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Abstract— This paper presents a numerical method able to of Robotics, CAD/CAM and Molecular Conformation can be
is_olgte a_lll configurations_ that an arbitrary loop linkage can adop_t, found for example in [9], [10], and [11], respectively. Baha
within given ranges for its degrees of freedom. The procedw is speaking, the proposed methods fall into three categats,

general, in the sense that it can be applied to single or multiple di hether th lgebrai t i fi
intermingled loops of arbitrary topology. It is also complete, pencing on whetner they use algebraic geometry, contmuia

meaning that all possible solutions get accurately bounded OF interval-based techniques.
irrespectively of whether the analyzed linkage is rigid or nobile. The idea of algebraic-geometric methods—including those

The problem is tackled by formulating a system of linear, pased on resultants and Grobner bases—is to use variable
parabolic, and hyperbolic equations, which is here solved Ya  gjimination to reduce the initial system to a univariateypol

new strategy exploiting its structure. The method is concetpally - . . .
simple, geometric in nature, and easy to implement, yet it nomial. The roots of this polynomial, once backsubstituted

provides solutions at the desired accuracy in short compution  into other equations, yield all solutions of the originakssy
times. tem. These methods have proved quite efficient in fairly

non-trivial problems such as the inverse kinematics of gen-
eral 6R manipulators [12], [1], distance computations af-tw

A linkageis a set of rigid links connected through revolutelimensional objects [13], or the generation of configuratio
or slider joints. We are interested iloop linkages i.e., space obstacles [14]. Recent progress on the theory ofespars
those formed by one or more kinematic loops (closed-chaiesultants, moreover, qualifies them as a very promisingfset
sequences of pairwise articulated links). This paper ptssetechniques [15].

a new method for the position analysis of such linkages: The idea of continuation methods, on the other hand, is to
the computation of the configurations they can adopt, withtregin with an initial system whose solutions are known, and
specified ranges for their degrees of freedoncokfiguration then transform it gradually to the system whose solutioes ar
is here understood in a kinematic sense: as an assignmengaight, while tracking all solution paths along the way. In
positions and orientations to all links that respects tloswle its original form, this technique was known as tBeotstrap

constraints imposed by all loops, with no regard to possibMethod as developed by Roth and Freudenstein [16], and
link-link interferences. subsequent work by Garcia and Li [17], Garcia and Zang-

Several problems in Robotics translate into the above anewall [18], Morgan [19], and Li et al. [20], among others, led
require an efficient module able to solve it. The problemearis the procedure into its current highly-developed state.[Zlh]s
for instance, when solving the inverse/forward displacetmemethod has been responsible for the first solutions of many
analysis of serial/parallel manipulators [1], [2], wheamhing long-standing problems in Kinematics. For example, using
the coordinated manipulation of an object or the motion oftaem, Tsai and Morgan first showed that the inverse kinematic
reconfigurable robot [3], or, as recently shown, in simwdtaus of the general 6R manipulator has sixteen solutions [22],
localization and map-building [4]. The problem also appeaRaghavan showed that the direct kinematics of the general
in other domains, such as in the simulation and control 8tewart-Gough platform can have forty solutions [23], and
complex deployable structures [5], the theoretical stufly ®ampler et al. solved nine-point path synthesis problems fo
rigidity [6], or the conformational analysis of biomoleeslI[7]. four-bar linkages [24].

