
Journal of Machine Learning Research 7 (2006) 2329-2367 Submitted 6/05; Revised 5/06; Published 11/06

Point-Based Value Iteration for Continuous POMDPs

Josep M. Porta PORTA@IRI.UPC.EDU

Institut de Robòtica i Informàtica Industrial
UPC-CSIC
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Nikos Vlassis VLASSIS@SCIENCE.UVA.NL

Matthijs T.J. Spaan MTJSPAAN@SCIENCE.UVA.NL

Informatics Institute
University of Amsterdam
Kruislaan 403, 1098SJ, Amsterdam, The Netherlands

Pascal Poupart PPOUPART@CS.UWATERLOO.CA

David R. Cheriton School of Computer Science
University of Waterloo
200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

Editors: Sven Koenig, Shie Mannor, and Georgios Theocharous

Abstract

We propose a novel approach to optimize Partially Observable Markov Decisions Processes
(POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs
are restricted to discrete states, actions, and observations, but many real-world problems such as,
for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demon-
strate that the value function for continuous POMDPs is convex in the beliefs over continuous state
spaces, and piecewise-linear convex for the particular case of discrete observations and actions but
still continuous states. We also demonstrate that continuous Bellman backups are contracting and
isotonic ensuring the monotonic convergence of value-iteration algorithms. Relying on those prop-
erties, we extend the PERSEUS algorithm, originally developed for discrete POMDPs, to work in
continuous state spaces by representing the observation, transition, and reward models using Gaus-
sian mixtures, and the beliefs using Gaussian mixtures or particle sets. With these representations,
the integrals that appear in the Bellman backup can be computed in closed form and, therefore, the
algorithm is computationally feasible. Finally, we further extend PERSEUS to deal with continuous
action and observation sets by designing effective sampling approaches.

Keywords: planning under uncertainty, partially observable Markov decision processes, continu-
ous state space, continuous action space, continuous observation space, point-based value iteration

1. Introduction

Automated systems can be viewed as taking inputs from the environment in the form of sensor
measurements and producing outputs toward the realization of some goals. An important problem
is the design of good control policies that produce suitable outputs (e.g., actions) based on the
inputs received (e.g., observations). When the state of the environment is only partially observable
through noisy measurements, and actions have stochastic effects, optimizing the course of action
is a non-trivial task. Partially Observable Markov Decision Processes, POMDPs (Åström, 1965;

c©2006 Josep M. Porta, Nikos Vlassis, Matthijs T.J. Spaan and Pascal Poupart.

PORTA, VLASSIS, SPAAN AND POUPART

Dynkin, 1965) provide a principled framework to formalize and optimize control problems fraught
with uncertainty. Such problems arise in a wide range of application domains including assistive
technologies (Montemerlo et al., 2002; Boger et al., 2005), mobile robotics (Simmons and Koenig,
1995; Cassandra et al., 1996; Theocharous and Mahadevan, 2002; Pineau et al., 2003b), preference
elicitation (Boutilier, 2002), spoken-dialog systems (Roy et al., 2000; Zhang et al., 2001; Williams
et al., 2005), and gesture recognition (Darrell and Pentland, 1996).

Policy optimization (i.e., optimization of the course of action) can be done with or without
a model of the environment dynamics. Model-free techniques such as neuro-dynamic program-
ming (Bertsekas and Tsitsiklis, 1996), and stochastic gradient descent (Meuleau et al., 1999; Ng
and Jordan, 2000; Baxter and Bartlett, 2001; Aberdeen and Baxter, 2002) directly optimize a pol-
icy by simulation. These approaches are quite versatile since there is no explicit modeling of the
environment. On the other hand, the absence of explicit modeling information is compensated by
simulation which may take an unbearable amount of time. In practice, the amount of simulation can
be reduced by restricting the search for a good policy to a small class.

In contrast, model-based approaches assume knowledge about a transition model encoding the
effects of actions on environment states, an observation model defining the correlations between
environment states and sensor observations, and a reward model encoding the utility of environ-
ment states. Even when sufficient a priori knowledge is available to encode a complete model,
policy optimization remains a hard task that depends heavily on the nature of the model. To date,
most existing algorithms for model-based POMDPs assume discrete states, actions and observa-
tions. Even then, optimization is generally intractable (Papadimitriou and Tsitsiklis, 1987; Madani
et al., 1999; Lusena et al., 2001) and one must resort to the exploitation of model-specific structural
properties to obtain approximate scalable algorithms for POMDPs with large state spaces (Boutilier
and Poole, 1996; Roy and Gordon, 2003; Poupart and Boutilier, 2003, 2005) and complex policy
spaces (Pineau et al., 2003a; Spaan and Vlassis, 2005; Smith and Simmons, 2004; Poupart and
Boutilier, 2004, 2005).

Many real-world POMDPs are naturally modeled by continuous states, actions and observations.
For instance, in a robot navigation task, the state space may correspond to robot poses (x,y,θ), the
observations may correspond to distances to obstacles measured by sonars or laser range finders,
and actions may correspond to velocity and angular controls. Given the numerous optimization
techniques for discrete models, a common approach for continuous models consists of discretizing
or approximating the continuous components with a grid (Thrun, 2000; Roy et al., 2005). This
usually leads to an important tradeoff between complexity and accuracy as we vary the coarseness of
the discretization. More precisely, as we refine a discretization, computational complexity increases.
Clearly, an important research direction is to consider POMDP solution techniques that operate
directly in continuous domains, which would render the discretization of the continuous components
superfluous.

Duff (2002) considered a special case of continuous POMDPs in the context of model-based
Bayesian reinforcement learning, in which beliefs are maintained over the space of unknown pa-
rameters of the transition model of a discrete-state MDP. As those parameters are probabilities, the
corresponding POMDP is defined over a continuous domain. Duff (2002) demonstrated that, for
this special case, the optimal value function of the POMDP is parameterized by a set of functions,
and for finite horizon it is piecewise-linear and convex (PWLC) over the belief space of multino-
mial distributions. Independently, Porta et al. (2005) considered the case of robot planning under
uncertainty, modeled as a continuous POMDP over the pose (continuous coordinates) of the robot.

2330

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

They also proved that the optimal value function is parameterized by an appropriate set of functions
called α-functions (in analogy to the α-vectors in discrete POMDPs). Moreover, they demonstrated
that the value function for finite horizon is PWLC over the robot belief space for any functional form
of the beliefs. In addition, Porta et al. (2005) provided an analytical derivation of the α-functions
as linear combinations of Gaussians when the transition, reward, and observation models of the
POMDP are also Gaussian-based.

In this paper, we generalize the results of Duff (2002) and Porta et al. (2005), and describe a
framework for optimizing model-based POMDPs in which the state space and/or action and obser-
vation spaces are continuous. We first concentrate on the theoretical basis on which to develop a
sound value-iteration algorithm for POMDPs on continuous spaces. We demonstrate that the value
function for arbitrary continuous POMDPs is in general convex, and it is PWLC in the particular
case when the states are continuous but the actions and observations are discrete. We also demon-
strate that Bellman backups for continuous POMDPs are contracting and isotonic, which guarantees
the monotonic convergence of a value-iteration algorithm.

Functions defined over continuous spaces (e.g., beliefs, observation, action and reward models)
can have arbitrary forms that may not be parameterizable. In order to design feasible algorithms
for continuous POMDPs, it is crucial to work with classes of functions that have simple parame-
terizations and that yield to closed belief updates and Bellman backups. We investigate Gaussian
mixtures and particle-based representations for the beliefs and linear combinations of Gaussians for
the models. Using these representations, we extend the PERSEUS algorithm (Spaan and Vlassis,
2005) to solve POMDPs with continuous states but discrete actions and observations. We also show
that POMDPs with continuous states, actions, and observations can be reduced to POMDPs with
continuous states, discrete actions, and discrete observations using sampling strategies. As such, we
extend PERSEUS to handle general continuous POMDPs.

The rest of the paper is structured as follows. Section 2 introduces POMDPs. Section 3 includes
the proofs of some basic properties that are used to provide sound ground to the value-iteration
algorithm for continuous POMDPs. Section 4 reviews the point-based POMDP solver PERSEUS.
Section 5 investigates POMDPs with Gaussian-based models and particle-based representations for
belief states, as well as their use in PERSEUS. Section 6 addresses the extension of PERSEUS to deal
with continuous action and observation spaces. Section 7 presents some experiments showcasing
the extended PERSEUS algorithm on a simulated robot navigation task. Section 8 gives an overview
of related work on planning for continuous POMDPs. Finally, Section 9 concludes and highlights
some possibilities for future work.

2. Preliminaries: MDPs and POMDPs

The Markov Decision Process (MDP) framework is a well-known planning paradigm that can be
applied whenever we have an agent making decisions in a system described by

• a set of system states, S,

• a set of actions available to the agent, A,

• a transition model defined by p(s′|s,a), the probability that the system changes from state s
to s′ when the agent executes action a, and

2331

PORTA, VLASSIS, SPAAN AND POUPART

• a reward function defined as ra(s) ∈ R, the reward obtained by the agent if it executes action
a when the system is in state s.

The dynamics of a discrete-time MDP is the following: at a given moment, the system is in a state s
and the agent executes an action a. As a result, the agent receives a reward r and the system state
changes to s′. The state contains enough information to allow to plan optimally, and thus a policy
is a mapping from states to actions. To assess the quality of a given policy, π, the value function
condenses the immediate and delayed reward that can be obtained from a given state s0

V π(s0) = E
[n

∑
t=0

γtrπ(st)(st)
]

,

where the state evolves according to the transition model p(st+1|st ,π(st)), n is the planning horizon
(possibly infinite), and γ ∈ [0,1) is a discount factor that trades off the importance of the immediate
and the delayed reward.

The objective of MDP-based planning is to determine an optimal policy, π∗, that is, a policy that
assigns to each state the action from which the most future reward can be expected. In the literature,
there are several algorithms for computing an optimal policy for any MDP. When the transition
and the reward model are known in advance, we can use planning algorithms mainly developed
within the operations research field. Algorithms also exist for the case where the transition and
reward models must be learned by the agent as it interacts with the environment. These learning
algorithms are typically developed within the reinforcement learning community (Bertsekas and
Tsitsiklis, 1996; Sutton and Barto, 1998).

Three popular planning algorithms are value iteration, policy iteration, and linear program-
ming. We will focus on the first one, value iteration. This algorithm computes a sequence of value
functions departing from an initial value function V0 and using the following recursion

Vn(s) = max
a∈A

Qn(s,a),

with
Qn(s,a) = ra(s)+ γ ∑

s′∈S

p(s′|s,a)Vn−1(s
′).

The above recursion is usually written in functional form

Qa
n = Ha Vn−1,

Vn = H Vn−1, (1)

and it is known as the Bellman recursion (Bellman, 1957). This recursion converges to V ∗, from
which we can define an optimal policy π∗ as

π∗(s) = argmax
a

Q∗(s,a).

For each value function, Vn, we can readily derive an approximation to the optimal policy. Bounds
on the quality of this approximation are given by Puterman (1994) in Theorem 6.3.1.

