matrix equivalent of q.
The point’s projection onto the image plane is

hi =
[
u
v

]
=

[
u0 − uc/

√
d

v0 − vc/
√

d

]
, (1)

where uc = fkuxc/zc, vc = fkvyc/zc, the radial distortion
term is d = 1 + Kd(u2

c + v2
c ), and the intrinsic calibration of

the camera — focal distance f , principal point (u0, v0), pixel
densities ku and kv , and radial distortion parameter Kd — are
determined beforehand.

When an image feature is detected, its measurement must
either be associated with an existing feature or be added
as a new feature in the map. The location of the camera,
along with the locations of the already mapped features,
are used to predict feature position hi using Eq. (1), and
these estimates checked against the measurements using a
nearest neighbour test. Feature search is constrained to 3σ
elliptical regions around the image estimates as defined by
the innovation covariance matrix Si = HiPk+1|kH�

i
+ R ,

with Hi the Jacobian of the sensor model with respect to the
state, Pk+1|k the prior state covariance, and measurements
zi assumed corrupted by zero mean Gaussian noise with
covariance R.

C. Initialisation

Inserting a new feature to the map cannot be done im-
mediately because the measurement model is non-invertible.
Though bearing is recoverable from one measurement, 3D
depth is not.

Several schemes have been reported [8], [9], [17], and we
adopt the first of these. The initial measurement results in a
semi-infinite line with Gaussian uncertainty in its parameters,
starting at the estimated camera position and heading to
infinity along the feature viewing direction. A 1D particle
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distribution represents the likelihood of the 3D feature’s posi-
tion along this line. The line is projected as an epipolar line
into subsequent images, but specifically it is the projection of
the point particles and their uncertainly ellipses that provide
the regions to be searched for a match, in turn producing
likelihoods for Bayesian re-weighting of the depth distribution.
A small number of steps is required to reduce to below a
threshold the ratio of the standard deviation in depth to the
depth estimate itself. At that time, the depth distribution is
re-approximated as Gaussian and the feature is initialised as
a 3D point yi into the map.

III. INFORMATION GAIN

This section first presents a metric for expected information
gain as a result of performing a given action, and then develops
an overall information conditioning strategy for the computa-
tion of orientations. The aim will be to move the camera in the
direction that most reduces the uncertainty in the entire SLAM
state, by using the information that should be gained from
future, predicted, landmark observations were such a move to
be made, but taking into account the information lost as a
result of moving with uncertainty.

A. Mutual Information Gain

We adopt entropy as a measure of uncertainty; that is, as
a measure of how much randomness there is in our state
estimate. Entropy is defined as H(X) = −

∑
x

p(x) log p(x) ,
which, for our case where p(x) is a n-variate Gaussian
distribution, reduces to H(X) = 1

2 log((2π)n|P|) .
Now consider the following two random vectors: the state

prior xk+1|k, and the prediction of measurement i, zi,k+1|k.
We want to choose the action that maximises the mutual in-
formation between the two. The mutual information is defined
as the relative entropy between the joint distribution p(x, zi),
and the marginals p(x) and p(zi).

I(X;Z) =
∑

x∈X,zi∈Z

p(x, zi) log
p(x, zi)

p(x)p(zi)

= H(X) + H(Z) − H(X,Z)
= H(X) − H(X|Z) ,

which, for our Gaussian multivariate case, evaluates to

I(X;Z) =
1
2

log
(

|Px|

|Px − PxzP−1
z P�

xz
|

)

=
1
2

log

(
|Pk+1|k|

|Pk+1|k − Pk+1|kH�
i
S−1

i
HiP�

k+1|k|

)

=
1
2

(
log |Pk+1|k| − log |Pk+1|k+1|

)
.

Thus, in choosing a maximally mutually informative motion
command, we are maximising the difference between prior and
posterior entropies [18]. In other words, we are choosing the
motion command that most reduces the uncertainty of x due
to the knowledge of z as a result of a particular action. Figure
1 shows the directions maximising the mutual information for
a simple 2DOF camera and 3 landmarks.

