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Stratifying the Singularity Loci of a
Class of Parallel Manipulators
Carme Torras, Federico Thomas, and Maria Alberich-Carramiñana

Abstract—Some in-parallel robots, such as the 3-2-1 and the 3/2
manipulators, have attracted attention because their forward kine-
matics can be solved by three consecutive trilaterations. In this
paper, we identify a class of these robots, which we call flagged
manipulators, whose singularity loci admit a well-behaved decom-
position, i.e., a stratification, derived from that of the flag man-
ifold. Two remarkable properties must be highlighted. First, the
decomposition has the same topology for all members in the class,
irrespective of the metric details of each particular robot instance.
Thus, we provide explicitly all the singular strata and their con-
nectivity, which apply to all flagged manipulators without any tai-
loring. Second, the strata can be easily characterized geometrically,
because it is possible to assign local coordinates to each stratum (in
the configuration space of the manipulator) that correspond to un-
coupled rotations and/or translations in the workspace.

Index Terms—Flag manifold, kinematics singularities, parallel
manipulators, trilateration.

I. INTRODUCTION

THE Stewart–Gough platform triggered research on parallel
manipulators, and it has remained one of the most widely

studied, together with its numerous specializations (designs in
which the extremities of the legs merge into multiple spherical
pairs). Such specializations have at least 16 forward kinematic
solutions, but for two cases, in which the number of solutions
goes down to 8. These interesting cases, the 3-2-1 and 3/2 par-
allel manipulators, were first identified by Hunt and Primrose
[1], after whom they are generically labeled.

A related nice property of Hunt–Primrose manipulators is that
their forward kinematics can be derived through a sequence of
three trilateration operations, i.e., by solving three tetrahedra
whose vertices lie in either the platform or the base of the ma-
nipulator [2], [3]. In accordance with this, the singularity loci of
these manipulators consist of those configurations for which the
volume of at least one tetrahedron vanishes [4]. By analyzing the
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pure condition (a construct used to assess the rigidity of struc-
tures), Downing et al. [5] arrived at the same conclusion. For
the 3-2-1 manipulator, they showed that the pure condition is the
product of three determinants, each involving the coordinates of
four endpoints of the manipulator legs. Singularities occur when
the pure condition vanishes, i.e., when any of the determinants
becomes zero, and each determinant can be interpreted as the
volume of one tetrahedron.

This provides an analytic characterization of singularities,
but it does not say much about their nature and the topology
of their singularity loci in the configuration space of the plat-
form with respect to the base. While the nature of singulari-
ties for some specializations of the Stewart–Gough platform has
been successfully addressed by using Grassmann line geometry
[6], [7], their topological study remains as an important open
problem [8]. Indeed, a complete characterization of the arrange-
ment of singularity hypersurfaces in the configuration space
would permit identifying the different nonsingular regions sep-
arated by singularities, the restriction on maneuverability occur-
ring in each singular region, as well as the adjacencies between
all nonsingular and singular regions. This would be most useful
for manipulator design, including the use of redundant actua-
tors [9] or joint coupling [10] to eliminate certain singularities,
and also to plan trajectories away from singularities or, at least,
from “dangerous” ones, whose unconstrained motion points to-
ward the singularity manifold itself, thus preventing the manipu-
lator from leaving it [11]. Furthermore, knowing the location of
singularity hypersurfaces would permit crossing them in a con-
trolled way and, therefore, operating in much larger workspaces.

In this paper, we fully characterize the topology of the singu-
larity loci for a class of Hunt–Primrose manipulators. This class
consists of particular cases of the 3/2 and the 3-2-1 manipula-
tors satisfying the following constraints: 1) all leg endpoints in
the base are coplanar; 2) all leg endpoints in the platform are
coplanar; and 3) setting aside the three legs converging to the
same platform attachment, the endpoints of the remaining three
legs are aligned. Note that constraint 2) is always satisfied for
the 3-2-1 manipulator, since it has a triangular platform, while
constraint 3) is always satisfied for the 3/2 manipulator, since it
has only five base attachments.

