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Abstract— In this paper we present an active exploration

strategy for a mobile robot navigating in 3D. The aim is to

control a moving robot that autonomously builds a visual

feature map while at the same time optimises its localisation

in this map. The technique chooses the most appropriate

commands maximising the information gain between prior

states and measurements, while performing 6DOF bearing-

only SLAM at video rate. Maximising the mutual informa-

tion helps the vehicle avoid ill-conditioned measurements ap-

propriate to bearing-only SLAM. To validate the approach,

extensive simulations over rugged terrain have been per-

formed. Moreover, experimental results are shown for the

technique being tested with a synchro-drive mobile robot

platform.

Index Terms—Bearing only SLAM, Exploration.

I. INTRODUCTION

Autonomous exploration is a process in which an ob-

server can interact with its surroundings by moving about

and collecting information in order to learn about the en-

vironment [24]. Within the mobile robotics context, much

attention has been paid to the second part of this process,

collecting information that is. The technique is known as

simultaneous localisation and mapping (SLAM in short)

[19], and over the past 20 years, SLAM systems have

matured from producing indoor planar range-based maps

[9–11], to 2D outdoor maps [21, 23], to 3D outdoor maps

[3], to trinocular and stereovision based maps [6, 14],

and more recently, to monocular (bearing-only) mapping

[7, 8].

Less attention has been paid however to the first part

of the problem, that of actively exploring while map-

ping. Noteworthy, and given the probabilistic nature of

the Bayesian approach to the solution of the SLAM prob-

lem, entropy reduction has recently gained popularity as a

map building strategy for driving a robot during a SLAM

session in order to minimise uncertainty [1, 9, 15].

Given the real-time characteristics of the visual SLAM

system we use, fast and efficient action evaluation is of

utmost importance. Fortunately enough, the elements

needed to validate the quality of actions with respect to
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entropy reduction are readily available from the SLAM

priors [4], and, by making enough implementation adap-

tations, we are able to evaluate in real time the value of a

limited number of actions. The technique has already been

tested for an unconstrained moving camera [22], and this

communication presents the natural step forward, evaluat-

ing the technique during constrained motion.

Action evaluation with respect to information gain

has already been implemented for other SLAM systems,

but little to no effort has been expended on the real-

time constraint. One such approach makes use of Rao-

Blackwellized particle filters [20]. When using particle

filters for exploration, only a very limited number of ac-

tions can be evaluated due to the complexity in comput-

ing the expected information gain. The main bottleneck

is the generation of the expected measurements each ac-

tion sequence would produce, which is generated by a ray-

casting operation in the map of each particle. In contrast,

measurement predictions in a feature-based EKF imple-

mentation can be computed much faster, having only one

map posterior per action to evaluate, instead of the many

a particle filter requires. Moreover, in [20] the cost of

choosing a given action is substracted from the expected

information gain with a user selected weighting factor.

A more theoretically sound approach is presented in this

work, in which the cost of performing a given action is

inherently taken into account when evaluating the entropy

for the set of possible priors.

Sim has also addressed decision making for the robot

exploration problem, as an optimisation problem for a re-

stricted hand-crafted set of exploratory policies [16], as a

sequential decision making problem (POMDPs) [18], and

by updating an information surface in a SEIF implemen-

tation [17]. These contributions, however, only test the

strategies for very small planar point-based simulated en-

vironments, and remain to be tested in real-world applica-

tions. In order to avoid local maxima, the approach pre-

sented in [17] explicitly avoids loop closing by discarding

repeated poses during trajectory search. Our previous ex-

perience with real-time vision-based SLAM has shown us

however, that short loop closing is essential for consistent

bearings-only mapping. Moreover, [24] suggests that a

gradient strategy for uncertainty reduction would not fal-



ter on top of a local maximum. The reason being that

the information surface being ascended is continuously

changing as new data are added. Maximally informa-

tive posteriors come from locations with large variance,

and when measurements iterate over the same states, the

prediction variance will be reduced to the level of sensor

noise, flattening the information surface with the effect

of “pushing” the robot away from that location. Conse-

quently, in this work, we choose to concentrate in a greedy

real-time steepest descent approach to entropy reduction

for a monocular SLAM system, rather than on planning

for large sequences of actions.