Rather than providing ad-hoc solutions for specific prob- While methods in the two previous categories are in theory
lems, this paper's emphasis will be on developing a generabmplete(they are able to fin@ll solutions if these exist in a
complete procedure for arbitrary linkages, independeafly finite number) andgeneral (they can tackleany system of
their loop topology and the structure of their configuratiomultivariate polynomial equations), they have a number of
space. Although the problem can be approached by geomelinaitations in practice. For example, algebraic-geoneatreth-
constructive techniques [8], only the algebraic approacheds usually explode in complexity, may introduce extrarseou
have proved general enough to this end. They consist rimots and can only be applied to relatively simple systems
characterizing the valid configurations of the analyzekdge of equations. Beyond this, they may require the solution
as a system of algebraic equations that is then solved usofga high-degree polynomial, which may be a numerically
standard techniques. Reviews of such techniques in thextonill-conditioned step in some cases. Also, as noted in [25],
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continuation techniques must be implemented in exactrrakio equations. A new algorithm to solve this system is next
arithmetic to avoid numerical instabilities, leading tgpiantant presented in Section Ill, based on using polytope bounds of
memory requirements because large systems of complexdinithe solution space. Then, Section IV provides the algofghm
value problems have to be solved. Moreover, neither of thegsgeudocode, and Section V includes several experiments il-
approaches is able to isolate the whole solution set, if iisstrating its performance. The paper concludes in Sedtion
dimension is one or higher. summarizing the main contributions and highlighting some
Interval-based methods are also complete and general, gmuints deserving further attention.
although they may eventually be slower, they present a num-
ber of advantages that make them a competitive alternative: - KINEMATIC LOOPS ASVECTOREQUATIONS
(1) Contrary to elimination methods, the equations areléack This section formulates the kinematic equations of a loop
in their input form, thus avoiding the need of intuition-ded linkage. For ease of explanation, we will assume for the
symbolic reductions, (2) they do not need to work on th@oment that the linkage contains a single loop wititinks,
complex domain, (3) they are numerically stable, (4) thegnd that all joints are revolute pairs. Figure 1-(a) depiste
also work if the dimension of the solution set is greater thach loop, withn = 6 links. It arises, for example, when
zero, (5) they deal with variable bounds in a natural wagolving the inverse kinematics of a 6R robot arm.
and (6) they are simple to implement. These are mainly theTo start with, let us number the links and joints from
reasons that motivated the quest for the algorithm we ptesémn, and define two unit vectors for each link: the veatipr
here, which belongs to this third class. directed along thé-th joint, and the vectos; directed along
Two main classes of interval-based methods have belye normal line through joint axeésand: + 1. The vectors are
explored in the Robotics literature: those based on thevatte oriented so that they follow a unique circulating sense @n th
version of the Newton method (also known as the Hans&®op, as shown in Figure 1-(b). This setting correspond&¢o t
algorithm) and those based on polytope approximationsef thlassic model by Denavit-Hartenberg, which views the losp a
solution set. To our knowledge, the first applications of than alternating sequence of joints and common normals [31],
Hansen algorithm in this field were due to Rao et al. [26] anthere the shape of each link is defined by three constant
Didrit et al. [27], who respectively applied the intervalWwen parameters:
method to the inverse kinematics of 6R manipulators and - the link lengtha;, measuring the distance between joint

the forward analysis of Stewart-Gough platforms. Rathanth axesi ands + 1 along their common normal,
plunging into specific mechanisms, Castellet and Thomas the - the link offsetd;, measuring the distance between con-
tackled general single-loop inverse kinematics proble?&, [ secutive normals along joirit and

showing that the Hansen algorithm can be sped up if it is - the link twist o;;, measuring the angle betwedn and
used in conjunction with other necessary conditions drawn  d,,;, assuming that the positive sense is givenaby

from the problem itself. Later on, successful applicatiofis A fourth variable parameter is further defined: the angjle
the interval Newton method were also reported by Merlet E‘etweemi anda;_ 1, which fixes the orientation of linkwith
singularity analysis and design of parallel manipulat@8][ respect to its predecessor lidk- 1. Now, instead of setting
[30]. Polytope-based techniques, on the other hand, wgfg standard loop closure condition that equates the ptaduc
developed in the early nineties by Sherbrooke and Patki&lajink.to-link transformations to the identity, we will emp} the
in the context of constraint-based CAD [25]. These expltét t fo|jowing set of equivalent conditions. Their simpler sture

convex-hull and subdivision properties of Bernstein poly+ || pe exploited by the root finding procedure given below.
als, which avoid the computation of derivatives while main- rjrst if (as said)