The MDP framework assumes the agent has direct knowledge of the system state. In many re-
alistic situations, however, the agent can not directly access the state, but it receives an observation

2332

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

that stochastically depends on it. In these cases, the system can be modeled as a Partially Observable
Markov Decision Process (POMDP). This paradigm extends the MDP framework by incorporating
a set of observations O, and an observation model defined by p(o|s), the probability that the agent
observes o when the system reaches state s. In a POMDP, the agent typically needs to infer the state
of the system from the sequence of received observations and executed actions. A usual represen-
tation for the knowledge about the system state is a belief, that is, a probability distribution over the
state space. The initial belief is assumed to be known and, if b is the belief of the agent about the
state, the updated belief after executing action a and observing o is

ba,o(s′) =
p(o|s′)

p(o|b,a)
p(s′|b,a), (2)

with p(s′|b,a) the propagation of the belief b through the transition model. For a continuous set of
states S, this propagation is defined as

p(s′|b,a) =
Z

s∈S
p(s′|s,a)b(s)ds, (3)

and, for a discrete set S, the integral is replaced by a sum. Under the Markov assumption, the belief
carries enough information to plan optimally (see Bertsekas, 2001). Thus, a belief-based discrete-
state POMDP can be seen as an MDP with a continuous state space that has one dimension per state.
In the case of continuous-state POMDPs, the corresponding belief space is also continuous, but with
an infinite number of dimensions since there are infinitely many physical states. This additional
complexity is one of the reasons why most of the POMDP research focuses on the discrete-state
case.

The belief-state MDP defined from a POMDP has a transition model

p(b′|b,a) =

{

p(o|b,a) if b′ = ba,o,

0 otherwise,

and its policy and value function are defined on the space of beliefs. The Bellman recursion is
defined as

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
p(o|b,a)Vn−1(b

a,o)do
}

. (4)

For discrete observation and action spaces, the integral over the observation space is replaced by a
sum and the sup over the action space by a max operator. In Eq. 4, the 〈 f ,b〉 operation is used to
express the expectation of the function f in the probability space defined by sample space S, the
σ-algebra on S, and the probability distribution b. For continuous-state POMDPs, this operator is
computed with an integral over S

〈 f ,b〉=
Z

s∈S
f (s)b(s)ds,

and for discrete-state POMDPs, it corresponds to the inner product

〈 f ,b〉= ∑
s∈S

f (s)b(s).

2333

PORTA, VLASSIS, SPAAN AND POUPART

Note that, in both cases and for a fixed f , the expectation operator is a linear function in the belief
space since we have

〈 f ,k b〉= k 〈 f ,b〉,

〈 f ,b+b′〉= 〈 f ,b〉+ 〈 f ,b′〉,

for any k independent of the integration/sum variable.
At first sight computing the POMDP value function seems intractable, but Sondik (1971) has

shown that, for discrete POMDP, this function can be expressed in a simple form

Vn(b) = argmax
{αi

n}i

〈αi
n,b〉,

with {αi
n}i a set of vectors. Each α-vector is generated for a particular action, and the optimal action

with planning horizon n for a given belief is the action associated with the α-vector that defines Vn

for that belief. Thus, the set of αi
n vectors encodes not only the value, but also the optimal policy.

Since the 〈·, ·〉 function is linear, the value function Vn computed as a maximum of a set of
such expectations is piecewise-linear convex (PWLC) in the belief space. Using this formulation,
value iteration algorithms for discrete state POMDPs typically focus on the computation of the αn-
vectors. Two basic strategies for POMDP value iteration are found in the literature. In the first one,
the initial value function (i.e., at planning horizon 0) is a set of α-vectors directly defined from the
reward function (Sondik, 1971; Monahan, 1982; Cheng, 1988; Kaelbling et al., 1998; Cassandra
et al., 1997; Pineau et al., 2003a). In the second strategy, the initial value function is a single α-
vector that lower bounds the value function for any possible planning horizon (Zhang and Zhang,
2001; Spaan and Vlassis, 2005). In both cases, exact value iteration converges to the same fixed
point, but the second strategy may be more effective in approximate value iteration schemes.

3. Properties of Continuous POMDPs

In the previous section, we saw that algorithms for discrete POMDPs rely on a representation of the
value function as a PWLC function based on a discrete set of supporting vectors. In this section, we
show that this representation can be generalized to continuous-state POMDPs, while still assuming
a discrete set of actions and observations. In Section 6, we discuss how to tackle POMDPs with
continuous actions and observations via sampling.

First, we prove that the value function for a continuous POMDP is convex and, next, that it is
PWLC for the case of continuous states, but discrete observations and actions. In this last case, the
value function can be represented as a set of α-functions that play the same role as α-vectors in a
discrete POMDP. We also prove that the continuous POMDP value-function recursion is an isotonic
contraction. From these results, it follows that this recursion converges to a single fixed point
corresponding to the optimal value function V ∗. The theoretical results presented in this section
establish that there is in principle no barrier in defining value iteration algorithms for continuous
POMDPs.

3.1 The Optimal Value Function for Continuous POMDPs is Convex

To prove that the optimal value function for continuous POMDPs is convex, we first prove the
following lemma.

2334

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

Lemma 1 The n-step optimal value function Vn in a continuous POMDP can be expressed as

Vn(b) = sup
{αi

n}i

〈αi
n,b〉,

for appropriate continuous set of α-functions αi
n : S→ R.

Proof The proof, as in the discrete case, is done via induction. In the following we assume that all
operations (e.g., integrals) are well-defined in the corresponding spaces. For planning horizon 0, we
only have to take into account the immediate reward and, thus, we have that

V0(b) = sup
a∈A
〈ra,b〉,

and, therefore, if we define the continuous set

{αi
0}i = {ra}a∈A, (5)

we have that, as desired
V0(b) = sup

{αi
0}i

〈αi
0,b〉.

For the general case, we have that, using Eq. 4

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
p(o|b,a)Vn−1(b

a,o)do
}

and, by the induction hypothesis,

Vn−1(b
a,o) = sup

{α j
n−1} j

〈α j
n−1,b

a,o〉.

From Eq. 2 and the definition of the 〈·, ·〉 expectation operator,

Vn−1(b
a,o) =

1
p(o|b,a)

sup
{α j

n−1} j

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|b,a)ds′.

With the above

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|b,a)ds′ do

}

= sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

Z

s′
α j

n−1(s
′) p(o|s′)

[

Z

s
p(s′|s,a)b(s)ds

]

ds′ do
}

= sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

Z

s

[

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|s,a)ds′

]

b(s)ds do
}

= sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

〈

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|s,a)ds′,b

〉

do
}

.

2335

PORTA, VLASSIS, SPAAN AND POUPART

At this point, we can define

α j
a,o(s) =

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|s,a)ds′. (6)

Note that these functions are independent of the belief point b for which we are computing Vn. With
this, we have that

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

a,o} j

〈α j
a,o,b〉do

}

,

and we define
αa,o,b = argsup

{α j
a,o} j

〈α j
a,o,b〉. (7)

The αa,o,b set is just a subset of the α j
a,o set defined above. Using this subset, we can write

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
〈αa,o,b,b〉do

}

= sup
a∈A

〈

ra + γ
Z

o
αa,o,b do,b

〉

.

Now
{αi

n}i =
[

∀b

{ra + γ
Z

o
αa,o,b do}a∈A, (8)

is a continuous set of functions parameterized in the continuous action set. Intuitively, each αn-
function corresponds to a plan and, the action associated with a given αn-function is the optimal
action for planning horizon n for all beliefs that have such function as the maximizing one.

With the above definition, we have that Vn can be put in the desired form

Vn(b) = sup
{αi

n}i

〈αi
n,b〉, (9)

and, thus, the lemma holds.

Using the above lemma we can directly prove the convex property for the value function on
continuous POMDPs. Recall that, as mentioned in Section 2, for a fixed αi

n-function the 〈αi
n,b〉

operator is linear in the belief space. Therefore, the convex property is given by the fact that Vn is
defined as the supreme of a set of convex (linear) functions and, thus, we obtain a convex function
as a result. The optimal value function, V ∗ is the limit for Vn as n goes to infinite and, since all Vn

are convex functions so is V ∗.

Lemma 2 When the state space is continuous but the observation and action sets are discrete, the
finite horizon value function is piecewise-linear convex (PWLC).

Proof First, we have to prove that the {αi
n}i sets are discrete for all n. Again, we can proceed via

induction. For discrete actions, {αi
0}i is discrete from its definition (see Eq. 5). For the general

case, we have to observe that, for discrete actions and observations and assuming M = |{α j
n−1}|,

the sets {α j
a,o} are discrete: for a given action a and observation o we can generate at most M

2336

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

α j
a,o-functions. Now, using a reasoning parallel to that of the enumeration phase of the Monahan’s

algorithm (Monahan, 1982), we have at most |A|M |O| different αi
n-functions (fixing the action, we

can select one of the M α j
a,o-functions for each one of the observations) and, thus, {αi

n}i is a discrete
set.

From the previous lemma, we know the value function to be convex. The piecewise-linear part
of the property is given by the fact that, as we have just seen, the {αi

n}i set is of finite cardinality
and, therefore, Vn is defined as a finite set of linear functions.

When the state space is discrete, the α-functions become α-vectors and the above proof is equiv-
alent to the classical PWLC demonstration first provided by Sondik (1971).

3.2 The Continuous POMDP Bellman Recursion is a Contraction

Lemma 3 For the continuous POMDP value recursion H and two given value functions V and U,
it holds that

‖HV −HU‖ ≤ β‖V −U‖,

with 0≤ β < 1 and ‖ · ‖ the supreme norm. That is, the continuous POMDP value recursion H is a
contractive mapping.

Proof The H mapping can be seen as

HV (b) = max
a

HaV (b),

with
HaV (b) = 〈ra,b〉+ γ

Z

o
p(o|b,a)V (ba,o)do.

Assume that ‖HV −HU‖ is maximum at point b. Denote as a1 the optimal action for HV at b and
as a2 the optimal one for HU

HV (b) = Ha1V (b),

HU(b) = Ha2U(b).

Then it holds
‖HV (b)−HU(b)‖= Ha1V (b)−Ha2U(b),

assuming, without loss of generality that HV (b) ≤ HU(b). Since a1 is the action that maximizes
HV at b we have that

Ha2V (b)≤ Ha1V (b).

Therefore, we have that

‖HV −HU‖=

‖HV (b)−HU(b)‖=

Ha1V (b)−Ha2U(b)≤

Ha2V (b)−Ha2U(b) =

γ
R

o p(o|a2,b) [V (ba2,o)−U(ba2,o)]do≤

γ
R

o p(o|a2,b)‖V −U‖do =

γ‖V −U‖ .

2337

PORTA, VLASSIS, SPAAN AND POUPART

Since γ is in [0,1), the lemma holds.

The space of value functions define a vector space (i.e., a space closed under addition and scalar
scaling) and the contraction property ensures this space to be complete (i.e., all Cauchy sequences
have a limit in this space). Therefore, the space of value functions together with the supreme norm
form a Banach space and the Banach fixed-point theorem ensures (a) the existence of a single fixed
point, and (b) that the value recursion always converges to this fixed point (see Puterman, 1994,
Theorem 6.2.3 for more details).

3.3 The Continuous POMDP Bellman Recursion is Isotonic

Lemma 4 For any two value functions V and U, we have that

V ≤U ⇒ HV ≤ HU

that is, the continuous POMDP value recursion H is an isotonic mapping.

Proof Let us denote as a1 the action that maximizes HV at point b and a2 the action that does so
for HU

HV (b) = Ha1V (b),

HU(b) = Ha2U(b).

By definition, the value for action a1 for HU at b is lower (or equal) than that for a2, that is

Ha1U(b)≤ Ha2U(b).