Other approaches include, for example, a multirobot

stereo-vision occupancy grid-based SLAM system [13],

with best single-step look ahead chosen on the basis of

overall map entropy reduction. In such a discrete rep-

resentation of the map posterior, overall map entropy is

computed as the sum of individual entropies for each grid

cell. Bryson et al. on the other hand, present simulated

results of the effect different vehicle actions have with re-

spect to the entropic mutual information gain [2]. The

analysis is performed for a 6DOF aerial vehicle equipped

with one camera and an inertial sensor, for which land-

mark range, azimuth, and elevation readings are simu-

lated, and data association is known.

In this paper, we have opted for a strategy that chooses

those actions that maximise the mutual information be-

tween states and measurements. Notice that maximising

an information criterion might result in uncertian actions

being chosen, since their reduction of uncertainty once a

measurement has taken place would be larger. Other re-

ported approaches maximise present to future posterior

entropy differences instead. With our chosen strategy

overall entropy decay may happen at a lower pace, at the

expense of actually choosing exploratory actions instead

of homeostatic ones.

The rest of the paper is distributed as follows. Section

II presents a brief overview of the vision-based bearing

only SLAM system we use. Section III is devoted to a dis-

cussion from first principles on the value of expected mea-

surements in reducing overall state entropy. This gives

rise to the actual action selection policy used, which is

described in detail in Section IV. Section V presents an

evaluation of our exploration strategy for a 3D simulated

environment; and Section VI contains actual experimen-

tal results. Finally, some concluding remarks are given in

Section VII.

II. EKF 6DOF BEARING-ONLY SLAM

The SLAM problem is usually formulated as the prob-

abilistic estimation of a multivariate state, containing the

pose of a moving platform xv,k (be it a robot, a wearable

device, an UAV, etc), as well as all learned feature loca-

tion estimates y. The objective is to compute the posterior

p(xv,k,y|Uk, Zk) conditioned on the history of motion

commands Uk and feature measurements Zk; that with a

Kalman filter is approximated as a Gaussian distribution

with mean xk|k and covariance Pk|k.

A. Unconstrained Camera Motion

Considering initially that our sensor is a camera, and

that it is free to move in any direction in IR3 × SO(3),

we adopt the same smooth unconstrained constant veloc-

ity motion model as in [22],

xv,k+1|k =


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
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Suffice to say that p = [x, y, z]⊤ and q =

[q0, q1, q2, q3]
⊤ denote the camera pose (three states for

position and four for orientation using a unit norm quater-

nion representation), and v = [vx, vy, vz]
⊤ and ω =

[ωx, ωy, ωz]
⊤ denote the linear and angular velocities, re-

spectively, corrupted by zero mean normally distributed

linear and angular accelerations a = [ax, ay, az]
⊤, and

α = [αx, αy, αz]
⊤. The quaternion transition matrix is

Q = cos

(

∆t‖Ω‖
2

)

I +
2

‖Ω‖ sin

(

∆t‖Ω‖
2

)

Ω×

with Ω = [0, ωx, ωy, ωz]
⊤ the angular velocity vector ex-

pressed in quaternion form, and Ω× its skew-symmetric

matrix representation.

B. Constrained Camera Motion

It is assumed, however, that such camera is attached

to a mobile robot navigating in a 3D terrain. The mo-

bile robot is controlled by linear and angular velocities

u = [vr, ωr]
⊤ which are tangent to the terrain surface. In

simulating the robot motion taking into account surface

contact at all times, we can substitute the previous motion

prediction model with a constrained model for the contin-

uous transition of the optic centre of the camera

[

pk+1|k

θk+1|k

]

=

[

pk|k

θk|k

]

+ Γuk∆t, (2)

where
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θ = [ψ, θ, φ]⊤ is a yaw, pitch, roll representation of q,

and l is the distance between the axle centre of the mobile

robot and the camera optic centre.