taining the quadratic convergence of the Hansen algorithm.
The method we present here can be seen as part of the aill =1, [[di|| =1, i=1,...,n, (1)
latter family. Like [25], we iteratively approximate thelgtion .
. . . then it m
space by a convex polytope, but this polytope is here derlvteae t must be .
by simple, linear approximations of trivial functions, lat
' . . ' . di d,‘ i A — 0, 2
than by resorting to the theory of Bernstein polynomials. Z taia 2)
The result is a simpler, easier-to-implement algorithnie b
compute complete approximations of the configuration sp
in shorter times. These approximations are given in the fafrm
sm.aII boxes conta}ining all points of thi; space, _and theytxaan d; xdipq =sin(og)-a;, i=1,...,n, 3)
refined to the desired accuracy. A precise map is then olataine .
where isolated boxes correspond to rigid configuratiorts,afe With dy.1 = d;. Finally, the fact thaid, forms an angle;
connected boxes correspond to assembly modes with intet8h d;+1 implies
degrees of freedom, and bifurcation points get easily detec d .
. . . Ldt = i)s :1,..., . 4
The rest of the paper is organized as follows. Section I +1 = cos(ai), " @)
shows how the position analysis of a loop linkage can Ber generic loops, Equations (1)-(4) express all geometric
formulated as a system of linear, parabolic and hyperbolionstraints on the loop and, hence, their solutions provide

i=1

asince the loop must be closed. Also, sirgés simultaneously
orthogonal tod; andd;;1, we must have
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Fig. 1. (a) A 6-link loop. (b) The vectors involved in its edioms, wherea) = a;a; andd) = d;d;. Although for a better understanding the loop lines
here follow the edges of a regular prism, all orthogonaléationships among the depicted vectors will hold for a genleop.

all configurations it can adopt. It is worth remarking heré& contains slider joints. In the former case, one can craate
that, although they are non-redundant, some of them can lipartite graphG whose left and right vertex sets correspond to
simplified or eliminated, taking into account that one of ththe existing links and joints, respectively, and whose eshge
links is fixed to the ground. In any case, we observe that alicords all link-joint incidence pairs. It is well-knownahby
equations are polynomial and, 4f; andz; refer to any two gathering the loop equations for a cycle basigiofone ends

of their variables, the involved monomials can only be of thep with a set of independent equations describing the valid
form cz?, cx;x;, or cx;, wherec refers to a constant value.postures of the linkage. This changes the size of System (5)
In other words, they can only be quadratic, bilinear, ordine but not its structure. Moreover, if slider joints are preasen
terms. Let us define the changes of varialjes- 27 for each only slight modifications must be added to the formulation.
quadratic term, andl, = x;x; for each bilinear term. Clearly, If joint 4 is a slider, thery; is fixed andd; varies, as linki

by substituting they;'s andb,,’s into Equations (1)-(4) above, can only translate with respect to link— 1. The two facts

the resulting expressions become linear and we obtain a nean be readily enforced using similar dot- and cross-prbduc
system of equations of the form equations and, again, these will only involve linear, l@in
and quadratic terms.

L(v)=0
P(v)=0 (5)
H(v) = 0 Ill. SEARCH STRATEGY
where The algorithm starts with the initial bo®, and isolates
-V o= (T1ye ey Ty Qs+ Quy, b1y, by,) IS @ tuple the valid configurations it contains by iterating over twaeop
including the original and newly defined variables, ~ ations,box shrinkingand box splitting Using box shrinking,
- L(v) = (h(v),...,1n,(v)) is a block of linear func- portions of3 containing no solution are eliminated by narrow-
tions, ing some of its defining intervals. This process is repeatei u
- P(v) = (p1(v),...,pn,(v)) is a block of parabolic either (1) the box is reduced to an empty set, in which case
functions of the formy; — =7, and it contains no solution, or (2) the box is “sufficiently” srhal
- H(v) = (h1(v),...,hn,(v)) is a block of hyperbolic in which case it is considered a solution box, or (3) the box
functions of the formb, — x;x;. cannot be “significantly” reduced, in which case it is biselct
Hereafter, ther;’s will be refereed to agrimary variables, iNto two sub-boxes via box splitting—which simply divides
and theg;'s andb;’s asdummyones. its largest interval at its midpoint.