From a given b we can compute ba1,o, for an arbitrary o and, then, the following holds

V ≤U ⇒

∀b,o, V (ba1,o)≤U(ba1,o)⇒
Z

o
p(o|a1,b)V (ba1,o)do≤

Z

o
p(o|a1,b)U(ba1,o)do ⇒

〈ra1 ,b〉+ γ
Z

o
p(o|a1,b)V (ba1,o)do≤ 〈ra1 ,b〉+ γ

Z

o
p(o|a1,b)U(ba1,o)do ⇒

Ha1V (b)≤ Ha1U(b) ⇒

Ha1V (b)≤ Ha2U(b) ⇒

HV (b)≤ HU(b) ⇒

HV ≤ HU.

Since b and, from it ba1,o, can be chosen arbitrarily, the value function is isotonic.

The isotonic property of the value recursion ensures that value iteration converges monotoni-
cally.

2338

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

4. PERSEUS: A Point-Based POMDP Solver

Eqs. 6 to 8 constitute the value-iteration process for continuous POMDPs since they provide a con-
structive way to define the α-elements (α-functions for the continuous-state case and α-vectors for
the discrete one) defining Vn from those defining Vn−1. The implementation of this value iteration,
however, will be only computationally feasible if all the involved integrals can be either derived in
closed form or approximated numerically. Moreover, the {αi

n}i are continuous sets and this makes
the actual implementation of the described value-iteration process challenging. In this section, we
concentrate on continuous-state POMDPs (POMDPs with continuous states, but discrete actions
and observations). In this case, the {αi

n}i sets contain finitely many elements and the value func-
tion is PWLC. This allows us to adapt POMDP solving algorithms designed for the discrete case.
In particular, we describe the point-based value-iteration algorithm PERSEUS (Spaan and Vlassis,
2005) which has been shown to be very efficient for discrete POMDPs. The description shown in
Table 1 is generic so that it can be used for either discrete or continuous-state POMDPs. Extensions
of PERSEUS to deal with continuous action and observation spaces are detailed in Section 6.

The computation of the mapping H (Eq. 1) for a given belief point b is called a backup. This
mapping determines the α-element (α-function for continuous POMDPs and α-vector for discrete-
state POMDPs) to be included in Vn for a belief point under consideration (see Eqs. 6 to 8). A
full backup, that is, a backup for the whole belief space, involves the computation of all relevant α-
elements for Vn. Full backups are computationally expensive (they involve an exponentially growing
set of α-elements), but the backup for a single belief point is relatively cheap. This is exploited
by recent point-based POMDP algorithms to efficiently approximate Vn on a fixed set of belief
points (Pineau et al., 2003a; Spaan and Vlassis, 2005). The α-elements for this restricted set of
belief points generalize over the whole belief space and, thus, they can be used to approximate the
value function for any belief point.

The backup for a given belief point b is

backup(b) = argmax
{αi

n}i

〈αi
n,b〉,

where αi
n(s) is defined in Eqs. 7 and 8 from the αa,o-elements (Eq. 6). Using the backup operator,

the value of Vn at b (Eq. 9) is simply

Vn(b) = 〈backup(b),b〉.

If this point-backup has to be computed for many belief points, the process can be speeded up
by computing the set {α j

a,o} j for all actions, observations, and elements in Vn−1 (see Eq. 6) since
these α-elements are independent of the belief point and are the base components to define the αa,o,b

for any particular belief point, b.
Using this backup operator, PERSEUS is defined as follows. First (Table 1, line 2), we let the

agent randomly explore the environment and collect a set B of reachable belief points. Next (Table 1,
lines 3-5), we initialize the value function V0 as a constant function over the state space. The value
for V0 is the minimum possible accumulated discounted reward, min{R}/(1− γ) with R the set of
possible rewards. In line 3, u denotes a function on S so that

〈u,b〉= 1,

for any possible belief, b and, in particular, for the beliefs in B. The exact form for u depends on the
representation we use for the α-elements. For instance, for a discrete set of states, u is a constant

2339

PORTA, VLASSIS, SPAAN AND POUPART

Perseus
Input: A POMDP.
Output: Vn, an approximation to the optimal

value function V ∗.
1: Initialize
2: B← A set of randomly sampled belief points.

3: α← min{R}
1−γ u

4: n← 0
5: Vn←{α}
6: do
7: ∀b ∈ B,
8: Elementn(b)← argmaxα∈Vn

〈α,b〉
9: Valuen(b)← 〈Elementn(b),b〉
10: Vn+1← /0
11: B̃← B
12: do
13: b← Point sampled randomly from B̃.
14: α← backup(b)
15: if 〈α,b〉< Valuen(b)
16: α← Elementn(b)
17: endif
18: B̃← B̃\{b′ ∈ B̃ | 〈α,b′〉 ≥ Valuen(b′)}
19: Vn+1←Vn+1∪{α}
20: until B̃ = /0
21: n← n+1
22: until convergence

Table 1: The PERSEUS algorithm: a point-based value-iteration algorithm for planning in
POMDPs.

vector of |S| ones, and for a continuous state space, u can be approximated by a properly scaled
Gaussian with a large covariance in all the dimensions of the state space.

Starting with V0, PERSEUS performs a number of approximate value-function update stages.
The definition of the value-update process can be seen on lines 10–20 in Table 1, where B̃ is a set of
non-improved points: points for which Vn+1(b) is still lower than Vn(b). At the start of each update
stage, Vn+1 is set to /0 and B̃ is initialized to B. As long as B̃ is not empty, we sample a point b
from B̃ and compute the new α-elements associated with this point using the backup operator. If
this α-element improves the value of b, that is, if 〈α,b〉 ≥ Vn(b), we add α to Vn+1. The hope is
that α improves the value of many other points, and all these points are removed from B̃. Often, a
small number of α-elements will be sufficient to improve Vn(b) ∀b ∈ B, especially in the first steps
of value iteration. As long as B̃ is not empty we continue sampling belief points from it and trying
to add their α-elements to Vn+1.

If the α computed by the backup operator does not improve at least the value of b (i.e., 〈α,b〉<
Vn(b), see lines 15–17 in Table 1), we ignore α and insert a copy of the maximizing element of b

2340

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

from Vn in Vn+1. Point b is now considered improved and is removed from B̃, together with any
other belief points that had the same function as maximizing one in Vn. This procedure ensures that
B̃ shrinks at each iteration and that the value update stage terminates.

PERSEUS stops when a given convergence criterion holds. This criterion can be based on the
stability of the value function, on the stability of the associated policy, or simply on a maximum
number of iterations or maximum planning time.

5. Representations for Continuous-State POMDPs

PERSEUS can be used with different representations for the beliefs, the α-functions, and the tran-
sition, observation and reward models. The selected representations should fulfill three minimum
requirements. First, the belief update has to be closed, that is, the representation used for the beliefs
must be closed under the propagation through the transition model (Eq. 3) and the multiplication
with the observation model (Eq. 2). The second requirement is that the representation for the α-
functions must be closed under addition and scaling (to compute Eq. 8), and closed for the inte-
gration after the product with the observation and the action models (see Eq. 6). Finally, the third
requirement is that the 〈α,b〉 expectation operator must be computable.

For discrete-state POMDP, the belief and the α-functions are represented by vectors and the
models by matrices. In this case, all operations are linear algebra that produce closed form results.
Next, we describe two alternative representations for continuous-state POMDPs. The first one uses
linear combinations of Gaussian distributions to represent α-functions and mixtures of Gaussian
distributions to represent belief states. The second one also uses linear combinations of Gaussian
distributions to represent α-functions, but uses sets of particles to represent beliefs.

5.1 Models for Continuous-State POMDPs

For POMDPs with continuous states and discrete observations, a natural observation model p(o|s)
would consist of a continuum of multinomial distributions over o (i.e., one multinomial for each s).
Unfortunately, such an observation model will not keep α-functions in closed form when multiplied
by the observation model in a Bellman backup. Instead, we consider observation models such that
p(o|s) is approximated by a mixture of Gaussians in s for a given observation o.

We define the observation model p(o|s) indirectly by specifying p(s|o). More specifically, for
a fixed observation o, we assume that p(s|o) is a mixture of Gaussians on the state space defined
non-parametrically from a set of samples T = {(si,oi) | i∈ [1,N]} with oi an observation obtained at
state si. The training set can be obtained in a supervised way (Vlassis et al., 2002) or by autonomous
interaction with the environment (Porta and Kröse, 2004). The observation model is

p(o|s) =
p(s|o) p(o)

p(s)
,

and, assuming a uniform p(s) in the space covered by T , and approximating p(o) from the samples
in the training set we have

p(o|s) ∝
[1

No

No

∑
i=1

λo
i φ(s|so

i ,Σ
o
i)

]No

N
=

No

∑
i=1

wo
i φ(s|so

i ,Σ
o
i),

where so
i is one of the No points in T with o as an associated observation, φ is a Gaussian with mean

so
i and covariance matrix Σo

i , and wo
i = λo

i /N is a weighting factor associated with that training point.

2341

PORTA, VLASSIS, SPAAN AND POUPART

The sets {λo
i }i and {Σo

i }i should be defined so that

No

∑
i=1

λo
i = No,

λo
i ≥ 0,

and so that

p(s) = ∑
o

p(s|o) p(o) = ∑
o

No

∑
i=1

wo
i φ(s|so

i ,Σ
o
i),

is (approximately) uniform in the area covered by T .
As far as the transition model is concerned, we assume it is linear-Gaussian

p(s′|s,a) = φ(s′|s+∆(a),Σa), (10)

with φ a Gaussian centered at s+∆(a) with covariance Σa. The function ∆(·) is a mapping from the
action space to the state space and encodes the changes in the state produced by each action. For
discrete action sets, this function can be seen as a table with one entry per action.

Finally, the reward model ra(s) is defined by a linear combination of (a fixed number of) Gaus-
sians

ra(s) = ∑
i

wi φi(s|µ
a
i ,Σ

a
i),

where µa
i and Σa

i are the mean and covariance of each Gaussian.

5.2 α-Functions Representation

As mentioned above, we require an α-function representation that allow us to get a closed expres-
sion for the α j

a,o (Eq. 7). With the above models, the α-functions can be represented by a linear
combination of Gaussians as stated in the following lemma.

Lemma 5 The functions αi
n(s) can be expressed as linear combinations of Gaussians, assuming the

observation, transition and reward models are also linear combinations of Gaussians.

Proof This lemma can be proved via induction. For n = 0, αi
0(s) = ra(s) for a fixed a and thus it is

indeed a linear combination of Gaussians. For n > 0, we assume that

α j
n−1(s

′) = ∑
k

w j
k φ(s′|s j

k,Σ
j
k).

Then, with our particular models, α j
a,o(s) in Eq. 6 is the integral of three linear combinations of

Gaussians

α j
a,o(s) =

Z

s′

[

∑
k

w j
k φ(s′|s j

k,Σ
j
k)

][

∑
l

wo
l φ(s′|so

l ,Σ
o
l)

]

φ(s′|s+∆(a),Σa)ds′

=
Z

s′
∑
k,l

w j
k wo

l φ(s′|s j
k,Σ

j
k)φ(s′|so

l ,Σ
o
l)φ(s′|s+∆(a),Σa)ds′

= ∑
k,l

w j
k wo

l

Z

s′
φ(s′|s j

k,Σ
j
k)φ(s′|so

l ,Σ
o
l)φ(s′|s+∆(a),Σa)ds′.

