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Abstract— Flagged in-parallel manipulators are attractive
because their singularity loci admit a well-behaved decompo-
sition, with a unique topology irrespective of the metrics of
each particular design. In this paper, this topology is formally
derived and all the cells, in the configuration space of the
platform, of dimension 6 (non-singular) and dimension 5
(singular), together with their adjacencies, are worked out in
detail. This characterization of the singularity loci is useful to
come up with designs which admit control strategies free of
singularities. In particular, it is shown that by adding an extra
leg to any flagged manipulator, the resulting 7-leg structure
admits a control strategy (by appropriately choosing which
leg remains passive) that completely avoids singularities.

Index Terms— Parallel manipulators, kinematics singular-
ities, manipulator design, stratification, flag manifold.

I. INTRODUCTION

An important shortcoming of current parallel manipula-
tors is that, in general, they are forced to operate in reduced
workspaces so as to avoid singular configurations. Thus,
research on parallel manipulators has led to eliminating
singularities by adding actuators either in an existing or
an added leg, that is, by introducing redundancy. Merlet
has already outlined the key concepts to be considered in
designing and using a redundant parallel manipulator [10].

Adding legs, instead of adding more actuators to existing
legs, can cause more leg interference, which is already an
important limitation for the use of parallel manipulators.
Nevertheless, a benefit is obtained: enhanced robustness to
actuator failure. In other words, if one actuator fails, the
mechanism could still function in a reduced workspace by
leaving the failing leg passive.

Since adding a redundant leg decreases the dimension of
the singularity space [4], some research has been carried
out to determine where to locate this leg to effectively
decrease or even to eliminate the singularity surface [13].
The result has been several successful implementations of
redundant parallel manipulators with extra legs [9], [18].
It is worth noting here that the idea of using redundant
actuators is closely related to that of adding extra sensors
to obtain unique closed-form solutions for the forward
kinematics of parallel manipulators (see, for example [2],
and the references therein). Thus, the literature on the
location of extra sensors in parallel manipulators is also an
important source of inspiration to decide where to locate
extra actuators.

In a 7-leg in-parallel manipulator, by switching which
leg remains passive, the distribution of singularities across
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the configuration space of the platform with respect to
the base (C-space, for short) changes, and we can exploit
this change for singularity avoidance. To this aim, it is
necessary to obtain a complete and precise characterization
of the singularity loci of the involved manipulators which,
in general, is not an easy task. Fortunately, for the class
of Stewart-Gough platforms known as flagged parallel
manipulators, their singularity loci has been shown to have
a well-behaved structure inherited from the stratification
of the flag manifold [17]. Following this result, in this
paper we characterize in detail the C-space of flagged ma-
nipulators in terms of cells of dimension 6 (non-singular)
and dimension 5 (singular), together with their adjacencies.
Then, adding an extra leg and switching actuation implies
converting a flagged manipulator instance into another, and,
consequently, changing the location of the 5D cells. The
placement of the extra leg can be designed so that 5D cells
(singularity loci) of the two manipulator instances have at
most a 4D intersection. This means that the C-space of the
resulting manipulator with switched control has singularity
loci of at most dimension 4, which can easily be avoided
in practice.

This paper is structured as follows. The next section
gives an introductory overview to flagged manipulators.
Section III deals with the stratification of the flag manifold.
Then, Section IV discusses how this stratification induces a
stratification of the singularity loci of flagged manipulators.
The topology of the cells of dimension 6 (non-singular) and
dimension 5 (singular) is worked out in detail in Section V.
Section VI discusses the problem of adding an extra leg
to a flagged manipulator which, using a switching strategy,
would permit minimizing the effect of singularities. Finally,
Section VII provides some conclusions and points that
deserve further attention.

II. FLAGGED MANIPULATORS
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Fig. 1. A flag consists of a point, V0, a line, V1, and a plane, V2, such
that V0 ⊂ V1 ⊂ V2.



Let us consider a plane, a line and a point so that
the point is contained in the line, and the line in the
plane. This geometric entity is called a flag (Fig. 1). A
parallel manipulator whose singularities can be described
in terms of incidences between two flags is called a flagged
manipulator. The relevance of these manipulators derives
from the fact that their singularity analysis is quite simple
because:

1) the topology of their singularity spaces is the same
for all members of the family irrespective of changes
in their kinematic parameters.

2) their singularity spaces can be easily decomposed
into manifolds, or cells, forming what in algebraic
geometry is called a “stratification,” derived from that
of the flag manifold.