C. Measurement Model

Our 6DOF Single Camera SLAM system extracts

salient point features from images, building a map of their

3D coordinates. Image projection priors are estimated

with a full perspective wide angle camera

[

u

v

]

=

[

u0 − uc/
√
d

v0 − vc/
√
d

]

where the position of a 3D map point is first transformed

into the camera frame yc
i = R(yi − p), with R the

rotation matrix equivalent of q, and uc = fkux
c/zc,

vc = fkvy
c/zc. The radial distortion term is d =

1 +Kd(u
2
c + v2

c ), and the intrinsic calibration of the cam-

era is known — focal distance f , principal point (u0, v0),

pixel densities ku and kv , and radial distortion parameter

Kd.

These priors are then compared against actual measure-

ments using a nearest neighbour test within a 3σ elliptical

search region inside the innovation covariance Si for each

image estimate (see [22] for details).

New features are initialised using the approach pre-

sented by Davison in [7].

III. INFORMATION GAIN

The exploration strategy proposed in this paper is

aimed specifically at maximising the mutual information

between the state and consequent measurement priors,

both resulting from an action in the form of a motion com-

mand. Different commands give rise to better or worse

priors (in an entropic sense), and we want to select, from

a limited test set, the one that produces the most expected

reduction in entropy for the entire state, once the conse-

quent measurement has taken place.

The mutual information for these two continuous prob-

ability density functions is defined as [4]

I(X;Z) = E

[

log
p(x|z)
p(x)

]

. (3)

For our Gaussian Multivariate case, the prior distribu-

tion is simply p(x) = N(xk+1|k,Pk+1|k), whereas, the

conditional is given by the Kalman posterior p(x|z) =

N(xk+1|k+1,Pk+1|k+1) with the updates

xk+1|k+1 = xk+1|k + Pk+1|kH
⊤S−1(zk+1 − zk+1|k)

(4)

Pk+1|k+1 = Pk+1|k − Pk+1|kH
⊤S−1HP⊤

k+1|k (5)

Substituting Eqs. 4 and 5 in Eq. 3, and taking the

expectation, the Mutual Information between our state and

measurement priors evaluates to the difference between

prior and posterior state entropies

I(X;Z) =
1

2
(log |Pk+1|k| − log |Pk+1|k+1|) .

In other words, maximising the mutual information be-

tween the state and measurement priors we end up choos-

ing the motion command that most reduces the uncertainty

in the state due to the knowledge of the consequent mea-

surement as a result of a particular action.

IV. CONTROL STRATEGY

In this section we present the guidance strategy for our

mobile robot performing SLAM with a single wide-angle

camera. The control scheme is based on computing the

instant robot accelerations that maximise mutual state and

measurement information gain. Actions in the form of

impulse accelerations guarantee smooth platform velocity

change. The chosen command is then integrated to pro-

duce the input velocity that is sent to the robot. Given the

real-time limitations of our system, only a limited num-

ber of actions can be evaluated at each step. These are the

discrete set from Table I.

TABLE I

ACTION SET

Action Linear Acceleration Angular Acceleration

0 0 0

1 0 −ω̇r

2 0 ω̇r

3 −v̇r 0

4 v̇r 0

5 −v̇r −ω̇r

6 v̇r ω̇r

To compare the actions, the motion model from Eq.

(2) is used to predict the prior mean xk+1|k for each in-

stant acceleration in the set, propagating the covariances

by computing the corresponding Jacobians. Map features

priors are also used to simulate the expected observations

using the camera measurement model and the state prior.