3

MaximumMaximumMaximumMaximum

2

1 Camera

Fig. 1. Maximisation of mutual information for the evaluation of motion
commands. A simple 2DOF camera is located at the centre of the plot, and a
decision where to move must be taken as a function of the pose and landmark
states, and the expected measurements. Three landmarks are located to its
left, front, and right-front. Moving to the location in between landmarks 2
and 3 maximises the mutual information between the SLAM prior and the
measurements for this particular example.

Note that the use of mutual information only makes sense
prior to reaching full correlation. In SLAM, |Pk|k| tends
asymptotically to zero, point at which the map becomes fully
correlated and there is nothing else the camera can do to
improve the estimates of the features. From then on, entropy
can still be used to decide what actions to take to reduce
the camera’s own uncertainty, and this can be done just by
replacing x with xv from the above discussion.

B. Fisher Information for Gaze Direction

Measurements in the bearing-only SLAM case are ill-posed
for motions along the principal axis, when points are close
to the principal axis and there is little perspective distortion.
Motion commands based on the maximisation of the mutual
information metric drive the camera away from those config-
urations, that is, perpendicular to the principal axis. However,
we still want the camera to look at those landmarks with
large uncertainty so as to reduce their covariance when seen
from different locations. To do that, we incorporate another
information metric to control the direction of gaze. From a
set of possible orientation changes, we propose choosing that
which maximises the trace of the Fisher Information Matrix.
In this way we will be choosing the best direction to look at,
in the sense that it is the one that is most informative, but from
a different position than the ill-posed one. Under the Gaussian
assumption for sensor and platform noises, the minimisation
of the least squares criteria (the KF) is equivalent to the
maximisation of a likelihood function Λ(x) given the set of ob-
servations Zk, that is, the maximisation of the joint pdf of the
entire history of observations, Λ(x) =

∏k

i=1 p(zi|x, Zi−1) .
The Total Fisher Information Matrix, a quantification

of the maximum existing information in the observations
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about the state, is defined in [19] as the expectation J =
E

[
(∇ log Λ (x)) (∇ log Λ (x))�

]
, which here evaluates to

J =
∑

H�S−1H .
The information for the reconstruction of the state con-

tributed by the set of measurements at each iteration is
contained in H�S−1H. The eigenvalues λj of this contribution
to J show which linear combinations of the states can be
estimated with good accuracy and which will have large
uncertainties from the coming measurements. It also shows
which linear combinations of states are unobservable. When
one dimension of J has a very small eigenvalue (information
along the line of sight), the product is not a reliable measure of
the elongation of the information hyperellipsoid, as it collapses
the volume to zero. Our strategy is to look in the direction at
which

∑
λj is maximum [20]. This is the viewing direction

that will introduce the largest amount of information in one
single measurement step.

Under a Fisher information motion strategy, maximally
informative actions move the robot as close as possible to the
landmarks under observation. We do not want to move towards
them, but only to orient towards them. Our idea of using the
Fisher Information is only to fixate our camera to those most
uncertain landmarks, and use the change in entropy to select
movement actions. This way, by using the mutual informa-
tion metric, maximally informative actions would prevent the
camera from producing ill-posed measurements. Note that an
omnidirectional sensor would not require a strategy to direct
fixation. In our case, as opposed to a mobile robot, translation
and orientation changes are kinematically decoupled, for this
reason, it makes sense to use different information measures
in evaluating them.

IV. CONTROL STRATEGY

In this Section we demonstrate in simulation how combining
the strategies of effectively controlling translation by maximis-
ing mutual information thereafter controlling orientation by
maximising the information available from the new position
yields reliable active control of pose and velocity for a free
moving camera, whilst building a map optimally.

A. Deciding Where to Go and Where to Look At

As noted earlier, the real-time requirements of the task
preclude using an optimal control decision that takes into
account all possible motion commands which is impracticable
to compute, leading to an exponential growth because of the
curse of dimensionality of long term action evaluation. Instead
we evaluate our information metrics for a small set of actions
carried out over a fixed amount of time, and choose the best
action from those.

The set of possible actions is divided in two groups.
Mutual information is evaluated for the translational actions
go_forward, go_backwards, go_right, go_left,
go_up, go_down, and stay; and Fisher information is max-
imised from the set of orientation commands turn_right,
turn_left, and stay.

In our simulated setting, desired camera locations are pre-
dicted for the best action chosen, and a PD low-level control
law is applied to ensure these locations are reached at the
end of one second; at which point the motion metric is again
evaluated to determine the next desired action. Orientations
however, are evaluated at frame rate, leaving the system to
freely rotate, governed only by the information maximisation
strategy.