3) each cell can be characterized using a single lo-
cal chart whose coordinates directly correspond
to uncoupled translations and/or rotations in the
workspace of the manipulator.

4) any path connecting two assembly modes passes
through a singularity (note that this assertion is not
true in general [8]).

Next, let us elaborate on how the whole family of flagged
manipulators is obtained in a rather intuitive way.

PSfrag replacements

(a) (b) (c)

Fig. 2. The three possible architectures for the 3-3 parallel manipulators.

Let us consider the set of in-parallel manipulators whose
leg end-points merge into three multiple spherical joints
both in the base and the platform. There are only three pos-
sible architectures for this kind of manipulators, also known
as 3-3 manipulators (Fig. 2). One of them corresponds to
the well-known octahedral manipulator [Fig. 2(a)] whose
forward kinematics is not solvable in closed-form [5]. On
the contrary, the forward kinematics of the other two can
be solved by a sequence of three consecutive trilaterations
[7], [3], [15] leading to 8 solutions, or assembly modes.

PSfrag replacements

a1

a2a2

a3 a3a3

a4

a5

a6

b1b1b1
b2

b3b3
b4

b5

b6

(a) (b) (c)(d)

Fig. 3. The tetrahedra involved in the computation of the forward
kinematics of the parallel manipulator in Fig. 2(b).

Now, let us concentrate our attention on the forward
kinematics of the parallel manipulator in Fig. 2(b). Given
the lengths of the segments a1b1, a2b1, and a3b1, there
are two possible mirror locations for b1 with respect to
the plane defined by a1, a2, and a3 [Fig. 3(a)]. Once one
of these two solutions for b1 is chosen, a2, a3, b1 and
b3 define another tetrahedron with known edge lengths
[Fig. 3(b)]. Again, there are two possible mirror locations
for b3, in this case with respect to the plane defined by
a2, a3, and b1. Finally, after choosing one of the two
solutions, a3, b1, b2, and b3 define another tetrahedron
with known edge lengths [Fig. 3(c)]. In this case there
are two mirror locations for b2 with respect to the plane
defined by b1, b3 and a3. We conclude that if, and only
if, the points in the sets {a1,a2,a3,b1}, {a2,a3,b1,b3},
and {a3,b1,b2,b3} form non-degenerate tetrahedra, there
are eight possible configurations for the moving platform
compatible with a given set of leg lengths. Otherwise, the
parallel manipulator is in a singularity [16]. Alternatively,
we can say that the manipulator is in a singularity if b1

is on the base plane, the lines defined by a2a3 and b1b3

intersect, or a3 is on the platform plane. This reinterpreta-
tion is important because it is not expressed in terms of leg
locations but directly in terms of points and edges attached
to either the base or the platform. Therefore, if two flags
are placed on the manipulator base and platform as shown
in Fig. 4, then the manipulator singularities coincide with
flag configurations in which either the vertex of one flag
lies on the plane of the other flag or the two flag lines
intersect.
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Fig. 4. The basic flagged manipulator and its attached flags.

In what follows, the parallel manipulator in Fig. 4 is
called the basic flagged manipulator. Moreover, v, l and p

will denote the point, line and plane of the flag attached
to the base, while the same letters with an asterisk will
stand for the same flag features of the flag attached to the
platform.

It is possible to apply the local transformation shown in
Fig. 5a on the location of the leg endpoints of an in-parallel
manipulator with multiple spherical joints so that its sin-
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Fig. 6. The whole family of flagged manipulators expanded from the basic one by applying the transformation in Fig. 5a. Segments, next to either
the base or the platform, indicate the endpoints that should be kept aligned.
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Fig. 5. Local transformation on the location of a leg endpoint that
leave singularities invariant (a), and other local transformations that can
be obtained by applying twice (b) and five times (c) the transformation
in (a).

gularities remain invariant. Other local transformations can
be derived from it (Fig. 5b and 5c). These transformations
permit expanding the whole family of flagged manipulators
shown in Fig. 6.

As an example, Fig. 7 shows how the 3/2 Hunt-Primrose
manipulator [7] can be derived from the basic flagged

manipulator by applying a sequence of four of these
transformations.
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Fig. 7. The 3/2 Hunt-Primrose manipulator is a flagged manipulator
because it can be obtained by applying a sequence of four local transfor-
mations to the basic flagged manipulator. Notice how the attached flags
remain invariant under these transformations.

The combinatorics of the singularities of flagged manip-
ulators was exploited in [17], while here we go on to derive
the topology of the singularity locus in terms of the 6D and



5D cells together with their adjacencies. To this end, we
should now proceed more formally.