2342

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

To compute this equation, we have to perform the product of two Gaussians and a closed formula is
available for this operation

φ(x|a,A)φ(x|b,B) = δ φ(x|c,C),

with

δ = φ(a|b,A+B) = φ(b|a,A+B),

C = (A−1 +B−1)−1,

c = C (A−1 a+B−1 b).

In the above case, we have to apply this formula twice, once for φ(s′|s j
k,Σ

j
k) and φ(s′|so

l ,Σ
o
l) to get

(δ j,o
k,l φ(s′|s1,Σ1)) and once more for (δ j,o

k,l φ(s′|s1,Σ1)) and φ(s′|s+∆(a),Σa) to get (δ j,o
k,l β j,o,a

k,l (s)φ(s′|s,Σ)).

The scaling terms δ j,o
k,l and β j,o,a

k,l (s) can be expressed as

δ j,o
k,l = φ(so

l |s
j
k,Σ

j
k +Σo

l),

β j,o,a
k,l (s) = φ(s|s j,o

k,l −∆(a),Σ j,o
k,l +Σa),

with

Σ j,o
k,l = [(Σ j

k)
−1 +(Σo

l)
−1]−1,

s j,o
k,l = Σ j,o

k,l [(Σ j
k)
−1 s j

k +(Σo
l)
−1 so

l].

With this, we have

α j
a,o(s) = ∑

k,l

w j
k wo

l

Z

s′
δ j,o

k,l β j,o,a
k,l (s)φ(s′|s,Σ)ds′

= ∑
k,l

w j
k wo

l δ j,o
k,l β j,o,a

k,l (s)
Z

s′
φ(s′|s,Σ)ds′

= ∑
k,l

w j
k wo

l δ j,o
k,l β j,o,a

k,l (s).

Using Eqs. 7 and 8, we define the elements in {αi
n} as

αi
n = ra + γ∑

o
argmax
{α j

a,o} j

〈α j
a,o,b〉.

Since the result of the argmax is just one of the members of the set {α j
a,o} j, all the elements involved

in the definition of αi
n are linear combinations of Gaussians and so is the final result.

One point that deserves special consideration is the explosion of the number of components in
the linear combinations of Gaussians defining the α-functions. If No is the number of components in
the observation model and Cr is the average number of components in the reward model, the number
of components in the αn-functions scales with O((No)

n Cr). Appendix A details an algorithm to
bound the number of components of a mixture while losing as little information as possible.

2343

PORTA, VLASSIS, SPAAN AND POUPART

5.3 Belief Representation

To get a belief update and an expectation operator that are computable, we consider two possible
representations for the beliefs. The first one is Gaussian-based and the second one is particle-based.

5.3.1 GAUSSIAN-BASED REPRESENTATION

In this first case, we will assume that belief points are represented as Gaussian mixtures

b(s) = ∑
j

w j φ(s|s j,Σ j), (11)

with φ a Gaussian with mean s j and covariance matrix Σ j and where the mixing weights satisfy w j >
0, ∑ j w j = 1. In the extreme case, Gaussian mixtures with an infinite number of components would
be necessary to represent a given point in the infinite-dimensional belief space of a continuous-state
POMDP. However, only Gaussian mixtures with few components are needed in practical situations.

The belief update on Eq. 2 can be implemented in our model taking into account that it consists
of two steps. The first one is the application of the action model on the current belief state. This can
be computed as the propagation of the Gaussians representing b(s) (Eq. 11) through the transition
model (Eq. 10)

p(s′|b,a) =
Z

s
p(s′|s,a)b(s)ds = ∑

j

w j φ(s|s j +∆(a),Σ j +Σa).

In the second step of the belief update, the prediction obtained with the action model is corrected
using the information provided by the observation model

ba,o(s′) ∝
[

∑
i

wo
i φ(s′|so

i ,Σ
o
i)

][

∑
j

w j φ(s|s j +∆(a),Σ j +Σa)
]

= ∑
i, j

wo
i w j φ(s′|so

i ,Σ
o
i)φ(s|s j +∆(a),Σ j +Σa).

As mentioned, the product of two Gaussian functions is a scaled Gaussian. Therefore, we have that

ba,o(s′) ∝ ∑
i, j

wo
i w j δa,o

i, j φ(s′|sa,o
i, j ,Σa,o

i, j),

with

δa,o
i, j = φ(s j +∆(a) | so

i ,Σ
o
i +Σ j +Σa),

Σa,o
i, j = ((Σo

i)
−1 +(Σ j +Σa)−1)−1,

sa,o
i, j = Σa,o

i, j ((Σo
i)
−1 so

i +(Σ j +Σa)−1 (s j +∆(a))).

Finally, we can rearrange the terms to get

ba,o(s′) ∝ ∑
k

wk φ(s′|sk,Σk),

with wk = wo
i w j δa,o

i, j , sk = sa,o
i, j , and Σk = Σa,o

i, j for all possible i, j. The proportionality in the definition
of ba,o(s′) implies that the weights (wk, ∀k) should be scaled to sum to one

ba,o(s′) =
1

∑k wk
∑
k

wk φ(s′|sk,Σk).

2344

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

An increase in the number of components representing a belief occurs when computing the
belief update just detailed. If b0 has Cb components and p(o|s) is represented with an average of
Co components, the number of components in the belief bt scales with O(Cb(Co)

t). As in the case
of the α-functions, the procedure detailed in Appendix A could be used to bound the number of
components in the beliefs.

Taking into account that the α-functions are also Gaussian-based, the expectation operator 〈·, ·〉
can be computed in closed form as

〈α,b〉=
Z

s

[

∑
k

wk φ(s|sk,Σk)
][

∑
l

wl φ(s|sl,Σl)
]

ds

= ∑
k,l

wk wl

Z

s
φ(s|sk,Σk)φ(s|sl,Σl)ds

= ∑
k,l

wk wl φ(sl|sk,Σk +Σl)
Z

s
φ(s|sk,l,Σk,l)ds

= ∑
k,l

wk wl φ(sl|sk,Σk +Σl).

5.3.2 PARTICLE-BASED REPRESENTATION

An alternative to parameterize the belief densities using Gaussian mixtures is to represent the belief
using N random samples, or particles, positioned at points si and with weights wi. Thus, the belief
is

bt(s) =
N

∑
i=1

wi d(s− si),

where d(s− si) is a Dirac’s delta function centered at 0. Particle-based representations have been
very popular in recent years, and they have been used in many applications from tracking to Simul-
taneous Localization and Mapping, SLAM, (see Doucet et al., 2001, for a review).

A particle-based representation has many advantages: it can approximate arbitrary probability
distributions (with an infinite number of particles in the extreme case), it can accommodate non-
linear transition models without the need of linearizing the model, and it allows several quantities
of interest to be computed more efficiently than with the Gaussian-based belief representation. In
particular, the integral in the belief update equation becomes a simple sum

ba,o(s′) ∝ p(o|s′)
N

∑
i=1

wi p(s′|si,a).

The central issue in the particle filter approach is how to obtain a set of particles to approximate
ba,o(s′) from the set of particles approximating b(s). The usual Sampling Importance Re-sampling
(SIR) approach (Dellaert et al., 1999; Isard and Blake, 1998) samples particles s′i using the motion
model p(s′|si,a), then it assigns a new weight to each one of these particles proportional to the
likelihood p(o|s′i), and finally it re-samples particles using these new weights in order to make all
particles weights equal. The main problem of the SIR approach is that it requires many particles to
converge when the likelihood p(o|s′) is too peaked or when there is only a small overlap between
the prior and the posterior likelihood.

2345

PORTA, VLASSIS, SPAAN AND POUPART

In the auxiliary particle filter (Pitt and Shephard, 1999) the sampling problem is addressed by
inserting the likelihood inside the mixture

ba,o(s′) ∝
N

∑
i=1

wi p(o|s′) p(s′|si,a).

The state s′ used to define the likelihood p(o|s′) is not observed when the particles are resampled
and we have to resort to approximations

ba,o(s′) ∝
N

∑
i=1

wi p(o|µi) p(s′|si,a).

with µi any likely value associated with the i-th component of the transition density p(s′|si,a), for
example its mean. In this case, we have that µi = si + ∆(a). Then ba,o(s′) can be regarded as a
mixture of the N transition components p(s′|si,a) with weights wi p(o|µi). Therefore, sampling a
new particle s′j to approximate ba,o(s′) can be carried out by selecting one of the N components, say
i j, with probability wi p(o|µi) and then sampling s′j from the corresponding component p(s′|si j ,a).
Sampling is performed in the intersection of the prior and the likelihood and, consequently, particles
with larger prior and larger likelihood (even if this likelihood is small in absolute value) are more
likely to be used.

After the set of states for the new particles is obtained using the above procedure, we have to
define their weights. This is done using

w′j ∝
p(o|s′j)

p(o|µi j)
.

Using the sample-based belief representation the averaging operator 〈·, ·〉 becomes

〈α,b〉=
Z

s

[

∑
k

wk φ(s|sk,Σk)
][

∑
l

wl d(s− sl)
]

ds

= ∑
k

wk

Z

s
φ(s|sk,Σk) ∑

l

wl d(s− sl)ds

= ∑
k

wk ∑
l

wl φ(sl|sk,Σk)

= ∑
k,l

wk wl φ(sl|sk,Σk).

Other re-sampling strategies such as those proposed by Fox (2003) that on-line adapt the number of
sampled particles can also be applied here.

Given the common features between beliefs and α-functions in value iteration (i.e., beliefs and
α-functions are both continuous functions of the state space), the α-functions also admit a particle
representation. Note however that we cannot have both beliefs and α-functions represented by
particles since the computation of 〈α,b〉 requires that either b or α be in functional form to generalize
over the entire state space.

2346

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

Perseus
Input: A POMDP.
Output: Vn, an approximation to the optimal

value function, V ∗.
1: Initialize
2: B← A set of randomly sampled belief points.

3: α← min{R}
1−γ U

4: n← 0
5: Vn←{α}
6: do
7: ∀b ∈ B,
8: Elementn(b)← argmaxα∈Vn

〈α,b〉
9: Valuen(b)← 〈Elementn(b),b〉
10: Vn+1← /0
11: B̃← B
12: do
13: b← Point sampled randomly from B̃.
14a: A← SampleActions(b)
14b: α← backup(b)
15: if 〈α,b〉< Valuen(b)
16: α← Elementn(b)
17: endif
18: B̃← B̃\{b′ ∈ B̃ | 〈α,b′〉 ≥ Valuen(b′)}
19: Vn+1←Vn+1∪{α}
20: until B̃ = /0
21: n← n+1
22: until convergence

Table 2: Modification of the PERSEUS algorithm in Table 1 to deal with large or continuous action
spaces.

6. Extensions to Continuous Action and Observation Spaces

In Section 4, we presented a point-based value iteration algorithm to deal with continuous-state
POMDPs. Now, we describe how to extend the presented framework to deal with continuous sets
of actions and observations so that fully continuous POMDPs can also be addressed. The basic
idea is that general continuous POMDPs can be cast in the continuous-state POMDP paradigm via
sampling strategies.