The simulation considers a fixed number of expected land-
marks to be found, and both the Mutual Information and
Fisher Information metrics are computed taking into account
the corresponding full covariance matrices, including these
unvisited landmarks, which have been initialised with large
uncertainties. This is the only thing that prevents our control
strategies from defaulting to homeostasis.

B. Simulation Results

Figure 2 contains simulation results from our mutual in-
formation strategy for the computation of motion commands,
and compares various orientation computation schemes. The
simulated environment represents a room 6×6×2 m3 in size
containing 33 randomly distributed point landmarks, out of
which 6 are fiduciary points, to be used as global references
[21].

The initial standard deviation in camera pose is 6-cm in
the x and y directions, 4.6 cm in height z, and 45◦ in
orientation, right after matching the fiduciary points, but before
any motion takes place. Sensor standard deviation is set at 2
pixels, and data association is not known a priori. Instead,
nearest neighbour χ-squared tests are computed to guarantee
correct matching. New features are initialised once their ratio
of depth estimate to depth standard deviation falls below a
threshold of 0.3.

The plots show the results of actively moving a 6-DOF
camera whilst building a map of 3D features. In all cases, each
of the seven motion actions will produce a displacement of
30 cm in the corresponding direction. Our mutual information
metric is evaluated at each of these positions. The action that
maximises the metric is chosen, and the camera is controlled
to reach that position in one second with a PD control law.
Orientation changes are computed every 50 ms.

Three approaches were tested for the computation of gaze
commands: (i) constant rotational velocity of 0.2 rad/sec,
frames (a,d); (ii) maximisation of mutual information both
for the position and orientation of the moving camera, frames
(b,e); and (iii) maximisation of mutual information for position
and maximisation of Fisher information for gaze, frames (c,f).
The experiment shown in the plots lasted 35 seconds.

The constant rotational velocity and the mutual information
strategies tend to insert landmarks into the map at a faster
pace than the Fisher Information strategy. As can be seen in
the error plots in Figure 3, this might not be always the best
choice. It seems reasonable to let the system accurately locate
the already seen landmarks before actively searching for new
ones.
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(a) Final Map by using Mutual Information for
position and constant angular velocity.
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(b) Final Map by using Mutual Information for
position and orientation.
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(c) Final Map by using Mutual Information for
position and Fisher Information for orientation.
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(d) Entropy for MI in position and constant
angular velocity.
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(e) Entropy for MI in position and orientation.
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(f) Entropy for MI in position and FI in orien-
tation.

Fig. 2. Trajectories with Final Maps and Entropy. (rReal and rEst are the real and estimated camera trajectories, the label newland and the green dots and
dotted vertical lines represent the value of entropy at the instant when new landmarks are initialised. Pcam, Plan, and P indicate the camera, map, and overall
entropies.

The third alternative, controlling camera orientation by
maximising the Fisher Information entering into the filter,
has the effect that it focuses on reducing the uncertainty of
the already seen landmarks, instead of eagerly exploring the
entire room for new landmarks. The reason is that landmarks
that have been observed for a small period of time still have
large depth uncertainty, and the Fisher Information metric
is maximised when observations are directed towards them.
The technique tends to close loops at a faster pace than the
other two approaches, thus propagating correlations amongst
landmarks and poses in a more efficient way. Additionally, by
revisiting fiduciary points more often, orientations are much
better estimated in this case.

Strategy (iii) needs more time to reduce entropy and takes
more time to insert the same number of landmarks in the map.
But, at the point at which the same number of landmarks is
available it has lower entropy than the other two strategies
(see for example in Figure 2, frames (d-f), that when the 14th
landmark is added, the times are 19, 18, and 30 secs, and the
entropies are -530, -550, and -610).

V. EXPERIMENTS

This section presents an initial experimental result validating
the maximisation of mutual information strategy for the con-
trol of a hand-held camera in a challenging 15fps visual SLAM
application. Within a room, the camera starts approximately

at rest with some known object in view to act as a starting
point and provide a metric scale to the proceedings. The
camera moves, translating and rotating freely in 3D, according
to the instruction provided in a graphical user interface, and
executed by the user, within a room or a restricted volume,
such that various parts of the unknown environment come into
view. The aim is to estimate and control the full camera pose
continuously during arbitrarily long periods of movement. This
involves accurately mapping (estimating the locations of) a
sparse set of features in the environment.