III. FROM PROJECTIVE FLAGS TO AFFINE FLAGS

Definition 1 (Flag): A flag in projective space P
3 is a

sequence V0 ⊂ V1 ⊂ V2 ⊂ P
3 of projective subspaces such

that dim(Vi) = i. V0, V1 and V2 are called the flag features.
The Euclidean space R

3 can be viewed as a subspace
of P

3 via R
3 ∼= P

3\Π∞, where Π∞ stands for the plane
at infinity. The flags we will be concerned with are the
affine flags, that is, flags V0 ⊂ V1 ⊂ V2 ⊂ P

3 satisfying
V0 6∈ Π∞.

In what follows, we make a slight abuse of language by
identifying affine subspaces of dimensions 0, 1, and 2, in
projective space P

3 not contained in Π∞ with points, lines,
and planes, in Euclidean space R

3.
Definition 2 (Flag manifold): The flag manifold

F lag(4) is the set of all flags in P
3. Let FA(P3) denote

the subset of the affine flags in F lag(4).
Let v ⊂ l ⊂ p be a fixed reference flag. The flag

manifold F lag(4) admits the following cell decomposition
or stratification:

F lag(4) = ∪w∈
∑

4
Bw, (1)

where Bw is the set of all the flags whose flag features
have incidence relations with the reference flag determined
by the permutation w ∈

∑

4, with
∑

4 standing for the set
of permutations of 4 elements [6].

Each cell Bw is isomorphic to R
length(w) and hence it is

connected. Furthermore in the stratification (1), two cells of
consecutive dimensions are adjacent if and only if there is a
single transposition between their associated permutations.
This leads to an algorithmic procedure to derive the graph
of cells for the flag manifold, as was displayed in [17].
Fig. 8 shows the cells of dimensions 6 and 5 and their
adjacencies. The rectangle represents the 6D cell B(4,3,2,1),
while the ellipses are the 5D cells: B(4,3,1,2), B(3,4,2,1) and
B(4,2,3,1). Each 5D cell is labelled also with v−p∗, p−v∗

and l · l∗, respectively, which characterize the incidence
relations between the flag features of the flags v∗ ⊂ l∗ ⊂ p∗

in each cell and the reference flag. A hyphen between two
elements denotes that one is included in the other, and a
dot means that they meet at a single point.
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Fig. 8. Stratification of the flag manifold: the rectangle represents the
6D cell, and the ellipses are the 5D cells.

The stratification of the flag manifold F lag(4) induces a
stratification of the subset of affine flags FA(P3). Indeed,

after removing the plane at infinity Π∞, the resulting
decomposition is still a stratification, and some cells (those
whose associated permutations don’t start with a 1) are split
into two connected components [1]. Fig. 9 shows the cells
of dimensions 6 and 5 of FA(P3) and their adjacencies.
The rectangles represents the two 6D cells B

(4,3,2,1)
+ and

B
(4,3,2,1)
− , while the ellipses are the six 5D cells: B

(4,3,1,2)
ε ,

B
(3,4,2,1)
ε and B

(4,2,3,1)
ε , with ε ∈ {+,−}. For the sake of

clarity, each 5D cell is labelled with (v − p∗)ε, (p − v∗)ε

and (l · l∗)ε, respectively, to make explicit the incidence
relations between the flag features of the flags in each cell
and those of the reference flag.
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Fig. 9. Stratification of the set of affine flags: the rectangles represent
the 6D cells, and the ellipses are the 5D cells.

The stratification of the set of affine flags induces a
decomposition of the C-space of flagged manipulators,
which we work out in detail in the next section.

IV. FROM THE FLAG MANIFOLD STRATIFICATION TO
PARALLEL MANIPULATOR SINGULARITIES

Given a flag V∗ = (v∗, l∗, p∗) attached to the basic flag
manipulator as in Fig. 4 (and, in general, to any other mem-
ber of the family of flagged manipulators), we consider a
reference frame having v∗ as origin, l∗ as the x axis, and p∗

as the xy plane. This flag remains invariant when a rotation
of π radians about any of the three coordinate axes is
applied. Formally, the group of Euclidean transformations
leaving the flag invariant is HV∗ = {I,Rx,Ry,Rz},
where I is the identity transformation, and Rk stands for
a rotation of π radians about the k-axis. Let us mention
that HV∗ is one of the representations of the well-known
Klein four-group, since RxRy = RyRx = Rz, RxRz =
RzRx = Ry , and RyRz = RzRy = Rx.

