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ABSTRACT
Non-supervised multiple-agent tracking is a complex task
which demands a structured framework in order to accom-
plish it. Therefore, this proposal presents a system which
is modular and hierarchically organised. It consists in sev-
eral levels, working in cascade, which are defined accord-
ing to the different functionalities to be performed. The
goal of this work is to implement and experimentally ver-
ify a novel image-based algorithm which deals with serious
segmentation difficulties, thereby being able to simultane-
ously perform a reliable tracking of several agents. As a
result, agents’ trajectories are obtained, as well as quantita-
tive information about their state at any time, such as their
speed or size.
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1 Introduction

Computer-based tracking of multiple agents has become an
active research field [6]. This interest is motivated by an
increasing number of potential applications, such as smart
video surveillance, intelligent user-computer interfaces or
the evaluation of human sequences (HSE) [10]. Obtain-
ing robust performances, whilst using non-intrusive tech-
nology, is frequently mandatory. Despite this interest, this
still constitutes an open problem which is far from been
solved, and where serious difficulties should be expected.
In open-world applications, the number of agents within
the scene may vary over time. In unconstrained environ-
ments, the illumination and background-clutter distracters
are uncontrolled, affecting the perceived appearance over
time. This depends on issues such as the agents’ position
or orientation and how they face different, varying sources
of light.

In the literature, tracking performance is usually
based on the results of foreground segmentation, and a sub-
sequent target association. Segmentation can be performed
by means of optical flow [4], background subtraction [11],
frame differencing, or a combination of these [6]. The asso-
ciation can be accomplished using nearest neighbour tech-

niques, or by means of Data Association Filters (PDAF,
JPDAF, MHF), depending on whether several targets and
measurements are expected [3]. Usually, a prediction stage
is also incorporated, thereby providing better chances of
tracking success. Filters such as the Kalman Filter [15],
or subsequent extensions such as the EKF [1] or UKF [14]
are commonly used. More general dynamics and measure-
ment functions can be dealt with Particle Filters (PF) [2]
and further evolutions, such as the UPF [18].

Specifically, Nummiaro et al. [17] use a particle fil-
ter based on colour-histogram cues. However, no multiple-
target tracking is considered, and it lacks from an indepen-
dent observation process, since samples are evaluated ac-
cording to the histograms of the predicted image region.
Deutscher et al. [9] present an interesting approach called
annealing particle filter which aims to reduce the required
number of samples. However, pruning hypotheses with
lower likelihood could be inappropriate in cluttered envi-
ronments. They combine edge and intensity measures, but
they focused on motion analysis, and thus multiple targets
and unconstrained environments are not explored. Contour
tracking have been widely explored [12, 16], although this
may not be the best approach in crowded scenarios because
of the potential multiple occlusions. BraMBLe [13] is an
interesting approach to multiple-blob tracking which mod-
els both background and foreground using MoG. However,
no model update is performed, there is a common fore-
ground model for all targets, and it may require an ex-
tremely large number of samples, since one sample con-
tains information about the state of all targets, dramatically
increasing the state dimensionality.

Recently, a rather different approach has been intro-
duced [5, 8, 7]. Comaniciu et al. [8] developed an attractive
technique called mean-shift tracker. However, their method
tracks just one target, initialised by hand and the appear-
ance model was never updated. Collins et al. [7] presented
an effective tracker, based also on the mean-shift algorithm,
with online selection of discriminative features. It aims to
maximise the distinction between the target appearance and
its surroundings. Still, it tracks just one target, initialised by
hand and which may suffer from model drift. In both cases,
just rigid targets are tracked (or rigid regions of them), and
since multiple-target tracking is not considered.



Figure 1. System Architecture for Observation-
Measurement Handling

The remainder of this paper is organized as follows.
Section 2 outlines the proposed method, which is is fully
described in the next three sections: section 3 details how
the segmentation is carried out, and the chosen data rep-
resentation; section 4 discuss the low-level tracking mod-
ule; section 5 discusses the experimental results; and sec-
tion 6 summarises the conclusions, and proposes future-
work lines.

2 Approach Outline

Reliable target segmentation is critical in order to achieve
an accurate feature extraction without considering prior
knowledge about the potential targets, specially in dynamic
scenes. However, agents who move through cluttered envi-
ronments require a structured framework to deal with poor
detection results. A sketch of this system is shown in Fig. 1.