6.1 Dealing with Continuous Actions

The backup operator in continuous-state value iteration requires computing a set of α-functions in
Eq. 8, one function for each action a ∈ A, and then choosing the best function to back up. When
the action space A is finite and small, the above optimization can be carried out efficiently by enu-
merating all possible actions and choosing the best, but in very large discrete action spaces this is

2347

PORTA, VLASSIS, SPAAN AND POUPART

computationally inefficient. In this case, or when actions are continuous, one can resort to sampling-
based techniques. As proposed by Spaan and Vlassis (2005), we can replace the full maximization
over actions with a sampled max operator that performs the maximization over a subset of actions
randomly sampled from A. One may devise several sampling schemes for choosing actions from A,
for example, uniform over A or using the best action up to a given moment. Actions sampled uni-
formly at random can be viewed as exploring actions, while the latter can be viewed as exploiting
current knowledge. Spaan and Vlassis (2005) provide more details on this point.

The use of a sampled max operator is very well suited for the point-based backups of PERSEUS,
in which we only require that the values of belief points do not decrease over two consecutive
backup stages. However, some modifications need to be introduced in the action and reward models
described in Section 5.1. The action model described can be easily extended to continuous actions
defining a continuous instead of a discrete function ∆ : A→ S and evaluating it for the actions in the
newly sampled A. As far as the reward model is concerned, we simply need to evaluate it for the
sampled actions. Table 2 describes a modification of the basic PERSEUS algorithm to deal with large
or continuous action spaces. Observe that, before computing the backup for the randomly selected
belief point b (line 14b), we have to sample a new set of actions, A (line 14a) and the transition and
reward models have to be modified accordingly, since they depend on the action set. Beside the
action sampling and the on-line models computation, the rest of the algorithm proceeds the same
as the one in Table 1. Note however, that the actions are sampled specifically for each belief b and,
therefore we can not compute something similar to the α j

a,o-elements (see Eq. 6) that are common
for all beliefs.

6.2 Dealing with Continuous Observations

In value iteration, the backup of a belief point b involves computing the expectation over observa-
tions

Vn(b) = argmax
a

{

〈ra,b〉+ γVn−1(b
a)

}

,

with
Vn−1(b

a) =
Z

o
p(o|b,a)Vn−1(b

a,o)do.

Using the definition of value function, the above reads

Vn−1(b
a) =

Z

o
p(o|b,a) max

{α j
n−1} j

〈α j
n−1,b

a,o〉do. (12)

Building on an idea proposed by Hoey and Poupart (2005), assuming a finite number of α-elements
α j

n−1, observation spaces can always be discretized without any loss of information into regions
corresponding to each α-element. In Eq. 12, all observations that lead to belief states ba,o with the
same maximizing α-element can be aggregated together into one meta observation O j

a,b defined as
follows

O j
a,b = {o |α j

n−1 = argmax
{α j

n−1} j

〈α,ba,o〉}.

Using O j
b,a, we can rewrite Eq. 12 as a sum over α-elements

Vn−1(b
a) = ∑

j

Z

o∈O j
a,b

p(o|b,a) 〈α j
n−1,b

a,o〉do.

2348

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

Rewriting the observation probabilities p(o|b,a) in terms of s′, we obtain

Vn−1(b
a) =

〈

∑
j

Z

s′
α j

n−1(s
′)

[

Z

o∈O j
a,b

p(o|s′)do
]

p(s′|s,a)ds′,b
〉

.

Hoey and Poupart (2005) assume a discrete state space, in which case the above quantity can be sim-
plified by accumulating probability masses over observations in O j

a,b, that is, defining p(O j
a,b|s

′) =
R

o∈O j
a,b

p(o|s′)do for each state s′, and then approximating p(O j
a,b|s

′) by sampling observations from

p(o|s′). When the variable s′ is continuous we can sample observations by importance sampling
from some proposal distribution q(o). With this we have

p(O j
a,b|s

′)'
1
N

N j

∑
i=1

p(o j
i |s
′)

q(o j
i)

,

with O j
a,b = {o j

1, . . . ,o
j
N j
} the set of observations for which α j

n−1 is maximal. The proposal distri-
bution q(o) can be, for instance, p(o|b′) with b′ uniform in S or p(o|b′) with b′ the current belief
point. In our experiments we simply used a uniform distribution in O.

When working with continuous observations, the model given in Section 5.1 is no longer valid.
However, we can assume the observation model to be defined using kernel smoothing from a training
set including state-observation tuples. From those samples we can define

p(o,s) =
N

∑
i=1

λi φ(o|oi,Σo
i)φ(s|si,Σs

i),

and, using that,

p(o|s) =
p(o,s)
p(s)

.

Assuming a uniform p(s), we have that p(o|s) for a fixed observation is a Gaussian in s′, which
guarantees that α-functions remain closed under Bellman backups (see Section 5.1). With the ob-
servation model in the above form, we can further simplify p(O j

a,b|s
′) since we have that

p(O j
a,b|s

′)'
1
N

N j

∑
i=1

p(o j
i |s
′)

q(o j
i)

=
1
N

N j

∑
i=1

1

q(o j
i)

[N

∑
k=1

λk φ(o j
i |ok,Σo

k)φ(s|sk,Σs
k)

]

=
N

∑
k=1

[1
N

N j

∑
i=1

1

q(o j
i)

λk φ(o j
i |ok,Σo

k)
]

φ(s|sk,Σs
k)

=
N

∑
k=1

ρ j
k φ(s|sk,Σs

k)

with

ρ j
k =

λk

N

N j

∑
i=1

φ(o j
i |ok,Σo

k)

q(o j
i)

.

2349

PORTA, VLASSIS, SPAAN AND POUPART

With the discretized observation model we can define

α j
a,b = ∑

j

Z

s′
α j

n−1(s
′) p(O j

a,b|s
′) p(s′|s,a)ds′,

that plays the same role in the Bellman backup as the α j
a,o,b-functions introduced in Eq. 7. With the

above we have
Vn−1(b

a) = 〈α j
a,b,b〉,

and the α-elements for Vn at belief b are defined as

{αi
n}i = {ra + γ α j

a,b}a∈A.

Thus, as far as implementation is concerned, continuous observation spaces introduce a modi-
fication in the backup, but this modification is independent of the rest of the algorithm. Therefore
this new operator can be used both in PERSEUS with either discrete or sampled continuous actions
(see Table 1 and Table 2, respectively).

Note that if we work with continuous observation spaces, the α j
a,b-functions are computed

specifically for each belief and, therefore no precomputation similar to those of the α j
a,o-elements is

possible.

7. Experiments and Results

To demonstrate the viability of our method we carried out some experiments in a simulated robotic
domain. The simulation was programmed in Matlab 7.1 using a Pentium Xeon at 3 GHz running
under Linux. In the simulated problem (see Fig. 1-a), a robot is moving along a corridor with four
doors, where the state space is the continuous interval [−21,21]. The target for the robot is to
locate the second door from the right and enter it. The robot only receives positive reward when it
enters the target door (see Fig. 1-c). When the robot tries to move beyond the end of the corridor
(either right or left), or when it tries to enter a door at a wrong position, it receives negative reward.
The reward function is represented using a linear combination of nine Gaussian functions. Three
Gaussians are placed at each extreme of the corridor to represent the negative reward for trying to
move beyond the end of the corridor (with means±21,±19,±17, covariance 0.05, and weight−2).
Two Gaussians represent the negative reward for trying to enter a door at the wrong position (with
means±25, covariance 12.5, and weight−10). Finally, one Gaussian is used for the positive reward
associated with entering the correct door (with mean 3, covariance 0.15, and weight 2).

In all reported experiments, the set of beliefs B used in the PERSEUS algorithm contains 500
unique belief points collected using random walks departing from a uniform belief, the latter being
approximated with a Gaussian mixture with four components. The walks of the robot along the
corridor are organized in episodes of 30 actions (thus, for instance, the robot can repetitively try to
enter the correct door accumulating positive reward). In all experiments we set γ = 0.95.

In the first experiment we assume discrete observations and actions. There are four distinct
observations, left-end, right-end, door, and corridor. The observation model, shown in Fig. 1-b, is
approximated using a training set of 22 samples evenly placed every two space units from −21 to
21 (with Σo = 4). The five right/left-most samples correspond to observations right-end and left-
end, respectively, each sample taken in front of a door corresponds to observation door, and the rest
of the samples correspond to observation corridor. There are three distinct actions: the robot can

2350

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

Right End

Left End

Corridor

Door

Move Left

Move Right

Enter Door

Move Left Move Right

Enter Door

PSfrag replacements

−15

−15

−10

−10

−5

−5

0

0

5

5

10

10

15

15

1.0

0.8

0.6

0.4

0.2

0.2

0.0

−0.2

−0.4

−0.6

−0.8

−1.0
−1.2

(a)

(b)

(c)

Figure 1: A pictorial representation of the test problem (a), the corresponding observation model
(b), and the reward model (c).

move two units either to the left or to the right (with Σa = 0.05), or it can try to enter a door at any
point. In this experiment we used Gaussian mixtures to represent the beliefs, compressing them, if
necessary, to a maximum of four components, and similarly we used α-functions with a maximum
of nine Gaussian components.

Fig. 2 shows the average results obtained after 10 runs of the version of PERSEUS described in
Section 4. The first plot (top-left) shows the convergence of the value computed as ∑bV (b). The
second plot (top-right) shows the expected discounted reward computed by running for 50 episodes
the policy available at the corresponding time slice. The fact that this plot converges to a positive

2351

PORTA, VLASSIS, SPAAN AND POUPART

PSfrag replacements

time (s)

Acc. Disc. Reward

V
al

ue

No. α-elements
Policy changes

0

0

600

500

500 1000 1500 2000 2500

−3000

−2500

−2000

−1500

−1000

−500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

A
cc

.
D

is
c.

R
ew

ar
d

Value
No. α-elements
Policy changes

0

0

600

500 1000 1500 2000 2500

−3000

−2500

−2000

−1500

−1000

−500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

N
o.

α-
el

em
en

ts

Policy changes

0 0

600

500 1000 1500 2000 2500

−3000

−2500

−2000

−1500

−1000

−500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40
45

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

No. α-elements

Po
lic

y
ch

an
ge

s

0
0

600

500

500 1000 1500 2000 2500

−3000

−2500

−2000

−1500

−1000

−500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45

50

100

150

200250

300

350

400

450

Figure 2: Results for the simulated robotic problem using continuous states but discrete actions
and observations. Top: Evolution of the value for all the beliefs in B and the average
accumulated discounted reward for 10 episodes. Bottom: Number of elements in Vn

and the number of policy changes. Results are averaged for 10 repetitions and the bars
represent the standard deviation.

value indicates that the robot successfully learns to avoid collisions, to find out its position, and to
identify the target door. Next plot (bottom-left) shows the number of α-functions used to represent
the value function. We can see that the number of α-functions increases, but it remains far below
500, the maximum possible number of α-functions (in the extreme case we would use a different
α-function for each point in B). Finally, the bottom-right plot shows the number of changes in the
policy from one time step to another. The changes in the policy are computed as the number of
beliefs in B with a different optimal action from one time slice to the next. The number of policy
changes drops to zero, indicating convergence with respect to the particular B. In Fig. 3 we show
a typical trajectory of the robot when executing a policy found at convergence of PERSEUS. The
snapshots show the evolution of the belief of the robot, and the actions taken, from the beginning of
the episode (the robot starts at location 7) until the target door is entered.

