
Multi-loop Position Analysis
via Iterated Linear Programming

Josep M. Porta, Lluı́s Ros, and Federico Thomas
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Abstract— This paper presents a numerical method able to
isolate all configurations that an arbitrary loop linkage can adopt,
within given ranges for its degrees of freedom. The procedure is
general, in the sense that it can be applied to single or multiple
intermingled loops of arbitrary topology. It is also complete,
meaning that all possible solutions get accurately bounded,
irrespectively of whether the analyzed linkage is rigid or mobile.
The problem is tackled by formulating a system of linear,
parabolic, and hyperbolic equations, which is here solved by a
new strategy exploiting its structure. The method is conceptually
simple, geometric in nature, and easy to implement, yet it
provides solutions at the desired accuracy in short computation
times.

I. I NTRODUCTION

A linkage is a set of rigid links connected through revolute
or slider joints. We are interested inloop linkages, i.e.,
those formed by one or more kinematic loops (closed-chain
sequences of pairwise articulated links). This paper presents
a new method for the position analysis of such linkages:
the computation of the configurations they can adopt, within
specified ranges for their degrees of freedom. Aconfiguration
is here understood in a kinematic sense: as an assignment of
positions and orientations to all links that respects the closure
constraints imposed by all loops, with no regard to possible
link-link interferences.

Several problems in Robotics translate into the above one, or
require an efficient module able to solve it. The problem arises,
for instance, when solving the inverse/forward displacement
analysis of serial/parallel manipulators [1], [2], when planning
the coordinated manipulation of an object or the motion of a
reconfigurable robot [3], or, as recently shown, in simultaneous
localization and map-building [4]. The problem also appears
in other domains, such as in the simulation and control of
complex deployable structures [5], the theoretical study of
rigidity [6], or the conformational analysis of biomolecules [7].

Rather than providing ad-hoc solutions for specific prob-
lems, this paper’s emphasis will be on developing a general,
complete procedure for arbitrary linkages, independentlyof
their loop topology and the structure of their configuration
space. Although the problem can be approached by geometric
constructive techniques [8], only the algebraic approaches
have proved general enough to this end. They consist in
characterizing the valid configurations of the analyzed linkage
as a system of algebraic equations that is then solved using
standard techniques. Reviews of such techniques in the context

of Robotics, CAD/CAM and Molecular Conformation can be
found for example in [9], [10], and [11], respectively. Broadly
speaking, the proposed methods fall into three categories,de-
pending on whether they use algebraic geometry, continuation
or interval-based techniques.

The idea of algebraic-geometric methods—including those
based on resultants and Gröbner bases—is to use variable
elimination to reduce the initial system to a univariate poly-
nomial. The roots of this polynomial, once backsubstituted
into other equations, yield all solutions of the original sys-
tem. These methods have proved quite efficient in fairly
non-trivial problems such as the inverse kinematics of gen-
eral 6R manipulators [12], [1], distance computations of two-
dimensional objects [13], or the generation of configuration-
space obstacles [14]. Recent progress on the theory of sparse
resultants, moreover, qualifies them as a very promising setof
techniques [15].

The idea of continuation methods, on the other hand, is to
begin with an initial system whose solutions are known, and
then transform it gradually to the system whose solutions are
sought, while tracking all solution paths along the way. In
its original form, this technique was known as theBootstrap
Method, as developed by Roth and Freudenstein [16], and
subsequent work by Garcia and Li [17], Garcia and Zang-
will [18], Morgan [19], and Li et al. [20], among others, led
the procedure into its current highly-developed state [21]. This
method has been responsible for the first solutions of many
long-standing problems in Kinematics. For example, using
them, Tsai and Morgan first showed that the inverse kinematics
of the general 6R manipulator has sixteen solutions [22],
Raghavan showed that the direct kinematics of the general
Stewart-Gough platform can have forty solutions [23], and
Wampler et al. solved nine-point path synthesis problems for
four-bar linkages [24].