Note that since the; andd; are unit vectors, the maximum Provided box shrinking is efficient enough, the third case
ranges for ther;’s are [-1,1], for the ¢;’s are [0,1], and above is symptom that the box contains two or more solution
for the b;'s are[—1,1]. Then, thesearch spaceé8 where the points, with some of them lying close to its walls. Thus, box
solutions of System (5) must be sought for is the Cartesi&glitting allows separating such solutions. To convergalto
product of such ranges. In the text below, any subset of tiiglutions, the whole process is then repeated for the newly
space defined by the Cartesian product of a number of intervelieated sub-boxes, and for the sub-boxes recursivelyetteat
will be referred to as &ox and we will write[x!, 2] to denote thereafter, until one ends up with a collection of solutioxés
the interval of a box along dimensian. whose sizes are under a specified size threshold,

Finally, we mention that one can arrive at a similar system Before further detaling this process, we will first see how to
if the linkage contains more than one kinematic loop, or #liminate portions of a box that cannot contain any solution
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Fig. 2. (a) ShrinkingB. to fit the linear varietyL(v) = 0. (b) Half-planes approximating the part of the parabolédmé.. (c) Smallest box enclosing the
intersection ofL(v) = 0 with the half-planes in (b).

Detailed pseudo-code of the whole strategy will be giveer]at P,
in Section 1V below.

When reducing any bo®8. C B note first that, since any
solution inside5. must be in the linear variet(v) = 0,
we may shrink. to the smallest possible box bounding the Z; P
portion of this variety inside5.. The limits of this new box
along, say, dimensiom; can be easily found by solving the
two linear programs

Fig. 3. The tetrahedron defined by th¥'s is a convex bound of this surface
LP1: Minimize z;, subject to:L(v) = 0,v € B, inside B¢..

LP2: Maximize z;, subject to:L(v) =0,v € B,

giving, respectively, the new lower and upper boundssfor that this is a doubly-ruled surface, it is easy to see that the
Figure 2-(a) illustrates the process on theg; plane, in the tetrahedron defined bi,, P, Ps and P, completely contains

case thal.(v) = 0 is a straight line. Note however th&t can the portion of the surface insidg.. Hence, to prune portions

be further reduced, as the parabolic and hyperbolic equati®f @ box that do not satisfy the hyperbolic equations, one can
must also be satisfied. simply introduce the half-planes defining this tetrahedrda

Regarding the parabolic equations,= =2, we incorporate |-P1 andLP2 above. _ _
them into the previous linear programs as follows. The eacti  NOt€ also that, altogether, the linear constraints for the
of the parabola lying inside the rectangié, 2] x [q!, ¢*] is parabqllc and hypgrbollc equations define a convex polytope
bounded to lie in the shaded area between linemd ¢ in Pounding the solution space of System (5). Moreover, those
Figure 2-(b). Lines is defined by the intersection point§; linear constra_ints define linear approximations to thelpl_ai'ra_
and P,, of the parabola with the box. Line,is the tangent @nd hyperbolic equations. The error of these approximation
to the parabola parallel ta The two inequalities defining the 'S quadratic with the size ofi.. This is the fundamental
area between these lines can be addedRtb andLP2, and Féason that explains the efficient convergence exhibitethéy
using them in conjunction witiL(v) = 0 usually produces &/gorithm presented here.
a much larger reduction df., as illustrated in Figure 2-(c).
Also half-planes got from the parabola tangents at poits
and@; can be added to the linear programs to further constrainAlgorithm 1 gives the main loop of the process. It receives
the feasible solution set. as input the boxs, the listsL, P, and H containing the

Regarding the hyperbolic equations, we approximate theaquationsL(v) = 0, P(v) = 0, and H(v) = 0, and two
as follows. If we consider one of these equations, &ay= threshold parameters and p, and it returns as output a list
x;x;, and we know that its variables can take values inside thé solution boxes. The functions &LUME(B) and Szg(B)
rangesz; € [a,b], z; € [c,d], andby, € [e, f], all we need is compute the volume and the length of the longest sid#,of
a collection of half-planes tightly delimiting the set ofipts respectively.
that satisfyb, = x;x; inside the box3.. = [a, b] x [¢, d] X [e, f]. Initially, two lists are set up in lines 1 and 2: an empty st
Consider the vertices of the rectangled] x [c, d] and lift them of “solution boxes”, and a lisP® of “boxes to be processed”
vertically to the pointsP;, P,, P3 and P, on the hyperbolic containing B. A while loop is then executed untiP gets
paraboloidb;, = z;z;, as shown in Figure 3. Using the factempty (lines 3-18), by iterating the following steps. Line 4