Given that the control loop is being closed by the human
operator, only displacement commands are computed. Gaze
control is left to the user. Furthermore, the mutual information
measure requires evaluating the determinant of the full covari-
ance matrix at each iteration. Because of the complexity of this
operation, single motion predictions are evaluated one frame
at a time. It is only until the 15th frame in the sequence that
all mutual information measures are compared, and a desired
action is displayed on screen. That is, the user is presented
with motion directions to obey every second. Note also, that
in computing the mutual information measure, only the camera
position and map parts of the covariance matrix are used,
leaving out the gaze and velocity parts of the matrix. Finally,
to keep it running in real-time, the resulting application must
be designed for sparse mapping. That is, with the computing
capabilities of an off-the-shelf system, our current application
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(a) Position error when using MI for position
and constant angular velocity.
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(b) Position error when using MI for position
and orientation.
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(c) Position error when using MI for position
and FI for orientation.
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(d) Orientation error when using MI for posi-
tion and constant angular velocity.
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(e) Orientation error when using MI for position
and orientation.
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(f) Orientation error when using MI for position
and FI for orientation.

Fig. 3. Estimation errors for camera position and orientation and their corresponding 2σ variance bounds. Position errors are plotted as x, y, and z distances
to the real camera location in meters, and orientation errors are plotted as quaternions.

is limited to less than 50 landmarks.
Figure 4 shows the graphical user interface. The top part of

the figure contains a 3D plot of the camera and the landmarks
mapped, while the bottom part shows the information being
displayed to the user superimposed on the camera view. Figure
5 contains a plot of the decrease in the various entropies for
the map being built, and the list of actions chosen as shown
to the user during the first minute.

Worth noticing is that in the real-time implementation, the
system prompts the user for repeated up-down movements,
as well as left-right commands. This can be explained as if
after initialising new features, the system repeatedly asks for
motions perpendicular to the line of sight to best reduce their
uncertainty. Also, closing loops has an interesting effect in the
reduction of entropy, as can be seen around the 1500th frame
on Fig. 5-a.

VI. CONCLUSION

In conclusion, we have shown plausible motion strategies
in a video-rate visual SLAM application. On the one hand, by
choosing a maximal mutually informative motion command,
we are maximising the difference between prior and posterior
SLAM entropies, resulting in the motion command that mostly
reduces the uncertainty of x due to the knowledge of z.
Alternatively, by controlling gaze maximising the information
about the measurements, we get a system that prioritises in

accurately locating the already seen landmarks before actively
searching for new ones.

Our method is validated in a video-rate hand-held visual
SLAM implementation. Given that our system is capable of
producing motion commands for a real-time 6DOF visual
SLAM, it is sufficiently general to be incorporated into any
type of mobile platform, without the need of other sensors.

A possible weakness of this information-based approach is
that it estimates the utility of measurements assuming that
our models are correct. Model discrepancies, and effects of
linearisation in the computation of our estimation and control
commands might lead to undesirable results.

APPENDIX

The orientation of the camera frame, and its rate of change,
are related to the angular velocity by the quaternion multi-
plication Ω = 2q̇q∗ , with Ω = [0, ωx, ωy, ωz]�, the angular
velocity vector expressed in quaternion form, and q∗ is the
orientation quaternion conjugate. Or equivalently, by q̇ =
1
2Mq ≈

q(k+1)−q(k)

Δt
, with

M =

⎡
⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0

⎤
⎥⎥⎦ .

Solving for q(k+1) in the above approximation when ω is con-
stant, our smooth motion model for the prediction of change
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Fig. 4. Feature map and camera view as shown in the Graphical User
Interface (844th frame).

in orientation becomes qk+1 = Qqk with the quaternion
transition matrix

Q = cos
(

Δt‖Ω‖

2

)
I +

2
‖Ω‖

sin
(

Δt‖Ω‖

2

)
M .

Note that when computing the quaternion propagation, the
angular velocities are to be evaluated at (k + 1|k), i.e.,
including the angular acceleration term.
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