While methods in the two previous categories are in theory
complete(they are able to findall solutions if these exist in a
finite number) andgeneral (they can tackleany system of
multivariate polynomial equations), they have a number of
limitations in practice. For example, algebraic-geometric meth-
ods usually explode in complexity, may introduce extraneous
roots and can only be applied to relatively simple systems
of equations. Beyond this, they may require the solution
of a high-degree polynomial, which may be a numerically
ill-conditioned step in some cases. Also, as noted in [25],



continuation techniques must be implemented in exact rational
arithmetic to avoid numerical instabilities, leading to important
memory requirements because large systems of complex initial
value problems have to be solved. Moreover, neither of these
approaches is able to isolate the whole solution set, if its
dimension is one or higher.

Interval-based methods are also complete and general, and,
although they may eventually be slower, they present a num-
ber of advantages that make them a competitive alternative:
(1) Contrary to elimination methods, the equations are tackled
in their input form, thus avoiding the need of intuition-guided
symbolic reductions, (2) they do not need to work on the
complex domain, (3) they are numerically stable, (4) they
also work if the dimension of the solution set is greater than
zero, (5) they deal with variable bounds in a natural way,
and (6) they are simple to implement. These are mainly the
reasons that motivated the quest for the algorithm we present
here, which belongs to this third class.

Two main classes of interval-based methods have been
explored in the Robotics literature: those based on the interval
version of the Newton method (also known as the Hansen
algorithm) and those based on polytope approximations of the
solution set. To our knowledge, the first applications of the
Hansen algorithm in this field were due to Rao et al. [26] and
Didrit et al. [27], who respectively applied the interval Newton
method to the inverse kinematics of 6R manipulators and
the forward analysis of Stewart-Gough platforms. Rather than
plunging into specific mechanisms, Castellet and Thomas then
tackled general single-loop inverse kinematics problems [28],
showing that the Hansen algorithm can be sped up if it is
used in conjunction with other necessary conditions drawn
from the problem itself. Later on, successful applicationsof
the interval Newton method were also reported by Merlet in
singularity analysis and design of parallel manipulators [29],
[30]. Polytope-based techniques, on the other hand, were
developed in the early nineties by Sherbrooke and Patrikalakis
in the context of constraint-based CAD [25]. These exploit the
convex-hull and subdivision properties of Bernstein polynomi-
als, which avoid the computation of derivatives while main-
taining the quadratic convergence of the Hansen algorithm.

The method we present here can be seen as part of the
latter family. Like [25], we iteratively approximate the solution
space by a convex polytope, but this polytope is here derived
by simple, linear approximations of trivial functions, rather
than by resorting to the theory of Bernstein polynomials.
The result is a simpler, easier-to-implement algorithm, able to
compute complete approximations of the configuration space
in shorter times. These approximations are given in the formof
small boxes containing all points of this space, and they canbe
refined to the desired accuracy. A precise map is then obtained,
where isolated boxes correspond to rigid configurations, sets of
connected boxes correspond to assembly modes with internal
degrees of freedom, and bifurcation points get easily detected.

The rest of the paper is organized as follows. Section II
shows how the position analysis of a loop linkage can be
formulated as a system of linear, parabolic and hyperbolic

equations. A new algorithm to solve this system is next
presented in Section III, based on using polytope bounds of
the solution space. Then, Section IV provides the algorithm’s
pseudocode, and Section V includes several experiments il-
lustrating its performance. The paper concludes in SectionVI
summarizing the main contributions and highlighting some
points deserving further attention.

II. K INEMATIC LOOPS ASVECTOREQUATIONS

This section formulates the kinematic equations of a loop
linkage. For ease of explanation, we will assume for the
moment that the linkage contains a single loop withn links,
and that all joints are revolute pairs. Figure 1-(a) depictsone
such loop, withn = 6 links. It arises, for example, when
solving the inverse kinematics of a 6R robot arm.

To start with, let us number the links and joints from1
to n, and define two unit vectors for each link: the vectordi,
directed along thei-th joint, and the vectorai directed along
the normal line through joint axesi andi+1. The vectors are
oriented so that they follow a unique circulating sense on the
loop, as shown in Figure 1-(b). This setting corresponds to the
classic model by Denavit-Hartenberg, which views the loop as
an alternating sequence of joints and common normals [31],
where the shape of each link is defined by three constant
parameters:

- the link lengthai, measuring the distance between joint
axesi and i + 1 along their common normal,

- the link offsetdi, measuring the distance between con-
secutive normals along jointi, and

- the link twist αi, measuring the angle betweendi and
di+1, assuming that the positive sense is given byai.