The posterior covariance is then computed taking into ac-

count only known features inside the camera field of view.

At each time step we compute, in turn, the mutual in-

formation for one action in the set, using the prior and

posterior covariance matrices. That is, for every linear

and angular instant acceleration combination. Every 15th

cycle, once all possible actions have been evaluated for a

lapse of at least 8 cylces, the action that maximises the

mutual information is chosen, and a new velocity input is

sent to the system.

It is assumed a fixed number of expected features will

be found within a 3D unexplored room. During the action

selection process, the unknown features are taken into ac-

count in the covariance matrix initialized with large un-

certainty.

V. SIMULATIONS

Extensive simulations have been performed using the

constrained motion model for the mobile robot from Eq.

(2), navigating in uneven 3D terrain, and using a full per-

spective wide angle camera model as sensing device. Un-

fortunately, this model is too restrictive due to the planar

approximation of the terrain when computing priors. For

this reason, it is only used to transform from linear and an-

gular robot velocities to Cartesian velocities. The actual

estimation of the robot pose and velocities is performed

however, with the unconstrained motion model.

The aim is to choose impulsive acceleration commands

for the mobile robot in order to explore the whole room

while trying to reduce most the uncertainty. Accelerations

are applied only every 15th step, and in between action

decision, null acceleration is set, i.e. constant velocity be-

haviour is chosen until a new action is decided.

The control action is chosen from the discrete set of in-

stant linear and angular accelerations shown in the Table I.

The values for v̇r and ẇr that produced the results shown

in this section are 0.5m/s2 and 0.3rad/s2 respectively.

The simulated environment shown contains 25 unknown

features and 6 known features uniformly distributed in the

room. Our simulated wheeled mobile robot is navigating

over a 3D sinusoidal surface.

Figure 1(a) shows the trajectory followed by the vehi-

cle and the initialised features with their uncertainty plot-

ted as 2σ level hyperellipsoids. The expected covariance

matrix is extended with the unknown feature uncertainties

with diagonal values of 5m2 each to avoid homeostasis.

Entropy reduction is computed using the extended covari-

ance. The instant at which new features are added to the

state are shown in Figure 1(b). Moreover, state estimation

errors are shown in Figure 2 for the camera pose. No-

tice how when the terrain abruptly changes, the estimated

velocities become underestimated in the direction the ter-

rain changed. Thus in simulating vehicle motion, a more

elaborate model taking into account surface discontinu-

ities ought to be considered for very rough terrains.

The selected actions reduce the camera pose and ve-

locity uncertainty first, tracking features with low uncer-

tainty. After that, the variance for unvisited features with

large uncertainty is reduced as new features are added. In-

terestingly enough, the system autonomously explores by

repeatedly choosing a negative linear acceleration. The

effect is to augment the camera field of view with the con-

sequent inclusion of new feature in the model, but still

maintaining known features in sight, thus keeping the ve-

hicle well localised at all times. In contrast to our pre-

vious experiments reported with a free-moving hand-held

camera [22], it is more difficult in this constrained motion

setting to actively perform short loop closure orthogonal

to the field of view. The reason being that the robot cannot

achieve saccadic motions in the way a free-moving cam-

era can.

At this point we can argue how the same tracking

(unconstrained constant velocity 6DOF motion model)

and action selection strategies (maximising the mutual

information between states and measurements) is capable

of choosing different exploratory manouvers depending

on the characteristics of the platform: short loop closing

for a 6DOF free-moving camera, and backwards linear

motion increasing the field of view for a mobile robot.

VI. EXPERIMENTS

Our main concern was to test the strategy during real-

time vision-based SLAM execution. This Section is de-

voted to a discussion on such results. The experiments

were conducted on the mobile platform shown in Fig. VII,

with a wide-angle camera rigidly attach to the robot body,

and for which an updated version of the single camera

SLAM system reported in [5] was setup.