The lower level performs the target detection task.
It consists in two modules. The first one accomplishes
the segmentation task, which involves separating image re-
gions that do not belong to the background and extracting
them. In order to carry it out, a colour-based background
subtraction method is used. Subsequently, the obtained im-
age mask is filtered, and the result is manipulated to ob-
tain representations which can be handled by the low-level
tracker. Particularly, an ellipse representation is chosen.

The low-level tracker aims to establish coherent rela-
tions of the different targets between frames. In order to
accomplish this task, four processed are carried out. In the
first place, gates are computed, that is, the regions where
the observations are expected to appear are specified. This
is done according to the target state and the system un-
certainties. Subsequently, data association is performed.
In this stage, correspondences between observations and
trackers are set based on a nearest-neighbour decision in
the observation space. Afterwards, filtering is performed,
that is, new target states are estimated according to the
associated observations. This is accomplished by a bank
of Kalman filters, operating in a state space given by the
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Figure 2. Threshold computation. Thresholds are auto-
matically computed by cumulating histogram values and
applying a detection rate.

target estimated centroid, its speed, the axis lengths, the
axis length change rates, and the ellipse angle. Finally, the
track-management module (i) initiates tentative tracks for
those observations which are not associated to any existing
target; (ii) confirms tracks with enough supporting observa-
tions; and (iii) removes low-quality ones. Results are lastly
fed back to the measure-validation module.

3 Colour Segmentation and Blob Detection

Image segmentation is performed following the method
proposed by Horprasert et al. [11], a colour background
subtraction approach whose main characteristics are de-
tailed next.

3.1 Background model

The background is statistically modelled on a pixel-wise
basis, using a window of N frames. During this training
period, the mean Ei and standard deviation σi of each pixel
RGB-colour channel.

Two distortion measures are established: α, the
brightness distortion, and CD, the chromacity distortion.
Once each colour-channel value is normalised by their
respective standard variation, the brightness distortion is
computed by minimising the distance between the current
pixel value and the chromacity line. The variation over time
of both distortions for each pixel is subsequently computed
by means of the Root Mean Square. These values are used
as normalising factors so that a single threshold can be set
for the whole image, see [11] for details.

Fig 2 shows the normalised brightness distortion his-
togram for a given frame, as well as the corresponding
thresholds.
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Figure 3. Segmentation and detection examples. (a) The
segmented foreground pixels are painted on white, while
those ones classified as dark foreground are painted on yel-
low. Shadows are painted on green and highlights on red.
(b) Detection example: red ellipses represent each target,
and yellow lines denote their contour.

3.2 Image segmentation

Pixels are classified into five categories, depending on their
chromacity and brightness distortion. For each frame, both
normalised pixel distortions are computed. Those pix-
els whose chromacity distortion is higher than expected
(that is, over the chromacity threshold) are marked as fore-
ground. Those which are not, if the brightness distortion
is more negative than the dark threshold, are marked as
dark foreground. The rest are classified as highlight, if
the brightness distortion is higher that the upper distortion
threshold; or shadows, if the brightness distortion is lower
than the lower distortion threshold. If none of these condi-
tions hold, the pixel is classified as normal background. An
example of foreground segmentation is show in Fig 3.(a).

3.3 Blob detection

Once the current image has been segmented into the afore-
mentioned five categories, blobs that may correspond to
agents are detected. First, both foreground and dark-
foreground maps are fused. Then, majority, opening and
closing morphological operations are applied. Finally, a
minimum-area filter is used. The surviving pixels are
grouped into blobs. Each blob is labelled, their contours
are extracted and an ellipse representation —which keeps
the blob first and second moments— is computed. Thus,
the j-observed blob at time t is given by the vector z t
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, where xt

j , y
t
j represent the ellipse cen-

troid, ht
j, w

t
j are the major and minor axes, respectively,

and the θt
j gives the angle between the abscissa axis and

the ellipse major one. Fig 3.(b) shows an example of target
detection.

4 Low-level blob tracker

Given successive target detections, the observations must
be associated, thereby establishing correspondences be-

Figure 4. Recursive Kalman filter.

tween frames. The target state is then estimated by filtering
the sequence of noisy measures.