A fourth variable parameter is further defined: the angleθi

betweenai andai+1, which fixes the orientation of linki with
respect to its predecessor linki − 1. Now, instead of setting
the standard loop closure condition that equates the product of
link-to-link transformations to the identity, we will employ the
following set of equivalent conditions. Their simpler structure
will be exploited by the root finding procedure given below.

First, if (as said)

‖ai‖ = 1, ‖di‖ = 1, i = 1, . . . , n, (1)

then it must be
n

∑

i=1

di di + ai ai = 0, (2)

since the loop must be closed. Also, sinceai is simultaneously
orthogonal todi anddi+1, we must have

di × di+1 = sin(αi) · ai, i = 1, . . . , n, (3)

with dn+1 = d1. Finally, the fact thatdi forms an angleαi

with di+1 implies

di · di+1 = cos(αi), i = 1, . . . , n. (4)

For generic loops, Equations (1)-(4) express all geometric
constraints on the loop and, hence, their solutions provide
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Fig. 1. (a) A 6-link loop. (b) The vectors involved in its equations, wherea′

i = aiai andd
′

i = didi. Although for a better understanding the loop lines
here follow the edges of a regular prism, all orthogonality relationships among the depicted vectors will hold for a general loop.

all configurations it can adopt. It is worth remarking here
that, although they are non-redundant, some of them can be
simplified or eliminated, taking into account that one of the
links is fixed to the ground. In any case, we observe that all
equations are polynomial and, ifxi and xj refer to any two
of their variables, the involved monomials can only be of the
form cx2

i , cxixj , or cxi, wherec refers to a constant value.
In other words, they can only be quadratic, bilinear, or linear
terms. Let us define the changes of variablesqi = x2

i for each
quadratic term, andbk = xixj for each bilinear term. Clearly,
by substituting theqi’s andbk ’s into Equations (1)-(4) above,
the resulting expressions become linear and we obtain a new
system of equations of the form











L(v) = 0

P(v) = 0

H(v) = 0

(5)

where
- v = (x1, . . . , xvl

, q1, . . . , qvq
, b1, . . . , bvb

) is a tuple
including the original and newly defined variables,

- L(v) = (l1(v), . . . , lnl
(v)) is a block of linear func-

tions,
- P(v) = (p1(v), . . . , pnp

(v)) is a block of parabolic
functions of the formqi − x2

i , and
- H(v) = (h1(v), . . . , hnh

(v)) is a block of hyperbolic
functions of the formbk − xixj .

Hereafter, thexi’s will be refereed to asprimary variables,
and theqi’s andbi’s asdummyones.

Note that since theai anddi are unit vectors, the maximum
ranges for thexi’s are [−1, 1], for the qi’s are [0, 1], and
for the bi’s are [−1, 1]. Then, thesearch spaceB where the
solutions of System (5) must be sought for is the Cartesian
product of such ranges. In the text below, any subset of this
space defined by the Cartesian product of a number of intervals
will be referred to as abox, and we will write[xl

i, x
u
i ] to denote

the interval of a box along dimensionxi.
Finally, we mention that one can arrive at a similar system

if the linkage contains more than one kinematic loop, or if

it contains slider joints. In the former case, one can createa
bipartite graphG whose left and right vertex sets correspond to
the existing links and joints, respectively, and whose edgeset
records all link-joint incidence pairs. It is well-known that by
gathering the loop equations for a cycle basis ofG, one ends
up with a set of independent equations describing the valid
postures of the linkage. This changes the size of System (5)
but not its structure. Moreover, if slider joints are present,
only slight modifications must be added to the formulation.
If joint i is a slider, thenθi is fixed anddi varies, as linki
can only translate with respect to linki − 1. The two facts
can be readily enforced using similar dot- and cross-product
equations and, again, these will only involve linear, bilinear
and quadratic terms.