The 12 manipulators in this class, obtained from the 3/2
and 3-2-1 manipulators by making some of their legs share the
same attachments to the base or the platform, have singularity
loci with exactly the same structure, which is an unfolding
of a submanifold of the flag manifold. This manifold admits
a well-behaved topological decomposition, namely, a strati-
fication, which is a partition into a finite set of submanifolds
(called strata), such that the boundary of a stratum is the union
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Fig. 1. Sequence of three trilaterations required to solve the forward kinematics of the 3/2 (top) and 3-2-1 (bottom) parallel manipulators.

of entire strata of lower dimensionalities. Therefore, through
the unfolding, we obtain a complete characterization of the
singularity submanifolds from dimension 5 down, as well as
their adjacencies.

The paper is structured as follows. In the next section,
Hunt–Primrose manipulators are described and their singularity
loci are analytically derived. After introducing the notions of
flag and stratification, Section III details the stratification of
the flag manifold and the algorithmic procedure to generate
it. The next two sections are devoted to the stratifications
of the singularity locus of the 3/2 manipulator with planar
platform and base, and the 3-2-1 manipulator with planar base
and the endpoints of the 2-1 legs aligned. These two parallel
manipulators, together with their 10 specializations, will be
referred to as flagged manipulators, and places Hunt–Primrose
manipulators and their subset of flagged ones in the context of
the 35 specializations of the Stewart–Gough platform defined
by Faugère and Lazard [12]. Finally, some conclusions and
prospects for future work are sketched in Section VII.

II. PARALLEL MANIPULATORS SOLVABLE BY TRILATERATION

The spatial parallel manipulators can abstractly be described
as two bodies, base and platform, so that the location of one

with respect to the other is obtained from the lengths of six seg-
ments (or legs), , where the points and
(or endpoints) with are located on the base and
the platform, respectively. In what follows, we use the same no-
tation for an endpoint and its vector of homogeneous coordi-
nates in a given global reference frame, i.e., we will say that
the homogeneous coordinates of point is given by the vector

.
To simplify the direct kinematics problem, that is, that of

finding the location of the platform with respect to the base,
some of the endpoints either on the base or on the platform
can be made coincident. Among all these possible specializa-
tions, those whose direct kinematics can be solved by a sequence
of three trilaterations are called trilaterable manipulators. They
were first identified by Hunt and Primrose as the 3/2 and 3-2-1
manipulators [1]. Next, we detail the required sequence of tri-
laterations for both manipulators, and how the analytic expres-
sion for their singularities straightforwardly follows from this
sequence.

A. The 3/2 Parallel Manipulator

In a 3/2 manipulator, some of the endpoints coincide in the
way shown in Fig. 1 (top). Given the lengths of the segments

, , and , there are two possible mirror locations
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for with respect to the plane defined by , and . Once
one of these two solutions for is chosen, , and
define another tetrahedron with known edge lengths. Again,
there are two possible mirror locations for , in this case with
respect to the plane defined by , and . Finally, after
choosing one of the two solutions, , , and define
another tetrahedron with known edge lengths. In this case,
there are two mirror locations for with respect to the plane
defined by , and . We conclude that if, and only if (iff),
the points in the sets , , and

form nondegenerate tetrahedra, there are eight
possible configurations for the moving platform compatible
with a given set of leg lengths. Otherwise, the platform is in
a singularity. In algebraic terms, iff one of the following three
condition holds:

(1)

the platform is in a singularity. Alternatively, this condition can
be expressed in a single algebraic condition as

(2)

The set of configurations of the platform that satisfy (2) is re-
ferred to as its singular locus. This set can also be obtained by
computing the zero locus of the determinant of the analytic Ja-
cobian associated with the parallel platform [5], but the present
derivation is clearly much simpler.

Now, the problem is to express the conditions in (1) as
functions of the configuration of the platform. The solution
to this problem curiously comes from the developments in
motion planning for polyhedra. Indeed, the three equations in
(1) can be seen as the implicit equations of hypersurfaces in

SO associated with each of the three basic contacts
between polyhedra [13], namely, the face-vertex, vertex-face,
and edge-edge contacts, respectively. The algebraic expressions
for these hypersurfaces, known as C-surfaces, were first given
in [14]. They are rather long (particularly the one corresponding
to the third determinant), thus requiring a computer algebra
system for their manipulation.