4.1 State-space model

In this work, it is assumed that human beings move slowly
enough compared to the frame rate. Since their long-
run dynamics are hardly predictable, a first-order dynamic
model is adopted. This assumption holds in most HSE ap-
plications. The observation vector at time t is given by
the blob detection module. The target state is defined by

xt
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, which defines a

state variable for every observation one and adds the target
speed and the size change rate. Thus, the model consid-
ered is given by a constant-speed approach where the ac-
celeration is modelled as White Additive Gaussian Noise
(WAGN) —except for the angle variable, whose speed is
modelled as noise.

4.2 Linear Filters

We begin our experiments by including a linear filter, but
the inclusion of more complex filters would be straightfor-
ward. To start with, the Kalman filter [15] implements a
recursive algorithm which works in a prediction-correction
way, estimating the system state from noisy measures. The
estimator is optimal in the sense that it minimises the
steady-state error covariance. However, strong assump-
tions are required: the transition model must be linear
Gaussian, and the sensor model must be Gaussian. Nev-
ertheless, albeit these conditions rarely exist, the filter still
works reasonably well for many applications.

It works in two steps which are recursively performed
(a block diagram is shown in Fig 4) . In the first one a pre-
diction is made: the expectation and covariance are propa-
gated according to the the dynamic model, thereby obtain-
ing the temporal prior:

x̂−
k = Ax̂k−1, (1)

P−
k = APk−1AT + Q. (2)

After obtaining the new measurement zk, the second
step is carried out, and values are updated according to the
observation likelihood:



x̂k = x̂−
k + Kkyk, (3)

Pk = I − KkCP−
k , (4)

where:

yk = zk − Cx̂−
k , (5)

is called the innovation or the residual,

Sk = CP−
k CT + R, (6)

is called the innovation covariance, and

Kk = P−
k CTS−1

k , (7)

is known as the Kalman gain.

4.3 Measure validation

In a multiple-target tracking scenario, numerous observa-
tions may be obtained at every sampling period. In this
case, some observations could have been generated by clut-
ter or noise processes, and several observations might cor-
respond to the same target with a given probability. Mea-
sure validation consists in establishing the regions or gates
where the target observations are expected, in agreement
with the target state and the system uncertainties.

The gating process works as follows. Each target ex-
pected observation is predicted according to the system dy-
namics:

ẑk = CAx̂k−1. (8)

The predicted error covariance is computed according
to Eq. (2). Subsequently, the innovation covariance ma-
trix Sk defines an ellipsoid in the observation space whose
axes are given by the covariance matrix eigenvectors, and
the axis length —for the ellipsoid with unit Mahalanobis
radius— is given by the the square root of corresponding
eigenvalues. A particular Mahalanobis radius defines an
ellipsoid, centred at the mean of the distribution, which
encloses a probability mass given by the confidence inter-
val associated with the ellipsoid, see Fig 5.(a). The Maha-
lanobis Squared Distance (MSD) of a d-dimensional Gaus-
sian observation variable is given by:

d2
Mahal = (zk − ẑk)S−1

k (zk − ẑk)T
, (9)

and it is distributed according to a Chi-squared distribution
with d degrees of freedom:

(a)

(b)

Figure 5. (a) Innovation Covariance Ellipsoid. (b) Obser-
vation association.

d2
Mahal ∼ χ2

d. (10)

Thus, the Mahalanobis radius corresponding to the el-
lipsoid with a given confidence interval can be computed by
evaluating the inverse of the cumulative distribution func-
tion of the Chi-squared distribution. This means that mea-
sures can be validated for a given confidence interval by
calculating the MSD between the predicted observation and
the actual one, and comparing this value with the Maha-
lanobis radius for this confidence interval —which is ob-
tained from the inverse of the cumulative distribution func-
tion of the Chi-squared distribution.

4.4 Data Association and Filtering

Measures are associated to the nearest neighbour tracker in
whose gate they lie, see Fig 5.(b). A more complicated data
association method, such as PDAF or JPDAF, is not con-
sidered to be necessary since observations are usually just
within one target gate. This is intrinsic to the segmentation
method: if two targets are so close in the observation space
as to introduce ambiguity in the data association process,
the segmentation module is likely to segment just one blob
corresponding to the group formed by both targets. This
issue is addressed at the event-management section.

A bank of Kalman filters is implemented to estimate
the state of all targets detected within the scene. As a spe-
cial case, if no observation is associated to a particular tar-
get, its state is estimated using a Kalman Gain equal to zero,
i.e. it is just propagated according to the dynamic model.