2352

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

1

0
−11 −5 3 9

PSfrag replacements

A (→)

B (→)
C (→)
D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)

B (→)

C (→)
D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)
B (→)

C (→)

D (←)
E (←)
F (←)
G (←)
H (←)

I (↑) −11 −5 3 9
0

1

PSfrag replacements

A (→)
B (→)
C (→)

D (←)

E (←)
F (←)
G (←)
H (←)

I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)
B (→)
C (→)
D (←)

E (←)

F (←)
G (←)
H (←)

I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)
B (→)
C (→)
D (←)
E (←)

F (←)

G (←)
H (←)

I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)
B (→)
C (→)
D (←)
E (←)
F (←)

G (←)

H (←)
I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)
B (→)
C (→)
D (←)
E (←)
F (←)
G (←)

H (←)I (↑)

1

0
−11 −5 3 9

PSfrag replacements

A (→)
B (→)
C (→)
D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)

Figure 3: Evolution of the belief when following the discovered policy. The arrows under the snap-
shots represent the actions:→ for moving right,← for moving left, and ↑ for entering the
door. The four numbers on the x-axis indicate the locations of the four doors.

PSfrag replacements

V
al

ue

µ

σ

0

5

5
−5

10

−10

15

−15

2

6

10

10

0

0.2

0.4

0.6

0.8

µ

σ

Figure 4: Value function for single-component beliefs as a function of the mean µ and the standard
deviation σ.

2353

PORTA, VLASSIS, SPAAN AND POUPART

PSfrag replacements

tim
e

(s
)

No. components

1

2

3

4

5

6

7

8

5

10

15

20

4 6

9

12

15

16

18

20

21

24

27

28

30

32
33

PSfrag replacements

tim
e

(s
)

No. components

1

2

3

4

5

6

7

8

5

10

15

20

4

6

9 12 15

16

18

20

21 24 27

28

30
32

33

Figure 5: Execution time in seconds for the first iteration of PERSEUS as the number of components
representing the beliefs increase (left) and as the number of components representing the
α-functions increase (right).

Since the state space is one-dimensional in this example, beliefs with a single (Gaussian) com-
ponent can be fully characterized by their sufficient statistics, that is, the mean µ and the variance
σ2. In Fig. 4 we plot the value of single-Gaussian beliefs for different µ and σ. We note that, as
the uncertainty about the position of the robot grows (i.e., the σ is larger), the value of the corre-
sponding belief decreases. The colors/shadings in the figure correspond the different actions: black
for moving to the right, light-gray for entering the door, and dark-gray for moving to the left. This
plot demonstrates that a value function that is convex over the belief space may not necessarily be
convex over the space of sufficient statistics of the beliefs.

Fig. 5-left shows the increase in the execution time as more components are used to represent
the beliefs. The plotted data correspond to the time in seconds for the first PERSEUS value update
stage, that is, for the computation of the first backup (line 14 in Table 1) and the new value for all
the beliefs in B (line 18 in the algorithm). The cost of executing the first iteration is an indicator of
the computational complexity of the system that is independent of the problem at hand; the cost of
later stages of PERSEUS scales with the number of elements in the previous value function approx-
imation, Vn−1, and the number of elements to be generated for the new approximation, Vn, and both
quantities are problem-dependent. We can see that the increase in the execution time is rather linear
with the number of components in the belief. In all the experiments summarized in Fig. 5-left, we
used nine components to represent the α-functions. To assess the effects of increasing the number
of components in the α-functions, in Fig. 5-right we show the increase in the execution time for the
first PERSEUS iteration when beliefs are represented with four components and the α-functions are
represented with an increasing number of elements. We can observe that after about 24 components
the execution time is almost constant. This is due to the fact that, for the problem at hand, no more
components are needed to represent the α-functions. The Gaussian mixture condensation algorithm
detailed in Appendix A has the property of discarding some components from the output if these
are not necessary.

The effect on the quality of the solution when reducing the number of components for the beliefs
and the α-functions can be seen in Fig. 6 where we depict the average accumulated discounted

2354

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPSPSfrag replacements

time (s)

A
cc

.
D

is
c.

R
ew

ar
d

1-component beliefs

3-component α-functions

9-c.α-func. + 4-c. beliefs

0

0 500 1000 1500 2000 2500

−8

−6

−4

−2

2

Figure 6: Reduction in the obtained average accumulated discounted reward when reducing the
number of components in the beliefs to just one (dotted line) and in the α-functions to
three (dashed line). The solid line is the average accumulated reward when using 4 com-
ponents for the beliefs and 9 for the α-functions.

reward when representing beliefs with one component and α-functions with three components. We
observe that when using fewer components for the α-functions, the algorithm may converge to a
suboptimal policy. We also noticed that when using more than nine components, the improvements
in the final policy were marginal. When representing the beliefs with just one component, the quality
of the obtained policy also decreases. This is due to the fact that the problem at hand presents some
degree of perceptual aliasing (i.e., states for which different actions are required but where the same
observation is obtained). This aliasing can only be solved properly when using a multi-modal belief
representation, which is not the case for single Gaussians.

We note that the advantage of using a continuous state space is that we obtain a scale-invariant
solution. If we have to solve the same problem in a longer corridor, we can just scale the Gaussians
used in the problem definition and we will obtain the solution with the same cost as we have now.
The only difference is that more actions would be needed in each episode to reach the correct door.

Another way to solve this problem would be to discretize the state space and then apply the
PERSEUS algorithm for discrete POMDPs. When discretizing the environment, the granularity
has to be in accordance with the size of the actions taken by the robot (±2 left/right) and, thus,
the number of states and, consequently, the cost of the planning grows as the environment grows.
Fig. 7-left shows the execution time in seconds for the first stage of PERSEUS in a discretized
version of the problem as the number of states grows. The discretization is performed by selecting
n states uniformly sampled on the state space and then using the continuous models to define the
discrete ones. As we can see in the figure, the increase in the execution time with respect to the
number of states is higher than linear. With more than 100 states the execution is slower than that
for the continuous version when using 4 components for the beliefs and 9 for the α-functions (the
dashed line in Fig. 7-left is the time for the execution of the first iteration of PERSEUS in this case).

2355

PORTA, VLASSIS, SPAAN AND POUPART

PSfrag replacements

tim
e

(s
)

time (s)

No. states

Acc. Disc. Reward
Discrete PERSEUS (20 states)

Discrete PERSEUS (200 states)

Continuous-state PERSEUS

50

100

150

200

250

300

350

100 200 300 400 500 600 700 800 900 1000

1500

2000

2500

−5

−4

−3

−2

−1

0

1

2

PSfrag replacements

time (s)

time (s)

No. states

A
cc

.
D

is
c.

R
ew

ar
d

Discrete PERSEUS (20 states)
Discrete PERSEUS (200 states)

Continuous-state PERSEUS

50

100

150

200

250

300

350

100

200

300

400

500

600

700

800

900

1000 1500 2000 2500

−5

−4

−3

−2

−1

0

0

1

2

Figure 7: Left: Execution time in seconds for the first iteration of PERSEUS in a discretized version
of the problem as the number of states grows. The dashed line is the time for the first it-
eration in the continuous-state version of the same problem. Right: Average accumulated
discounted reward obtained with the continuous-state version of PERSEUS with 4 compo-
nents for the beliefs and 9 for the α-functions (solid line) compared with the one obtained
with the discrete version of PERSEUS using only 20 states (dotted line) and using 200
states (dashed line) .

Note that the discrete version of PERSEUS relies on linear algebra operations that can be sped up
by taking advantage of the sparsity of the matrices and vectors defining the models and the beliefs,
however, such speedups are not implemented in the version of PERSEUS we use for the experiments.
A remarkable difference between the continuous and the discrete-state version is that the first one
spends most of the time in the computation of the value for all beliefs (i.e., in the 〈·, ·〉 operator)
while the second one spends most of the time in the computation of the α j

a,o vectors that are later on
used in the backup. Fig. 7-right shows the average accumulated discounted reward obtained with the
discrete version of PERSEUS working on different number of states compared with the one obtained
in the first experiment (see Fig. 2). We can see that, when using a too coarse discretization (only
20 states) the discrete version of the problem does not capture all the features of the continuous one
and, therefore, we observe convergence to a sub-optimal solution. Only when using enough states in
the discretization the discrete version of PERSEUS delivers a plan that is as good as the one obtained
with the continuous PERSEUS. The average accumulated discounted reward with a discretization
with 200 states is shown in Fig. 7-right.

In the following experiment, the same problem was solved using particles to represent the beliefs
instead of Gaussian mixtures. In this case, the α-functions are still represented as Gaussian mixtures,
with 9 components. The results obtained using 75 particles are shown in Fig. 8. Note that the results
are similar to those obtained when using Gaussian mixtures to represent the beliefs (see Fig. 2) but
they are obtained in about 5 times more execution time. This is reasonable since, although the basic
operations implementing the expectation operator 〈·, ·〉 are more efficient when using particle-based
beliefs, this is compensated by the fact that, in general, we have to use a large amount of particles.
Therefore, the use of particles might only be advantageous when the belief cannot be represented

2356

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

PSfrag replacements

time (s)

Acc. Disc. Reward

V
al

ue

No. α-elements
Policy changes

0

0 4000 8000 12000 16000

−3000

−2500

−2000

−1500

−1000

−500

500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45

50

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

A
cc

.
D

is
c.

R
ew

ar
d

Value
No. α-elements
Policy changes

0

0 4000 8000 12000 16000

−3000

−2500

−2000

−1500

−1000

−500

500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45

50

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

N
o.

α-
el

em
en

ts

Policy changes

0 4000 8000 12000 16000

−3000

−2500

−2000

−1500

−1000

−500

500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45
50

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

No. α-elements

Po
lic

y
ch

an
ge

s

0 4000 8000 12000 16000

−3000

−2500

−2000

−1500

−1000

−500

500

−10

−8

−6

−4

−2

2

5

10

15

20

25

30

35

40

45

50

50

100

150

200

250

300

350

400

450

Figure 8: Results when using 75 particles to represent the beliefs. Top: Evolution of the value for all
the beliefs in B and the average accumulated discounted reward for 10 episodes. Bottom:
Number of elements in Vn and the number of policy changes. Results are averaged for 10
repetitions and the bars represent the standard deviation.

with a few-components Gaussian mixture, when the action model is not linear, or when using an
on-line mechanism to dynamically adjust the number of particles (Fox, 2002, 2003).

Fig. 9 shows the average accumulated discounted reward using two different sets of actions.
When using an action set including short robot movements (±1), the number of steps to reach the
target increase and, since positive reward is only obtained at the end of the run when entering the
door, the average accumulated reward decreases. When using a set of actions with too large move-
ments (±4) the robot has problems aiming the correct door and the average accumulated reward
also decreases. Since the appropriate set of actions for each problem is hard to forecast, it would be
nice to have a planning system able to determine a proper set of actions by itself. For this purpose
in the next experiment we let the robot execute actions in the continuous range [−6,6], where an
action can be regarded here as a measure of velocity of the robot. When the robot is almost stopped
(i.e., its velocity is below 5% of the maximum one) we interpret this as trying to enter a door. In
each backup at planning stage n, we consider the optimal action according to Vn−1 and three more

2357

PORTA, VLASSIS, SPAAN AND POUPART

PSfrag replacements

time (s)

time (s)

No. states

A
cc

.
D

is
c.