IV. PSEUDOCODE



SOLVE-LINKAGE(B,L,P,H, 0, p) The SHRINK-Box procedure is sketched in Algorithm 2. It

1: S0 takes as input the bo& to shrink, and the equation blocks

2. P—{B} P andH. The procedure starts by gathering into a flisall

3: while P # () do linear constraints irC (line 1), all half planes approximating

4: B, EXTRACT(P) the parabolic equations iR (lines 2-4) and all half spaces

5. repeat approximating the hyperbolic equationskh(lines 5-7). Then,

6 Vp < VOLUME(B,) the procedure uses these constraints to reduce every donens

7 SHRINK-BOX(B,, L, P, H) of the box, solving the linear programs in lines 9 to 12, which
8 V. «— VOLUME(B,) possibly give tighter bounds for the corresponding intistva

9: until Is-VoID(B,) or SIzE(B,.) < o or = £ > p Observe that the linear programs need only be solved for the
10: if not Is-VoID(B,.) then primary variables«,, ..., z,,) and not for the dummy ones.
11: if SiZzE(B.) < o then This largely reduces the cost of the process since the number
12: S «— SU{B.} of primary variables is small with respect to the total numbe
13 else of variables in the problem.

14: SPLIT-BOX(B,, B1, B2) If System (5) has a finite humber of isolated solutions,
15: P — PU{By,By} the previous algorithm returns a collection of small boxes
16: end if containing them all, with each solution lying in one, andyonl
17.  end if one box. If, on the contrary, the solution space is an algebra
18: end while variety of dimension one or higher, the returned boxes will
19: return S form a discrete envelope of the variety. The accuracy of the

Algorithm 1. The top-level search scheme. output can be adjusted at will by using theparameter, which

fixes an upper bound for the width of the widest interval on

SHRINK-Box(B.L. P, H) all returned boxes.

1. T—L V. EXPERIMENTS

2: for all equationsy; = z? in P do

3 T «— T U{ The secant and tangent lines boundi
feasible area of the equation for the ranges;ofz; }

4: end for

5: for all equationsh, = x;x; in H do

6: T < T U{ Four planes bounding the feasible arez
the equation for the ranges of, x;, =, }

7: end for

8: for eachi € {1,...,v;} do

9: !« min. z; subject to all egs. ifT andv € B

We illustrate the performance of the algorithm in the three
INtbst cases shown in Figure 4. The one on the left was used
by Manocha and Canny in [1] to test a general method for
the inverse kinematics of 6R manipulators. We use it to yerif
the correctness of the presented system. Despite its affigie
t Hfranocha and Canny’s method is not able to deal with solution

sets containing infinite points. To show the applicabilify o
our approach even to this case, we employ the example
in Figure 4-(b), a special 6R loop with a one-dimensional
- i configuration space. Another shortcoming of many position
10: z}' < max.z; subject to all egs. ifT" andv € B analysis methods is their inability to deal with multi-loop
11: end for linkages. The example of Figure 4-(c) will be used to show

Algorithm 2: The SHRINK-BOX procedure. our method’s performance in such cases. This linkage arises
the bicyclohexane molecule and it is formed by two 6R loops
sharing two links and a common joint. With this example we

extracts one box fromP. Lines 5-9 repeatedly reduce thisalso emphasize the applications of the developed techmigue
box as much as possible, via thellEBNK-Box function, until fields different from robotics. All tests are performed with
either the box is an empty setstMoID(B,) is true), or it implementation in C, using thglpk simplex library [32], and
cannot be significantly reduced’{/V,, > p), or it becomes executed on a Pentium Xeon at 3 Ghz. Table | gives Denavit-
small enough (&E(B) < o). In this last case, the box is Hartenberg parameters for the three examples. They follew t
considered a solution for the problem If a box is neither @onventions in Section II, with all angles given in radians.
solution nor it is empty, lines 14 and 15 split it into two sub- As shown in [1], the 6R loop of the first example has 16
boxes and add them tB for further processing (line 15).  solutions, the maximum number of configurations that such
Notice that this algorithm implicitly explores a binary ¢re a linkage can adopt [22]. The problem can be formulated
of boxes, the internal nodes being boxes that have beerasplias described in Section Il with 28 linear, 21 parabolic and
some time, and its leaves being either solution or empty10x23 hyperbolic equations, involving 23 primary variablesl an
Solution boxes are collected in listand returned as output in44 dummies ones. By setting the parameters- 10~ and
line 19. Clearly, the tree may be explored in either dep#t-firo = 0.95, we isolate the 16 solutions in Figure 5 in about 30
or breadth-first order, depending on whether line 15 ingbgs seconds. In this case, the system processes 53 boxes, 16 of
boxes at the head or tail d?, getting identical output in any which contain a solution, 11 are found to be empty, and 26 are
case. split for recursive processing. The number of empty boxes is
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Fig. 4. (a) A 6R rigid loop solved in [1] that has 16 isolatedusons, (b) a 6R mobile loop with a one-dimensional confedion space, and (c) the
bicyclohexane molecule, a mobile linkage with two intergiéd 6R loops.