4.5 Track Management

This module manages the target tracks by instantiating,
confirming and removing them. This is done according to
the values of two indicators: the square root of the covari-
ance matrix determinant and the observation Mahalanobis
Square Distance. The first one, the square root of the co-
variance matrix determinant, is related to the track uncer-
tainty. The determinant is given by the product of the
matrix eigenvalues, which correspond to the variance of
the dimensions given by the eigenvectors. The innovation
covariance matrix Sk is calculated recursively, which de-
pends just on the system matrices A,C,Q and R. That
means that while an observation is associated, the determi-
nant of the innovation covariance matrix will decrease to
its asymptotic value, and the time taken depends only on
the system dynamics and the uncertainties given by the co-
variance matrices. That is to say, it does not depend on
the observation MSD. However, it is a good indicator of
how many observations have been associated and whether
there have been frames without any observation. This is
done without the need of setting thresholds and specifying
cases: it is intrinsic to the behaviour given by the system
dynamics.

Nevertheless, the quality of the observation must be
taken into account, and therefore, the MSD of each target
associated observation is evaluated and compared with a
pre-defined confidence value. The MSD, seen as the Ma-
halanobis radius of the ellipsoid, is used to mark those ob-
servations beyond a given ellipsoid variance.

5 Experimental Results

The performance of the algorithm has been tested using se-
quences taken from the PETS 2001 Test case Scenarios 1,
recorded in an outdoor scene. A track is instantiated every

time an observation remains orphan: when |S| 1
2 is below

a certain percentage of its asymptotic value, and the MSD
is lower than a given ellipsoid variance, the track is con-

firmed. If |S| 1
2 grows beyond a value which corresponds

to a certain number of consecutive frames without obser-
vation, the track is deleted, and the Kalman filter removed.
These behaviours can be seen in Fig 6: at frame 354 a tar-
get starts entering the scene, an observation is received and
a tracker is instantiated; while new observations are asso-
ciated, the determinant indicator decreases. However, at
frame 357 a major change happened —because the target
has completely entered the visual field— the MSD is higher
enough so that the observation is not associated to the ex-
isting tracker, a new track is instantiated —the observation
is far beyond the gate boundary— and the previous process
is repeated. Lastly, at frame 367 there are several segmen-
tation errors, but as measurements still lie within the gate,
there is not an instantiation of a new tracker, that is, they are

1International Workshops Performance on Evaluation of Tracking and
Surveillance at http://peipa.essex.ac.uk/ipa/pix/pets/

Figure 6. Track management .Tracks are confirmed when

both |S| 12 and MSD are low enough. Tracks with high |S| 1
2

are removed.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Experimental Results. See text for details.

assigned to the existing tracker. Fig. 7 shows the sequence
result of the tracking process.

Several considerations must be taken into account ac-
cording to the results shown in Fig. 6. In the first place, de-
pending on the system matrices, the time needed to reach a
value close to the asymptotic value of the determinant may
considerably vary. Thus, if |Q| grows, the dynamics are
less reliable, the Kalman Gain grows, the state variables
are more affected by the observation values, and the con-
vergence is faster. On the other hand, if |R| grows, the



measure is less reliable, the Kalman gain decreases, the
predicted values are less affected by the current observa-
tion, and the convergence is slower.

Secondly, if a target shape or position abruptly
changes, the observation may lie outside the tracker gate.
In this case, a new Kalman filter is instantiated, and both,
the old and the new one are now competing for the obser-
vations. Therefore, data association after occlusion should
be handled using additional, high level processing.

6 Conclusions

In this work a principle and structured system is presented
in an attempt to take a step towards solving the numerous
difficulties which appear in unconstrained tracking appli-
cations. We use a structured framework in order to accom-
plish it: this proposal has presented a system which is mod-
ular and hierarchically organised. It consists in two levels,
working in cascade, which are defined according to the dif-
ferent functionalities to be performed. A robust tracking
is achieved in a non-friendly environment. The method is
adaptive is the sense of number of targets.

Future research will be done in every module. Thus,
a recursive background model adaptation, or a multi-
modal pixel modelling —which copes with background
in motion— would be an interesting segmentation module
enhancement. Target representation can be improved by
adopting a multi-layer approach which allows to taken into
account deposited and removed background objects. This
can enhance agent tracking during long-term occlusions.
In addition, targets should be classified by distinguishing
among people, vehicles and other objects in motion. Fi-
nally, initialisation should include a group segmentation
method so that agents who enter the scene together could
be segmented and independently tracked.
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