B. The 3-2-1 Parallel Manipulator

A similar analysis to that just given for the 3/2 parallel ma-
nipulator, can be carried out for the 3-2-1 manipulator [Fig. 1,
(bottom)]. In this case, it can be checked that iff the points in
the sets , , and
form nondegenerate tetrahedra, there are eight possible config-
urations for the moving platform compatible with a given set of
leg lengths. Otherwise, the platform is in a singularity. In alge-
braic terms, we have that iff

(3)

Fig. 2. A flag consists of a point V , a line V , and a plane V , such that
V � V � V .

holds, the platform is in a singularity. Again, each of the three
determinants in (3) equal to zero can be seen as the implicit
equation of a C-surface in SO associated with each of
the three basic contacts between polyhedra. In this case, with the
face-vertex, edge-edge, and vertex-face contacts, respectively.

C. The Topology of Singularities

Each of the three C-surfaces, a variety of dimension five, in-
volved in the description of the singularities of either the 3/2 or
the 3-2-1 manipulator, divides SO into two half-spaces.
The three C-surfaces lead to a partition of this space into regions
with congruent signs for the three determinants. The stratifica-
tion of the set defined by (2) [respectively, (3)] provides a topo-
logical description of this partition.

Next we show that for the class of Hunt–Primrose manipu-
lators satisfying the constraints mentioned in the Introduction
(i.e., with planar platform and base, and three leg endpoints
aligned), such a stratification can be obtained by relying on the
stratification of the flag manifold without applying any algebraic
manipulation, just by combinatorial considerations.

III. FLAG MANIFOLD AND ITS RELATION

TO PARALLEL MANIPULATORS

In this section, the notions of flag and stratification are in-
troduced, and a result concerning the stratification of the flag
manifold is reviewed, which will be subsequently used to char-
acterize the structure of the singularity locus of the 3/2 manip-
ulator.

Definition 1 (Flag): A flag in projective space is a se-
quence of projective subspaces such that

.
Let be the plane at infinity in . Then the Euclidean

space can be viewed as a subspace of via .
The flags we will be concerned with are the affine flags, that is,
flags satisfying . The name
“flag” comes from the fact that it can be schematically drawn
as such (see Fig. 2). Note that in drawing this figure and in all
subsequent geometric interpretations, we make a slight abuse
of language by identifying subspaces of dimensions 0, 1, and 2
in projective space not contained in , with points, lines,
and planes in Euclidean space . Moreover, the point, line, and
plane defining a flag will referred to as “flag features.”
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Fig. 3. Attaching a pair of flags (a) to the 3/2 manipulator, and (b) to the
3-2-1 manipulator having the endpoints of the 2-1 legs aligned. Referring to
the endpoint labels of Fig. 1, the flags are placed as follows: (a) V = a ; V =

a a ; V = b ; V = b b . (b) V = a ; V = a a ; V = b ; V =

b b .

For some parallel manipulators, which will hereafter be called
flagged manipulators, we can attach a flag to its base and another
to its platform in such a way that their singularity locus is char-
acterized by the contact between flag features. For instance, in
the case of the 3/2 manipulator with planar base and platform,
the two flags will be placed as shown in Fig. 3(a). As mentioned
in the preceding section, the singularity locus consists of those
configurations for which any of the three trilateration operations
involves a zero-volume tetrahedron. In flag terms, this occurs
when either the vertex of one flag lies on the plane of the other
flag or the two flag lines intersect.

Now, we are interested in decomposing the singularity locus
into simple manifolds, as well as obtaining their adjacency rela-
tionships. As we will show next, the topologically distinct con-
figurations of the manipulator correspond to distinct incidence
relations between the features of their attached flags.

This relates to the space of all flag configurations. We will
first introduce this space and a well-known result concerning its
topological decomposition, and next apply it to the singularity
locus of interest.

Definition 2 (Flag Manifold): The flag manifold is
the set of all flags in . Let denote the subset of the affine
flags in .

Choose coordinates in such that the embedding of into
is given by . The flags whose

vertex has coordinates , that is, lies on , form
a submanifold of of codimension 1. Hence, the set of
the affine flags is an open subset of .

The notion of well-behaved topological decomposition is for-
malized in the following definition.