Parameter Rigid 6R  Mobile 6R  Bicyclohexane

al 0.3 0.5 0

a2 1 0 0 —
a3 0 0 0 A
as 15 0.5 0

as 0 0 0

ae 1.1353 0 0

dq 0.0106 1 1.526

da 0 1 1.526

ds3 0.2 1 1.526

dy 0 1 1.526

ds 0 1 1.526

ds 0.1049 1 1.526

o1 /2 w/3 1.23

asg 0.0175 w/3 1.23

a3 /2 w/3 1.23

(o7 0.0175 w/3 1.23

as /2 w/3 1.23
g 1.4716 /3 1.23 E :
TABLE |

DENAVIT-HARTENBERG PARAMETERS OF THE THREE TEST CASES

small, taking into account the total amount of processeabox
and solutions, indicating that the box-shrinking stratégy éﬂ
highly efficient. Note that, ideally, by iterating box-shking,

one should end up with a box with solutions lying on its walls

and, therefore, splitting a box at such point should always

separate portions of the search space containing solutions Fig. 5. The sixteen configurations of the 6R loop shown in Figt(a).
other words, the ideal algorithm should not generate empty

boxes.

Choosing the Denavit-Hartenberg parameters in the thigfersection is not empty). This graph can be analyzed using
column of Table I, the 6R loop becomes an overconstraingtindard graph techniques to obtain information about the
mechanism. While existing methods like [1] can not deal witctual structure of the configuration space. In the caseeof th
this degenerate case, the proposed procedure is immunéngpile 6R loop, we detect that the configuration space has 2
such situations and obtains a complete box approximationigplated solutions, and 2 bifurcation points interconaeddby
the whole configuration space, as shown in Figure 6. Tiedifferent paths (not only 4 as suggested by the projection i
problem has been formulated with 22 primary variables and #&ure 6).
dummy ones. Witlr = 0.1 andp = 0.95, we obtain the shown A model for the third example is given in Figure 7. It has
1797 boxes in about 20 seconds, after processing 3617 boxe®, loops and each one of them is a specialization of the one
12 of which were found to be empty. The boxes discretizing Figure 1 with the parameters given in the last column of
the configuration space define a graph where the nodes areTakle |. The two loops are mutually constrained by fixing the
boxes themselves and the edges are defined by the neighbogingles between vectord,, d;, anddg, d to 5 = 1.91. In
relation between boxes (two boxes are neighbors if thgirinciple, such a linkage should be rigid, but its symmstrie

/AP



Fig. 6. The one-dimensional configuration space of the 6Rileddop in
Figure 4, projected on three of the dimensions of the amlsipate.

b P d
d W\i&
Fig. 8. The configuration space of bicyclohexane projectethcee variables
1 of the ambient space. We can appreciate that it has two discoed one-
d ’ dimensional components and several isolated solutionse(in
4 4
d / . o . .
%@ d, The previous definition is valid for algorithms convergirg t
6 a single root, and adapting it to our case requires defining

d(x;,x*) and the scope of an iteration. To this end, note that
the diagonal of a box is an upper bound of the distance from
any point inside that box, to any root in it. Thus, assumirgg th

allow a self-motion with one degree of freedom. Actuallysth the search tree explored by Algorithm 1 is traversed in lfead

motion has two disconnected paths as can be appreciateel infﬁ‘?t order, it seems reasonable 10 (_jgfm)(eq,x*) as the .
projection shown in Figure 8. Interestingly, it additidyahas Ionggst d|ago_nal among all boxes wa_mng to be procgssc_ed n
fifteen isolated solutions out of those paths, correspanthn the_IlstP. An iteration will _then.be defined as the application
rigid assembly modes of the molecule. These are shown as Pé nes 4'_14 to all baxes in th;&th !evel of such tree. -
boxes in Figure 8. The size of these boxes has been magniEFz easuring the performance in this way, we have empirically