Now, let us fix a reference frame at the base of the
flagged manipulator attached to the reference flag V =
(v, l, p) (and oriented in the same way as the frame
previously fixed at the platform). Then, a manipulator
configuration is described as q ∈ R

3 × SO(3), relating
the platform frame to the base frame. Given one such
manipulator configuration q, we can characterize the set
of 4 manipulator configurations yielding this same flag



configuration as follows:
{

Tq | T ∈ HV∗

q

}

, (2)

where V∗
q is the flag associated with the platform in

configuration q. This gives a four-fold covering morphism
π : R

3 × SO(3) → FA(P3) sending q to V∗
q [14].

Therefore, with each relative configuration of two flags,
we can associate 4 relative configurations of the platform
and base.
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Fig. 10. The four platform configurations sharing the same flag, obtained
by rotating π radians about its reference axes.

Figure 10 shows the four platform configurations sharing
the same flag V∗

q, namely q, Rxq, Ryq, and Rzq.
Summarizing, the configuration space of the manipulator

can be seen as a 4-fold covering of the set of affine flags.
The interesting property is that it thus inherits the nice
structure of the latter, as detailed in the next section.

V. THE TOPOLOGY OF SINGULARITIES

The covering morphism π induces a stratification of R
3×

SO(3), and hence of the singularity locus of the flagged
manipulator, from the stratification of FA(P3) obtained in
the preceding section. In particular, Equation (2) provides
a procedure to unfold the stratification of the affine flags
so as to obtain a useful decomposition of the C-space of
the manipulator.

Due to the 4 degree of π, the two 6-dimensional dis-
joint cells in FA(P3) correspond in R

3 × SO(3) to 8
6D cells, that is, 8 connected components of the non-
singular manipulator configurations, which (by connectness
arguments) must correspond to the 8 assembly modes of
the flagged manipulators. Hence there are 8 connected
components of non-singular configurations in C-space. To
visualize these 8 cells see Fig. 10: besides the four platform
configurations sharing the same flag V∗

q, we could draw the

other four configurations corresponding to their images by
the specular reflection through the plane of the base.

Now, how are these 8 cells packed together in C-space?
Owing to the placement chosen for the two flags in the
manipulator, the 5D cells provide a decomposition of the
singularity locus.

Recall that there are 3 5-dimensional cells in F lag(4),
which correspond to the cases in which point v∗ of the
platform lies on the base plane, point v of the base lies on
the platform plane, and lines l and l∗ intersect. Restricted
to FA(P3) they split off into 6 5-D cells. Due to the 4
degree of π, this leads in R

3 × SO(3) to 24 5D cells. We
say that a 5D cell is of type v∗ − p, v − p∗ or l · l∗ if it
is one of the connected components of the inverse image
of a cell (v∗ − p)ε, (v − p∗)ε or (l · l∗)ε, respectively, for
some ε ∈ {+,−}.

By resorting to the theory of path lifting [1], the ad-
jacencies between these 8 6D cells and 24 5D cells can
be derived, resulting in the graph shown in Fig. 11. The
rectangles represent the 8 6D connected components of
C-space of non-singular configurations, while the ellipses
are the 5D manifold patches of singular configurations
separating these components. The 4 multiplicity appears
clearly at this level as well. Note that each non-singular
region has the same structure, being bounded by 6 singular
regions, two of type l · l∗, two of type v−p∗, and two more
of type p− v∗. To characterize each 6D cell we can use a
triple of signs corresponding to the the orientation of the
three tetrahedra appearing in Fig. 3.

VI. ADDING AN EXTRA LEG TO REMOVE
SINGULARITIES

Assuming that the platform of a flagged manipulator
doesn’t cross the plane of its base, its C-space consists of
four 6D cells (corresponding to the four forward kinematic
solutions for a given set of leg lengths), separated by eight
5D (singular) cells. Thus, only the cells appearing in the
top half of Fig. 11 need to be considered.

To avoid singularities, manipulators are often made to
operate within just one 6D cell. In this section we show
that, by adding an extra leg and using switched control,
the 5D singularity cells can be removed and, consequently,
the operation workspace of the resulting redundant flagged
manipulator becomes enlarged by a factor of four.