Definition 3 (Stratification): A stratification of a set is a
partition such that:

1) is finite;
2) is a manifold ;
3) if , then , where stands for the

closure of .
The ’s are called strata. The third item in the list is a

boundary condition, which is included to guarantee that the
boundary of a stratum is the union of the entire strata of lower
dimensionalities.

Next, we introduce the main result on the stratification of the
flag manifold. Its derivation is outlined in the Appendix and,
for a more detailed exposition, the reader is referred to [15] and
[16].

It is possible to stratify the 6-D into strata (each
isomorphic to , see the Appendix) in such a way

that every permutation in identifies a unique stratum

(4)

where stands for the set of permutations of four elements.
Furthermore, two strata of consecutive dimensions are adjacent
iff there is a single transposition between their associated per-
mutations. This provides an algorithmic procedure to generate
the graph of strata for the flag manifold.

Following this procedure, we have derived the stratification
shown in Fig. 4, where each row includes the strata of the same
dimension, starting with dimension 0 at the bottom to dimension
6 at the top.

The notation used in this figure requires some explanation.
We characterize the reference frame by means of a reference
flag (which is an affine flag), and then label each stratum with
the incidence relations between the flags in this stratum and
the reference flag. Hence, , and stand for the point, line,
and plane conforming the reference flag, while the same letters
with an asterisk stand for the same elements of the other flag;
a hyphen between two elements means that one is included in
the other, while a dot denotes that they meet at a single point.
In all, we have characterized each stratum by means of three
items: 1) a symbolic description using the notation above; 2)
the matrix of dimensions of the intersections between the el-
ements of the two flags, where an empty intersection is denoted
by , a point intersection by 0, etc.; and 3) its associated per-
mutation. The permutation is computed as follows: add to a
first row and a last row to obtain an ex-
tended matrix, and let denote its three
columns; if the permutation is ,
then is the new position of the element of
at which there is a jump in dimensionality, and completes
the permutation with the remaining digit (see the Appendix for
a detailed example).
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Fig. 4. Graph showing the stratification of F lag(4).

Actually, one should proceed from 3) to 1). One starts with
the graph of permutations, where arcs join permutations that
differ in a single transposition. From each permutation, the cor-
responding matrix is derived by introducing the jumps in dimen-
sionality, as specified above. And, finally, the symbolic descrip-
tion follows straightforwardly from the matrix, by interpreting
its entries as incidences between the elements of the two flags,
assigned to rows and columns, respectively.

Note that strata having symmetric matrices correspond to in-
cidence relations that remain invariant when the roles of the two
flags are interchanged. Conversely, nonsymmetric matrices re-
sult in a pair of different strata under such interchange, whose
matrices are the transposes of one another. Due to space lim-
itations, only one of every such pair of strata is fully shown,

the other being represented only by its associated permutation,
which is shown shaded.

The stratification of induces a stratification of

(5)

Since the reference flag is an affine flag, none of the above
intersections is empty. However, it might happen that some cell

would split off into two connected components [17]: for
instance, for , the affine flags of are the
disjoint union of the two cells

and
. In-

deed, is a unique cell iff the permutation starts with
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Fig. 5. Group of Euclidean transformations that leaves a flag invariant. The
flag consists of the origin, the x axis, and the xy plane.

, that is, the stratum label contains the incidence rela-
tion .

IV. STRATIFYING THE SINGULARITY

LOCUS OF THE 3/2 MANIPULATOR

Now we return to the setting above of a 3/2 manipulator
holding two flags, one attached to the base and another to the
platform as in Fig. 3(a), and take up again the question of how
many relative configurations they can adopt with distinct inci-
dence relations between their flag features. Note that considered
within the flag, features are unoriented (lines and planes), while
considered as platform features (edges and faces), they are
oriented.