Fig. 7. Vector model of bicyclohexane’s linkage.

to make them visible. Note that some of the isolated solstio und that the algorithm converges quadratically to thesoo

overlap in the particular projection shown in the figure.rgsi ' (Nese are a finite number of isolated points, or linearly to
o — 0.1 andp = 0.95, the solution manifold gets discretizedthe€m. if they form a one-dimensional algebraic variety.Ha t

into 258 boxes, after processing 553 boxes in 150 secon[ﬁ)sr.rm:"r case, th_e convergence o_rder is the same as that of fast
Only 19 boxes were found empty along the way. single-root-finding procedures, like e.g. the Newto_n—l%:p‘n
On the three test cases, the presented method is more tWﬁhOd' Although the performance seems worse in the latter

one order of magnitude faster than general polytope methods : We ShOUId. mention that a linear rate_ is the besF one
like [25], whose implementation is notably more intricate. could expect. Think for example of the behavior of an optimal

Finally, a note is in order regarding the method’s conve?—h”nk a_md split _algonthm dlscretlzw_\g aline (the S.“E'@ one
. .. dimensional variety one could consider). At each itergtamy
gence rate. The asymptotic performance of a root findin . : L
) . N X B. adjusted to the line would be split into two half-boxes,
algorithm is normally evaluated by examining its convergen

. . . o and then, ideally, these would be shrunk to fit the line again.
order. An algorithm is said to exhibit a convergence of ord(?\llrOte that, in such perfect behaviel(x;, x*) would decrease
r if there exists a constartt € (0,1), such that ’ P i, X

by half at each iteration, yielding the linear convergenmeo
d(xip1,x*) < k-d(x;,x*)", we observe.

wherex; andx,,; are estimations of the exact rost at VI. CONCLUSIONS

iterations: andi + 1, andd(x;, x*) andd(x;4+1,x*) indicate ~ We have presented a complete method able to give box
their distance tax*. The algorithm is said to exhibit linearapproximations of the configuration space of arbitrary loop
or quadratic convergence when= 1 or » = 2, respectively. linkages with revolute and slider joints. The methodémneral



in the sense that it can manage any number of links, jointed[t0] C. H. Hoffmann and B. Yuan, “On spatial constraints &gy ap-
form kinematic loops of arbitrary topology. It is alsomplete
in the sense that every solution point will be contained iy,
one of the returned boxes. In all experiments done so far the
algorithm was als@orrect, in the sense that all output boxeg2l
contained at least one solution point. Although the lattepp
erty still lacks a formal proof, returning boxes with no d@n

seems rather improbable due to the fact that the lineasizati
of parabolic and hyperbolic equations introduce errorsligma

(23]

[14]

than the size of the considered boxes. Moreover, the fatt tha
all equations are simultaneously taken into account dusmg  [19]
reduction (whether directly or in a linearized form) patia
the so-calledcluster effecta known problem of bisection- [16]
based techniques of this kind [33], whereby each solution is
obtained as a compact cluster of boxes instead of a single b
containing it. In the experiments performed so far, we never
encountered such spurious output.
A main contribution with respect to previous work is thélg]
method’s ability to deal with configuration spaces of geherpg]
structure. This is accomplished by maintaining a collettio
of boxes that form a tight envelope of such spaces, whi&o]
can be refined to the desired accuracy in a multi-resolutive
fashion. Empirical tests show that the method is quaddtical?1]
convergent to all roots if these are isolated points, arehlily
convergent to them if these form one-dimensional connectgd]
components. Although the method’s performance is notable
for a general technique of this kind, an extensive study lshou
be endeavored to determine how it scales with the complexig]
of the tackled linkages, to compare it with other approaches
and to formally proof the algorithm’s properties.
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