Given the basic flagged manipulator shown in Fig. 4,
there are two ways of placing an extra leg, namely

• • •

• • •��

and

• • •

• • •��L L .
To the former of these 7-leg designs, we can attach a

first pair of flags (v1, l, p) and (v∗, l∗1, p
∗) in the same

way as in Fig. 4, and then a second pair of flags (v2, l, p)
and (v∗, l∗2, p

∗), yielding the flag arrangement displayed in
Fig. 12. Now, if the extra leg remains passive, we have
just a basic flagged manipulator, with the former pair of
attached flags. Contrarily, if the leg symmetric to the extra
leg (involving the other endpoints of arity 3 in the base
and 2 in the platform) remains passive, then we have
another basic flagged manipulator, whose singularity locus
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Fig. 11. The graph shows the topology of C-space for flagged manipulators. The rectangles represent the 6D cells of C-space non-singular configurations
which correspond to the eight different assembly modes, while the ellipses are the 5D cells of singular configurations.
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Fig. 12. The basic redundant flagged manipulator and the two pairs
of attached flags: (v1, l, p) and (v2, l, p) attached to the base, and
(v∗, l∗1 , p∗) and (v∗, l∗2 , p∗) attached to the platform.

is characterized by the second pair of flags (v2, l, p) and
(v∗, l∗2, p

∗).
The interesting point is that the singularity loci of these

two component basic manipulators intersect only on 4D
sets. To see this, have a look at Table I, where the
intersections of the 5D singularity manifolds arising from
the two pairs of flags are recorded. Note that the only
5D intersection is p − v∗, and this is removed by the
assumption that the platform cannot cross the plane of the
base. Therefore, we have only to consider the first two rows
and columns in the table, which show that only two types of
4D intersections appear: when the platform plane contains
the base line, or when the platform line contains the base
vertex. Since these 4D singularities are well characterized,
they can be easily circumvented using an adequate control
strategy.

Note that the 7-leg manipulator obtained by interchang-
ing the roles of platform and base doesn’t have this
interesting property, since in this case the last two rows
and columns in the table must be considered instead, and
the p − v∗ 5D singularity remains.

Concerning the alternative design

• • •

• • •��L L , there is no
possibility to move the vertex of neither the platform flag
nor the base flag, and therefore one of the 5D singularities
v − p∗ or p − v∗ necessarily remain.

PSfrag replacements
v∗v∗

l∗1l∗1

p∗p∗

l∗2l∗2

v1v1

ll

pp

v2
v2

Fig. 13. A 3-2-2 manipulator is obtained by applying local transforma-
tions to the basic redundant flagged manipulator in Fig. 12.

In sum, there is only one 7-leg basic flagged config-
uration of interest, namely that shown in Fig. 12. From
this, and using the transformations in Fig. 5, all redundant
flagged parallel manipulators can be derived, as was done
for non-redundant flagged manipulators in Fig. 6. An
example is shown in Fig. 13, where a 3-2-2 manipulator is
obtained by using four transformations.

VII. CONCLUSION

We have proved that the configuration space of flagged
manipulators can be decomposed into eight connected
components (cells of dimension 6), corresponding to the
eight possible assembly modes, separated by singularities
(cells of dimension 5 and lower). The topology of all cells
of dimension 6 and 5 has been formally derived in detail.

Adding an extra leg to a flagged manipulator and switch-
ing actuation implies converting a flagged manipulator
instance into another, and, consequently, changing the
location of the 5D cells. Then, the placement of the extra
leg can be designed so that 5D cells of the two manipulator
instances have at most a 4D intersection. This means
that the resulting manipulator with switched control has
a singularity locus of at most dimension 4. In order to



TABLE I
INTERSECTIONS OF THE SINGULARITY 5D MANIFOLDS FOR TWO PAIRS OF FLAGS.

v2 − p∗ l · l∗2 p − v∗

v1 − p∗ l − p∗ (v1 − l∗2) ∪ (l − p∗) vv1 − p∗

l · l∗1 (v2 − l∗1) ∪ (l − p∗) l − p∗ (l − v∗) ∪ (p − l∗1)

p − v∗ vv2 − p∗ (l − v∗) ∪ (p − l∗2) p − v∗

characterize all possible redundant flagged manipulators,
we have applied the same strategy used for the non-
redundant case. First, all redundant 3-3 architectures have
been explored to conclude that only one of them has
interest from the perspective of flagged manipulators. Then,
it has been shown how all possible redundant flagged
manipulators could be derived from it using one simple
local transformations on the leg endpoint locations.

The results presented herein have direct application to
wire-base tracking devices. Indeed, this kind of devices
are forced to operate in reduced workspaces so as to
avoid singular configurations and wire wrapping problems
[16]. The effect of singularities can be minimized by
introducing redundant wires, and wire wrapping problems
by rearranging wire ends –to adapt the device to a particular
application or experiment– without modifying the singu-
larity landscape. We have presented effective techniques to
solve both problems.
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