Given a flag attached to the 3/2 ma-
nipulator platform as in Fig. 3(a), we can define a reference
frame having as origin, as the axis, and as the
plane. This flag remains invariant when a rotation of radians
about any of the three coordinate axes is applied (see Fig. 5).
Formally, the group of Euclidean transformations leaving the
flag invariant is , where is the iden-
tity transformation, and stands for a rotation of radians
about the -axis. Let us mention that is one of the rep-
resentations of the well-known abelian group [18],
since , and

.
We can attach a reference frame to the base of the 3/2 ma-

nipulator from the reference flag in a similar
way as above. Then, a manipulator configuration is described as

SO , relating the platform frame to the base frame.
Given one such manipulator configuration , with its associated
flag configuration, we can characterize the set of four manipu-
lator configurations yielding this same flag configuration, as fol-
lows:

(6)

where is the flag associated with the platform in configura-
tion . This gives a four-fold covering map SO

.1 Therefore, with each relative configuration of two flags,

1This map corresponds to the restriction of what in algebraic geometry is
known as the four-fold covering map between the partially oriented flag mani-
fold G(1; 1j1; 1) in and F lag(4) [19].

we can associate four relative configurations of the platform and
base (Fig. 6). It is worth mentioning that these four configura-
tions leading to the same flag arrangement do not have anything
to do with the eight direct kinematic solutions of the manipu-
lator. To visualize this, consider the four manipulator configu-
rations corresponding to a given flag arrangement; obviously,
each such configuration will have a different set of leg lengths
(refer again to Fig. 6). Conversely, the eight manipulator config-
urations with the same leg lengths will have associated different
flag arrangements (Fig. 7).

The covering morphism induces a stratification of
SO , and also of the singularity locus of the 3/2 manip-
ulator, from the stratification of obtained in the pre-
ceding section. Namely, (6) provides a procedure to unfold the
graph in Fig. 4 into a stratification of . Going into details,
there are three cells in of 5-D singularities, which cor-
respond to the cases in which point of the platform lies on
the base plane, point of the base lies on the platform plane,
and segments and lie on a plane [see Fig. 1, (top)].
Restricted to , they split off into six cells. Due to the
four degrees of , this leads in SO to 24 5-D strata
separated by 4-D strata, whose adjacencies follow
directly from the permutation structure of the flag manifold. In
the same way, we can derive the 3-D strata,
the 2-D strata, the 1-D
strata, the 0-D strata, and their adjacencies. Note that for
the reasons mentioned in the preceding section, all strata of

whose label contains the incidence relation (or
equivalently, their defining permutation begins with one) are
entirely composed of affine flags, hence, they remain the same
when restricted to , and thus, has lower cardinality.

In all, there are 160 singular strata separating eight disjoint
6-D strata, corresponding to the eight connected components of
the nonsingular manipulator configurations, which (by connect-
ness arguments) must equal the eight regions with congruent
signs for the three determinants introduced in Section II-C.

An interesting point about this stratification of the singularity
locus is that each stratum encompasses a subset of the three
pure translations and three pure rotations, along and about
the coordinate axes defined by the flags. Thus, by appropri-
ately choosing local coordinates, each stratum can be made
to correspond to uncoupled translations and/or rotations in
the workspace. Moreover, in following down the stratification
adjacencies (see Fig. 4), one degree of freedom (DOF) at a time
is lost. For example, the 4-D strata of type consist of
the three rotations plus the translation along the line , and, in
moving to its frontier 3-D strata of type , the translational
DOF is lost (Fig. 8).

V. STRATIFYING THE SINGULARITY LOCUS

OF THE 3-2-1 MANIPULATOR

In the case of the 3-2-1 manipulator, it is possible to associate
a flag to its platform, but not to its base, even if it is planar. This
is because the base point used in the third trilateration does not
necessarily lie in the line used for the second trilateration [see
Fig. 1, (bottom)]. Therefore, it is not a flagged manipulator.
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Fig. 6. Four different configurations of the platform with respect to the base of a flagged manipulator lead to the same configuration for the attached flags.

Fig. 7. Given a set of leg lengths, a flagged manipulator can have up to eight configurations compatible with them, which, in general, lead to different configurations
for the attached flags. For the sake of simplicity, the four mirror configurations with respect to the base plane are not shown.

Fig. 8. 4-D stratum of type v � l of the singularity locus of this flagged
manipulator can be fully described geometrically by a spherical rotation
centered at v and a translation along l . In moving to its frontier 3-D stratum
of type v � v , the translational DOF is lost. This characterization is the same
for all flagged manipulators.