Within a room, the robot starts approximately at rest

with some known object in view to act as a starting point

and provide a metric scale to the proceedings. The robot

moves, translating and rotating constrained by the 3D ter-

rain, such that various parts of the unknown environment

come into view. The aim is to estimate and control the

6DOF camera pose continuously, promptly and reliably

during arbitrarily long periods of movement. This will in-

volve accurately mapping (estimating the locations of) a

sparse set of features in the environment.

The whole process is running at 15fps. Since our mu-

tual information measure requires evaluating the determi-

nant of the full covariance matrix (enlarged with the un-

visited features) at each iteration, single motion predic-



(a) Simulated robot trajectory
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Fig. 1. Simulation of a mobile robot actively exploring a room. The mutual information maximisation strategy produces a nearly
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(b) Orientation error

Fig. 2. Estimation errors for camera position and orientation and their corresponding 2σ variance bounds. Position errors are plotted

as x, y, and z distances to the real camera location in meters, and orientation errors are plotted as quaternions.

tions are evaluated one frame at a time. It is only every

15th frame in the sequence that all mutual information

measures are compared, and the best action is sent to the

mobile robot. For the experiments, the acceleration mag-

nitudes were set to v̇r = 0.1m/s2 and ω̇r = 5deg/s2.

When computing posteriors, these are all predicted for the

duration that would take them to the end of the 15th frame,

each action in turn being evaluated for a slightly shorter

period of time. The motivation is that we want to be able

to test actions in the basis of their effect at the very same

point in time (at the end of the 15th frame). In order to

evade any bias related to the time spent in evaluating the

effect of actions, these are randomly ordered at each iter-

ation.

As with the simulated setting, the robot navigates in

uneven terrain as shown in Figures VII and 4(a). In the

plot, the estimated path (blue continuous line) is shown in

3D, as opposed to the vehicle odometry which is restricted

to the Z-X plane. The orientation angle from Figure 4(b)

indicates the vehicle orientation with respect to the world

axis Y (orthogonal to the white sheet of paper placed in

front of the robot, which serves as global reference con-

sistent to the world XZ plane). Estimation in this case is

similar to the measure provided by the encoders.

As in the simulated case, our mutual information-based

action selection strategy for this constrained motion case



Fig. 3. The mobile robot platform used in the experiments.

autonomously explores the room driving the vehicle back

and forth, but mostly backwards, enlarging the field of

view by pulling away from the initial view.

Figure 4(b) gives account of the actions sent to the

robot, and shows as most frequent actions iterations be-

tween positive and negative linear acceleration. The fea-

ture map and camera pose are updated and displayed in

real-time in the graphical user interface. Figure 5 shows a

sequence of frames from the same experiment, that show

the robot driving away from the start known features.

VII. CONCLUSION

This paper has presented an autonomous information-

driven exploration strategy for a wheeled mobile robot

equipped with a single wide angle camera and navigating

in uneven terrains. The approach is based in choosing the

action that maximises the information gain between state

and measurement priors. Simulation and experimental re-

sults consistently show a behaviour in which the robot

pulls back from an initial configuration, by having the

camera search for more features whilst reducing its own

pose uncertainty.

The reported camera trajectories are simple because a)

the robot is commanded by acceleration impulses that tend

to drive the robot through smooth velocity changes, and b)

the real-time constraints of the implementation allow only

for the evaluation of a very limited set of possible actions.

The computational complexity in computing entropy does

not permit large maps, in that case submapping will be a

good solution.

It is worth noting that no high-level task-dependent

path planning is being performed whatsoever. The ex-

ploratory actions are chosen purely in the context of en-

tropy minimisation. We foresee that planning under un-

certainty while mapping requires moving ahead from the

approach presented in this paper involving local action se-

lection, to longer term planning including task descrip-

tion. One approach to the problem we seek to explore is

by planning in partially observable continues domains via

value iteration over POMDPs [12].
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