R
ew

ar
d

Action set ±1
Action set ±2

Action set ±4

50

100

150

200

250

300

350

100

200

300

400

500

600

700

800

900

1000 1500 2000 2500

−5

−4

−3

−2

−1

0

0

1

2

Figure 9: Average accumulated discounted reward using different sets of actions.

actions selected at random with uniform distribution in the range [−6,6]. Fig. 10 shows the average
results obtained by 10 repetitions. The policy change in the bottom-right plot is computed as the
sum squared difference of the actions in two consecutive PERSEUS iterations for all beliefs. The
fact that this norm goes to zero means that policy gets stable and, observing the plot for the reward,
we can see that the discovered policy is better than the one in Fig. 2, meaning that the algorithm is
able to determine better motion actions than the ones we manually fixed in the initial version of the
problem (±2), and that is able to select enter door actions when necessary.

Finally, we modified the initial problem so that it is formalized with continuous state, action,
and observation spaces. Here we assume that the robot observations are obtained with a noisy sen-
sor that measures the width of the corridor. The observations are noise-perturbed versions of four
nominal integer values: 1 for the right extreme, 2 for the left one, 4 for the doors, and 3 for the
rest of positions (see Fig. 1-a). The sensor noise is assumed white Gaussian with covariance equal
to 0.3, resulting in a continuous set of observations in the range [0,5]. For each backup, we still
use four actions (the optimal one up for Vn−1 and three randomly selected ones) and we discretize
the observation space by uniformly sampling 100 observations. Fig. 11 shows the results obtained
in this case. We see a performance similar to the one obtained with continuous states, continuous
actions, and discrete observations, implying that the observation-space discretization does not affect
the quality of the final policy. An interesting observation is that the algorithm converges faster and
that the optimal value is approximated with fewer α-functions than when using discrete observa-
tions. This is probably due to the fact that the observation discretization takes advantage (and relies
on) the structure of the previous approximation to the value function.

With this experiment we conclude our demonstration that the full continuous POMDP case can
be addressed with the techniques proposed in this paper.

8. Related Work

The literature on POMDPs with continuous states is still relatively sparse. A common approach is
to assume a discretization of the state space, which can be a poor model of the underlying system.
However, when the system is linear and the reward function is quadratic, an exact solution for
continuous-state POMDPs is known that can be computed in closed form (Bertsekas, 2001). While

2358

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

PSfrag replacements

time (s)

Acc. Disc. Reward

V
al

ue

No. α-elements
Policy changes

0

0 500

1000

1000 1500 2000 2500 3000 3500

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

−14

−12

−10

−8

−6

−4

−2

4

2

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

A
cc

.
D

is
c.

R
ew

ar
d

Value
No. α-elements
Policy changes

0

0 500 1000 1500 2000 2500 3000 3500

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

−14

−12

−10

−8

−6

−4

−2

4

2

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

N
o.

α-
el

em
en

ts

Policy changes

0 500 1000 1500 2000 2500 3000 3500

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

−14

−12

−10

−8

−6

−4

−2

4

2

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

No. α-elements

Po
lic

y
ch

an
ge

s

0

0

500

500

1000

1000

1500

1500

2000

2000

2500

2500

3000

3000

3500

3500

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

−14

−12

−10

−8

−6

−4

−2

4

2

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

Figure 10: Results when the problem is modeled with continuous states and actions. Top: Evolution
of the value for all the beliefs in B and the average accumulated discounted reward for
10 episodes. Bottom: Number of elements in Vn and the average policy change. Results
are averaged for 10 repetitions and the bars represent the standard deviation.

such an assumption on the reward function can be reasonable in certain control applications, it is a
severe restriction for the type of AI applications that we consider.

Roy (2003) has proposed compression techniques for handling POMDPs with large (discrete)
state spaces, one of which compresses beliefs to two parameters: the state with maximum likelihood
and the belief’s entropy. Such a representation may lead to poor performance when multi-modal
beliefs are likely to occur in a particular application. Recently, Brooks et al. (2006) have proposed
a related parameterization of the beliefs using the sufficient statistics of an appropriately chosen
parametric family (e.g., Gaussians). Both methods compute an approximate value function on a grid
in their low-dimensional parameter spaces, and do not use the PWLC property of the POMDP value
function. In contrast, we exploit the known shape of the value function, which offers an attractive
potential for generalization through the use of α-functions, analogous to the effective exploitation
of α-vectors in discrete-state POMDPs.

2359

PORTA, VLASSIS, SPAAN AND POUPART

PSfrag replacements

time (s)

Acc. Disc. Reward

V
al

ue

No. α-elements
Policy changes

0

0

1000

1000 2000 3000

4000

5000

6000

7000

−3500

−3000

−2500

−2000

−1500

−1000

−500

500

500

1500

−12

−10

−8

−6

−4

−2

2

4

5

3

1

6

8

10

12

14

200

400

800

1200

1500

1400

2500 3500

PSfrag replacements

time (s)

A
cc

.
D

is
c.

R
ew

ar
d

Value
No. α-elements
Policy changes

0

0 1000 2000 3000

4000

5000

6000

7000

−3500

−3000

−2500

−2000

−1500

−1000

−500

500

1500

−12

−10

−8

−6

−4

−2

2

4

5

3

1

6

8

10

12

14

200

400

800

1200

1500

1400

2500 3500

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

N
o.

α-
el

em
en

ts

Policy changes

0 1000 2000 3000

4000

5000

6000

7000

−3500

−3000

−2500

−2000

−1500

−1000

−500

500

1500

−12

−10

−8

−6

−4

−2

2

4

5

3

1

6

8

10

12

14

200

400

800

1200

1500

1400

2500 3500

PSfrag replacements

time (s)

Acc. Disc. Reward
Value

No. α-elements

Po
lic

y
ch

an
ge

s

0

0 1000 2000 3000

4000

5000

6000

7000

−3500

−3000

−2500

−2000

−1500

−1000

−500

500

1500

−12

−10

−8

−6

−4

−2

2

4

5

3

1

6

8

10

12

14

200

400

800

1200

1500

1400

2500 3500

Figure 11: Results when the problem is modeled with continuous states, observations and actions.
Top: Evolution of the value for all the beliefs in B and the average accumulated dis-
counted reward for 100 episodes. Bottom: Number of elements in Vn and the number
of policy changes. Results are averaged for 10 repetitions and the bars represent the
standard deviation.

An approach to continuous-state POMDPs that is closely related to ours is the Monte Carlo
POMDP (MC-POMDP) method of Thrun (2000), in which real-time dynamic programming is ap-
plied on a POMDP with a continuous state and action space. In that work beliefs are represented
by sets of samples drawn from the state space, while Q(b,a) values are approximated by nearest-
neighbor interpolation from a (growing) set of prototype values and are updated by online explo-
ration and the use of sampling-based Bellman backups. The MC-POMDP method approximates
the Bellman backup operator by sampling from the belief transition model, whereas in our case, we
compute the Bellman backup operator analytically given the particular value-function representa-
tion. In the MC-POMDP algorithm nearest-neighbor interpolation is used to approximate the value
of beliefs outside the set. This is in contrast with our Gaussian-mixture representation, in which
the value function achieves generalization through a set of α-functions. When the value function
maintained by MC-POMDP does not contain enough neighbors within a certain distance for an
encountered belief, the belief is added to the value function. PERSEUS operates on a fixed set of

2360

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

beliefs, and does not require such an online expansion. Furthermore, the PERSEUS value function
is likely to generalize better over the belief space through the use of α-functions. In contrast with
PERSEUS, the MC-POMDP method does not exploit the piecewise linearity and convexity of the
value function.

Duff (2002) considered the problem of Bayesian reinforcement learning, in which the parame-
ters of the transition model of an MDP are treated as random variables. Experience in the form of ob-
served state transitions and received rewards is used to estimate the unknown MDP models. In con-
trast with straightforward exploration strategies such as ε-greedy, Bayesian reinforcement-learning
techniques try to identify the action that will maximize long-term reward. Such an optimally-
exploring action might sacrifice expected immediate payoff for refining the model estimates, thus
facilitating better control in the future. Duff (2002) models the Bayesian reinforcement-learning
problem as a POMDP, in which the parameters of the transition model form the state of the system,
and experienced transition tuples (s,a,s′) are the possible observations. Such a POMDP has a con-
tinuous state space as the transition probabilities can be any real number between zero and one. A
Monte Carlo algorithm is proposed for learning a (stochastic) finite-state controller for this partic-
ular class of POMDPs, where the required integrals are approximated by sampling and numerical
methods. Recently, Poupart et al. (2006) demonstrated that the optimal value function in Bayesian
reinforcement learning can be represented by a set of multivariate polynomials, in direct analogy to
the α-function representations for Gaussian-based POMDPs in this paper.

In the case of continuous action spaces only few methods exist that can handle continuous action
spaces directly (Thrun, 2000; Ng and Jordan, 2000; Baxter and Bartlett, 2001). Certain policy search
methods tackle continuous actions, for instance Pegasus (Ng and Jordan, 2000), which estimates the
value of a policy by simulating trajectories from the POMDP using a fixed random seed, and adapts
its policy in order to maximize this value. Pegasus can handle continuous action spaces at the cost
of a sample complexity that is polynomial in the size of the state space (Ng and Jordan, 2000,
Theorem 3). Baxter and Bartlett (2001) propose a policy gradient method that searches in the space
of randomized policies, and which can also handle continuous actions. The main disadvantages
of policy search methods are the need to choose a particular policy class and the fact that they are
prone to local optima.

Traditional POMDP methods assume discretized observation spaces. POMDPs with continuous
observation spaces have mainly been studied in model-free settings, for instance to learn policies for
a partially observable version of the classic pole-balancing task (Whitehead and Lin, 1995; Meuleau
et al., 1999; Bakker, 2003). Rudary et al. (2005) extend Predictive State Representations (PSRs) to
the linear-Gaussian case, which allows them to learn a PSR model of a linear dynamical system
with a continuous observation space. Finally, the analytic solution for the quadratic reward case
mentioned above can also handle continuous observations with a linear noise model (Bertsekas,
2001).

9. Conclusions and Future Work

In this paper we described an analytical framework for optimizing POMDPs with continuous states,
actions, and observations. For POMDPs with continuous states, we demonstrated the piecewise
linearity and convexity of value functions defined over infinite-dimensional belief states induced by
continuous states. We also demonstrated that continuous Bellman backups are isotonic and con-
tracting, allowing value iteration to be adapted to continuous POMDPs. In particular, we extended

2361

PORTA, VLASSIS, SPAAN AND POUPART

the PERSEUS algorithm with linear combinations of Gaussians and particle-based representations
for belief states. These are expressive representations that are closed under Bellman backups and
belief updates. Finally, we also extended PERSEUS to continuous actions and observations by par-
ticular sampling strategies that reduce the problem to a continuous state POMDP that can be tackled
by the PERSEUS algorithm.

In the near future, we plan to investigate reinforcement learning approaches for scenarios where
the POMDP model is unknown. The particle-based approach may be adaptable to reinforcement
learning since particles may be thought as sampled values. Conversely, note that discrete Bayesian
reinforcement learning can be cast as a POMDP with continuous states (Duff, 2002). Poupart et al.
(2006) recently developed a similar technique to optimize policies in environments with (partially)
unknown transition dynamics modeled by multinomials. It would be interesting to follow up on this
work by tackling Bayesian reinforcement learning problems with Gaussian-based dynamics.

Another interesting research direction would be to investigate which families of functions (be-
yond mixtures of Gaussians) are closed under Bellman backups and belief updates for different
types of transition, observation and reward models. In particular, mixtures of log-linear distribu-
tions provide an expressive parameterization that is likely to possess the necessary properties.