Of course, as for all trilaterable manipulators, a stratification
of its singularity locus can be obtained by intersecting the C-sur-
faces corresponding to a zero-volume tetrahedron in any of the
three trilateration operations. However, the resulting strata do
not correspond to uncoupled DOFs.

The special 3-2-1 manipulator having the endpoints of the 2-1
legs aligned is a flagged manipulator, and its singularity locus
has exactly the same structure as that of the 3/2 manipulator.

VI. PLACING TRILATERABLE AND FLAGGED

MANIPULATORS IN CONTEXT

It is reasonable to ask ourselves for the importance of trilater-
able and flagged manipulators in the universe of all parallel ma-
nipulators. Beyond qualitative considerations about construc-
tive simplicity and frequency of use, we have approached this
question from the viewpoint of the combinatorial classes of par-
allel manipulators established by Faugère and Lazard [12].

Starting from the general 6–6 manipulator with six linear ac-
tuators connected by spherical joints to the platform and to the
base, they listed 60 classes differing in their associated graph of
legs. Quite understandably, the 6–6 manipulator was denoted

the 3-2-1 manipulator

and the 3/2 manipulator
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Fig. 9. Trilaterable manipulators: the 3-2-1 manipulator (top left), the 3/2
manipulator (top right), and all their specializations. When both the platform
and the base are planar, the manipulators in the grey area are directly flagged,
while the remaining ones, except the bottom left, are flagged, provided that
three of their endpoints are aligned (here marked with an asterisk).

When identifying two classes that are deduced one from the
other by exchanging the platform and the base, the number of
classes reduces to 35. We will not reproduce the whole list here,
but just detail the trilaterable and flagged manipulators.

Fig. 9 shows a representation of the 13 trilaterable manipula-
tors and their specialization relations.

Let us recall that in the case of the 3/2 family (those in the grey
area), the trilateration sequence involves two vertex-plane tetra-
hedra followed by an edge-edge tetrahedron (refer to Fig. 1),
while for the 3-2-1 family, the sequence starts with a vertex-
plane tetrahedron, proceeds with a edge-edge one, and ends up
again with a vertex-plane tetrahedron. Of course, in the case
of manipulators belonging to the two families, either sequence
works.

Now, let us restrain our analysis to manipulators having a
planar platform and a planar base. Then the seven members of
the 3/2 family are flagged manipulators. Note that three of them
come purely from this family, namely the 3/2 itself

and its two specializations

The remaining four flagged manipulators, while still belonging
to the 3/2 family, are also specializations of the 3-2-1 manipu-
lator

Five additional manipulators belonging to the 3-2-1 family
(those not in the grey area in Fig. 9, except the bottom left one)
are flagged, provided that the endpoints of their 2-1 legs are
aligned. These are the 3-2-1 manipulator itself

and four of its specializations

The remaining one

does not admit the alignment of their endpoints without falling
into a degenerate configuration.

To summarize, among the 35 classes of parallel manipulators,
13 are trilaterable. By restraining the classification to manipu-
lators satisfying the three conditions stated in the Introduction,
namely: 1) all leg endpoints in the base are coplanar; 2) all leg
endpoints in the platform are coplanar; and 3) setting aside the
three legs converging to the same platform attachment, the end-
points of the remaining three legs are aligned, it turns out that
12 of the trilaterable classes are now flagged ones.

It is worth mentioning that some of the specializations above
have received particular attention from the kinematics commu-
nity, their singularity loci having been analytically derived. For
example, in the case of the

manipulator, Collins and McCarthy [20] concluded that its sin-
gularity locus is a cubic surface that factors into three planes,
which can now be viewed as a direct consequence of its being
a trilaterable manipulator. Moreover, since it satisfies the three
conditions stated above, it is also a flagged manipulator, and its
singularity locus is known to admit the stratification presented
in this paper.

VII. CONCLUSION

The singularity loci of parallel manipulators have been the
subject of analytic, numeric, and geometric studies. Obtaining
the singularities analytically requires finding the roots of the Ja-
cobian determinant, which is rather difficult in many cases. Nu-
merical procedures have been developed and applied to over-
come this difficulty. Both approaches characterize the singu-
larity loci, but do not provide information on either the nature
of the singularities or their location in the configuration space
of the manipulator. By applying Grassmann line geometry, the
Jacobian is interpreted as a matrix of leg line vectors, and singu-
larities are viewed as line configurations with rank lower than
six, which can be classified according to their dimensionality
reduction and geometric nature. Thus, line geometry answers
one of the above needs, but still leaves open the question of how
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singular configurations are distributed throughout the configu-
ration space.

In this paper, we have addressed this latter question in the
case of the 3/2 and 3-2-1 parallel manipulators by applying a
combinatorial topology result, namely, the stratification of the
flag manifold.

For these manipulators, the Jacobian determinant can be fac-
tored into three determinants involving the coordinates of four
leg endpoints each. The loci of these three determinants are hy-
persurfaces in configuration space (C-surfaces), which can be
interpreted as the three well-known basic contacts between two
polyhedra, namely, vertex-face, face-vertex, and edge-edge con-
tacts, the former two corresponding to endpoint-base and plat-
form-endpoint incidences in the present context.

The intersections of the above hypersurfaces lead to singu-
larity regions of lower dimensionalities. In this paper, we have
shown that for the 3/2 manipulator with planar platform and
base, and the 3-2-1 manipulator with planar base and the 2-1
leg endpoints aligned, as well as for their 10 specializations, the
three singularity hypersurfaces admit a well-behaved topolog-
ical partition, which is a four-fold covering of the stratification
of a submanifold of the flag manifold.

Thus, we have obtained a complete description of the singu-
larity locus for a whole class of in-parallel manipulators, con-
sisting of 160 strata together with all their topological adjacen-
cies. The strata are submanifolds of dimensions from 5 down to
0, which can be parameterized by means of uncoupled rotations
and/or translations related to some axes of the manipulator. It is
remarkable that the obtained stratification has the same topology
for all members in the class, irrespective of the metric details of
each particular manipulator instance.

It should also be mentioned that this stratification is purely
kinematic, in the sense that it does not take into account in-
terferences that may occur between the platform, the base and
the legs, or bounds in the actuator’s range of operation. Further
work is needed to trim the above general stratification to adapt
it to the metrics and bounds of a particular physical platform.

As a practical application, we will undertake this trimming
for the 3-2-1 pose measuring device [4], which will allow us to
assess the interest of the proposed singularity characterization
for trajectory planning and control.

APPENDIX

Definition 4 (Grassmannian): A Grassmannian in is a
manifold

is a linear variety and

The flag manifold can thus be expressed in the
following way:

Definition 5 (Subspace Signature): Given a fixed reference
flag in , the signature of

is a sequence , where

the are the “jump points” for , i.e.,
(Note that and ).

If , we get a trian-
gular array of signatures

...

(7)

Lemma 1: ([15, Ch. 3, Lemma 4.2]) If , with and
subspaces of , then .

Hence, as one goes down the rows in (7), exactly one
new number is added at each stage, so one gets a sequence

of distinct numbers between 1 and
. If we add the remaining number at the end, we get a

permutation .
Definition 6 (Flag Signature): The signature of the flag

above is .
Example 1: Keep the notations of Fig. 4. Let

be a flag whose inci-
dence relations with the reference flag
are only . The extended matrix (extended to
and ) of dimensions of the intersections between flag
features is, in this case

We have
; and completing the permutation

with the remaining digit .
Definition 7 (Bruhat Cell): A Bruhat cell is

.
Theorem 1: ([15, Ch. 3, Th. 4.3]) is the disjoint

union of all Bruhat cells with .
Definition 8 (Length): The length of a permutation

is

length (8)

Proposition 1: ([15, Ch. 3, Prop. 4.7])
length . Moreover, is isomorphic to .

Definition 9 (Cover): If , we say that
covers , and we denote it by , if there exists a transpo-
sition such that and length length .

Definition 10 (Bruhat Order): The Bruhat order is the
transitive closure of .

Definition 11 (Closure of a Bruhat Cell): The closure of a
Bruhat cell is

(10)

which is known as the Schubert variety.
Theorem 1, together with the property just mentioned, are the

conditions required for

(10)
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to constitute a stratification of .
Summarizing, each stratum can be identified by its associated

permutation, and the adjacencies between strata of consecutive
dimensionalities can be derived directly from the Bruhat order.
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