Acknowledgments

We would like to thank Jakob Verbeek and Wojtek Zajdel for their contributions to the work re-
ported here. Josep M. Porta has been partially supported by a Ramón y Cajal contract from the
Spanish government and by the EU PACO-PLUS Project FP6-2004-IST-4-27657. Nikos Vlassis
and Matthijs Spaan are supported by PROGRESS, the embedded systems research program of the
Dutch organization for Scientific Research NWO, the Dutch Ministry of Economic Affairs and the
Technology Foundation STW, project AES 5414. Pascal Poupart is supported by the Canada’s Na-
tional Science and Engineering Research Council.

Appendix A.

As a large number of components representing beliefs and α-functions slows down the basic oper-
ations of the algorithm, an efficient implementation of the algorithm is required to keep the number
of components reasonably bounded.

We use the procedure described by Goldberger and Roweis (2005) that transforms a given Gaus-
sian mixture with k components to another Gaussian mixture with at most m components, m < k,
while retaining the initial component structure. The algorithm is detailed in Table 3.

The algorithm uses the Kullback-Leibler, KL, distance between to Gaussian distributions f i =
N(µ,Σ), g j = N(µ′,Σ′) that is

KL(fi‖g j) =
1
2

(

log
|Σ′|
|Σ|

+Tr((Σ′)−1Σ)+(µ−µ′)>(Σ′)−1(µ−µ′)− c

)

,

with c the dimensionality of the space where the Gaussians are defined.
Observe that the above procedure is defined for Gaussian mixtures (with positive weights that

sum to 1), but our α-functions are linear combinations of Gaussian (with possibly negative weights).
Therefore, for the α-function compression, we use a modified version of the procedure just de-
scribed where the weights are normalized after taking its absolute value. This way, the distance

2362

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

Gaussian Mixture Condensation(f, m)
Input: A Gaussian mixture f = ∑k

i=1 wi fi(x|µi,Σi).
The maximum number of components

in the output mixture, m, m < k.
Output: A Gaussian mixture g = ∑m

i=1 w′i gi(x|µ′i,Σ′i) that
locally minimizes ∑k

i=1 wi min j∈[1,m]KL(fi‖g j)

1: Initialize
2: for j = 1 to m
3: w′j← w j

4: µ′j← µ j

5: Σ′j← Σ j

6 : d← ∑k
i=1 wi min j∈[1,m] KL(fi‖g j)

7: do
8: Compute the mapping from f to g
9: for i = 1 to k
10: π(i)← argmin j∈[1,m],w′j>0 KL(fi‖g j)

11: Define a new g
12: for j = 1 to m
13: I j←{i |π(i) = j, i ∈ [1,k]}
14: w′j← ∑i∈I j

wi

15: µ′j←
1

w′j
∑i∈I j

wi µi

16: Σ′j←
1

w′j
∑i∈I j

wi (Σi +(µi−µ′j)(µi−µ′j)
>)

17: d′← d
18: d← ∑k

i=1 wi KL(fi‖gπ(i))

19: until d < ε or |d−d′|
d < ε

Table 3: Gaussian mixture condensation algorithm where ε is a sufficiently small threshold (10−5 in
our implementation).

(locally) minimized by the algorithm in Table 3 is

d =
k

∑
i=1

|wi| min
j∈[1,m]

KL(fi‖g j).

Therefore, the algorithm tries to preserve the relevant peaks (either positive or negative) in the
original mixture. After the compression, the weights are re-computed taken into account the original
weights and the map π provided by the algorithm above.

References

K. J. Åström. Optimal control of Markov decision processes with incomplete state estimation.
Journal of Mathematical Analysis and Applications, 10:174–205, 1965.

2363

PORTA, VLASSIS, SPAAN AND POUPART

D. Aberdeen and J. Baxter. Scaling internal-state policy-gradient methods for POMDPs. In Pro-
ceedings of the International Conference on Machine Learning, pages 3–10, Sydney, Australia,
2002.

B. Bakker. Reinforcement learning with long short-term memory. In Advances in Neural Informa-
tion Processing Systems 15 (NIPS-2002), pages 1475–1482. MIT Press, 2003.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelli-
gence Research, 15:319–350, 2001.

R. E. Bellman. Dynamic Programming. Princenton University Press, 1957.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA,
2001. 2nd Edition.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis. A decision-theoretic
approach to task assistance for persons with dementia. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1293–1299, Edinburgh, Scotland, 2005.

C. Boutilier. A POMDP formulation of preference elicitation problems. In Proceedings of the
National Conference on Artificial Intelligence, pages 239–246, Edmonton, AB, 2002.

C. Boutilier and D. Poole. Computing optimal policies for partially observable decision processes
using compact representations. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 1168–1175, Portland, OR, 1996.

A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte. Planning in continuous state spaces
with parametric POMDPs. In Reasoning with Uncertainty in Robotics, Workshop of the Interna-
tional Joint Conference on Artificial Intelligence, pages 40–47, 2006.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: discrete Bayesian
models for mobile-robot navigation. In Proceedings of the International Conference on Intelligent
Robots and Systems, pages 963–972, 1996.

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact
algorithm for partially observable Markov decision processes. In Proceedings of Uncertainty in
Artificial Intelligence, pages 54–61, 1997.

H. T. Cheng. Algorithms for Partially Observable Markov Decision Processes. PhD thesis, Univer-
sity of British Columbia, 1988.

T. Darrell and A. P. Pentland. Active gesture recognition using partially observable Markov decision
processes. In IEEE International Conference on Pattern Recognition, pages 984–988, Vienna,
Austria, 1996.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte-Carlo localization for mobile robots. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages 1322–
1328, 1999.

2364

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo in Practice. Springer-Verlag,
New York, 2001.

M. Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov decision pro-
cesses. PhD thesis, University of Massassachusetts Amherst, 2002.

E. B. Dynkin. Controlled random sequences. Theory of probability and its applications, 10(1):
1–14, 1965.

D. Fox. Kld-sampling: Adaptive particle filters. In Advances in Neural Information Processing
Systems 14 (NIPS-2001), pages 713–720. MIT Press, 2002.

D. Fox. Adapting the sample size in particle filters through kld-sampling. International Journal of
Robotics Research, 22(10-11):985–1004, 2003.

J. Goldberger and S. Roweis. Hierarchical clustering of a mixture model. In Advances in Neural
Information Processing Systems 17 (NIPS-2004), pages 505–512. MIT Press, 2005.

J. Hoey and P. Poupart. Solving pomdps with continuous or large discrete observation spaces. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1332–1338,
2005.

M. Isard and A. Blake. Condensation - conditional density propagation for visual tracking. Inter-
national Journal of Computer Vision, 29(1):5–28, 1998.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapproximability results for partially observable
Markov decision processes. Journal of Artificial Intelligence Research, 14:83–103, 2001.

O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and infinite-
horizon partially observable Markov decision problems. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 541–548, Orlando, FL, 1999.

N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling. Learning finite-state controllers for par-
tially observable environments. In Proceedings of Uncertainty in Artificial Intelligence, pages
427–436, Stockholm, 1999.

G. E. Monahan. A survey of partially observable Markov decision processes: Theory, models, and
algorithms. Management Science, 28(1):1–16, 1982.

M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma. Experiences with a mobile robotic
guide for the elderly. In Proceedings of the National Conference on Artificial Intelligence, pages
587–592, Edmonton, AB, 2002.

A. Y. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs. In
Proceedings of Uncertainty in Artificial Intelligence, pages 406–415, Stanford, CA, 2000.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes. Mathemat-
ics of Operations Research, 12(3):441–450, 1987.

2365

PORTA, VLASSIS, SPAAN AND POUPART

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for pomdps.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1025–1032,
2003a.

J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards robotic assistants in nursing
homes: challenges and results. Robotics and Autonomous Systems, 42(3-4):271–281, 2003b.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the
American Statististical Association, 94(446):590–599, 1999.

J. M. Porta and B. J. A. Kröse. Appearance-based concurrent map building and localization using
a multi-hypotheses tracker. In Proceedings of the International Conference on Intelligent Robots
and Systems, pages 3424–3429, Sendai, Japan, 2004.

J. M. Porta, M. T. J. Spaan, and N. Vlassis. Robot planning in partially observable continuous
domains. In Robotics: Science and Systems I, pages 217–224, MIT, Cambridge, MA, 2005.

P. Poupart and C. Boutilier. Value-directed compressions of POMDPs. In Advances in Neural
Information Processing Systems 15 (NIPS-2002), pages 1547–1554. MIT Press, 2003.

P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information
Processing Systems 16 (NIPS-2003), pages 823–830. MIT Press, 2004.

P. Poupart and C. Boutilier. VDCBPI: an approximate scalable algorithm for large POMDPs. In
Advances in Neural Information Processing Systems 17 (NIPS-2004), pages 1081–1088. MIT
Press, 2005.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete bayesian rein-
forcement learning. In Proceedings of the International Conference on Machine Learning, pages
697–704, 2006.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Mathematical Statistics. John Wiley and Sons, Inc., 1994.

N. Roy. Finding Approximate POMDP Solutions Through Belief Compression. PhD thesis, Carnegie
Mellon University, 2003.

N. Roy and G. Gordon. Exponential family PCA for belief compression in POMDPs. In Advances
in Neural Information Processing Systems 15 (NIPS-2002), pages 1635–1642. MIT Press, 2003.

N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compres-
sion. Journal of Artificial Intelligence Research, 23:1–40, 2005.

N. Roy, J. Pineau, and S. Thrun. Spoken dialog management using probabilistic reasoning. In
Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, pages
93–100, Hong Kong, 2000.

Matt Rudary, Satinder Singh, and David Wingate. Predictive linear-gaussian models of stochastic
dynamical systems. In Proceedings of Uncertainty in Artificial Intelligence, pages 501–508,
2005.

2366

POINT-BASED VALUE ITERATION FOR CONTINUOUS POMDPS

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1080–1087,
1995.

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proceedings of Uncer-
tainty in Artificial Intelligence, pages 520–527, Banff, Alberta, 2004.

E. J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis, Stanford
University, 1971.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for pomdps. Journal
of Artificial Intelligence Research, 24:195–220, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

G. Theocharous and S. Mahadevan. Approximate planning with hierarchical partially observable
Markov decision processes for robot navigation. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 1347–1352, 2002.

S. Thrun. Monte Carlo POMDPs. In Advances in Neural Information Processing Systems 12 (NIPS-
1999), pages 1064–1070. MIT Press, 2000.

N. Vlassis, B. Terwijn, and B.J.A. Kröse. Auxiliary particle filter robot localization from high-
dimensional sensor observations. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 7–12, 2002.

Steven D. Whitehead and Long-Ji Lin. Reinforcement learning of non-Markov decision processes.
Artificial Intelligence, 73(1-2):271–306, 1995.

J. Williams, P. Poupart, and S. Young. Using factored Markov decision processes with continuous
observations for dialogue management. Technical Report CUED/F-INFEG/TR.520, Cambridge
University, Engineering Department, 2005.

B. Zhang, Q. Cai, J. Mao, and B. Guo. Planning and acting under uncertainty: a new model for
spoken dialogue systems. In Proceedings of Uncertainty in Artificial Intelligence, pages 572–579,
Seattle, WA, 2001.

N. L. Zhang and W. Zhang. Speeding up the convergence of value iteration in partially observable
Markov decision processes. Journal of Artificial Intelligence Research, 14:29–51, 2001.

2367