III. SEARCH STRATEGY

The algorithm starts with the initial boxB, and isolates
the valid configurations it contains by iterating over two oper-
ations,box shrinkingand box splitting. Using box shrinking,
portions ofB containing no solution are eliminated by narrow-
ing some of its defining intervals. This process is repeated until
either (1) the box is reduced to an empty set, in which case
it contains no solution, or (2) the box is “sufficiently” small,
in which case it is considered a solution box, or (3) the box
cannot be “significantly” reduced, in which case it is bisected
into two sub-boxes via box splitting—which simply divides
its largest interval at its midpoint.

Provided box shrinking is efficient enough, the third case
above is symptom that the box contains two or more solution
points, with some of them lying close to its walls. Thus, box
splitting allows separating such solutions. To converge toall
solutions, the whole process is then repeated for the newly
created sub-boxes, and for the sub-boxes recursively created
thereafter, until one ends up with a collection of solution boxes
whose sizes are under a specified size threshold,σ.

Before further detaling this process, we will first see how to
eliminate portions of a box that cannot contain any solution.
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Fig. 2. (a) ShrinkingBc to fit the linear varietyL(v) = 0. (b) Half-planes approximating the part of the parabola inside Bc. (c) Smallest box enclosing the
intersection ofL(v) = 0 with the half-planes in (b).

Detailed pseudo-code of the whole strategy will be given later,
in Section IV below.

When reducing any boxBc ⊆ B note first that, since any
solution insideBc must be in the linear varietyL(v) = 0,
we may shrinkBc to the smallest possible box bounding the
portion of this variety insideBc. The limits of this new box
along, say, dimensionxi can be easily found by solving the
two linear programs

LP1: Minimize xi, subject to:L(v) = 0,v ∈ Bc,

LP2: Maximize xi, subject to:L(v) = 0,v ∈ Bc,

giving, respectively, the new lower and upper bounds forxi.
Figure 2-(a) illustrates the process on thexi-qi plane, in the
case thatL(v) = 0 is a straight line. Note however thatBc can
be further reduced, as the parabolic and hyperbolic equations
must also be satisfied.

Regarding the parabolic equations,qi = x2
i , we incorporate

them into the previous linear programs as follows. The section
of the parabola lying inside the rectangle[xl

i, x
u
i ]× [ql

i, q
u
i ] is

bounded to lie in the shaded area between liness and t in
Figure 2-(b). Lines is defined by the intersection points,Qi

and Pi, of the parabola with the box. Line,t is the tangent
to the parabola parallel tos. The two inequalities defining the
area between these lines can be added toLP1 andLP2, and
using them in conjunction withL(v) = 0 usually produces
a much larger reduction ofBc, as illustrated in Figure 2-(c).
Also half-planes got from the parabola tangents at pointsPi

andQi can be added to the linear programs to further constrain
the feasible solution set.

Regarding the hyperbolic equations, we approximate them
as follows. If we consider one of these equations, saybk =
xixj , and we know that its variables can take values inside the
rangesxi ∈ [a, b], xj ∈ [c, d], andbk ∈ [e, f ], all we need is
a collection of half-planes tightly delimiting the set of points
that satisfybk = xixj inside the boxB′

c = [a, b]×[c, d]×[e, f ].
Consider the vertices of the rectangle[a, b]×[c, d] and lift them
vertically to the pointsP1, P2, P3 and P4 on the hyperbolic
paraboloidbk = xixj , as shown in Figure 3. Using the fact
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P3

P4
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xj

bi

Fig. 3. The tetrahedron defined by thePi’s is a convex bound of this surface
insideB′

c.

that this is a doubly-ruled surface, it is easy to see that the
tetrahedron defined byP1, P2, P3 andP4 completely contains
the portion of the surface insideB′

c. Hence, to prune portions
of a box that do not satisfy the hyperbolic equations, one can
simply introduce the half-planes defining this tetrahedroninto
LP1 andLP2 above.

Note also that, altogether, the linear constraints for the
parabolic and hyperbolic equations define a convex polytope
bounding the solution space of System (5). Moreover, those
linear constraints define linear approximations to the parabolic
and hyperbolic equations. The error of these approximations
is quadratic with the size ofBc. This is the fundamental
reason that explains the efficient convergence exhibited bythe
algorithm presented here.

IV. PSEUDOCODE

Algorithm 1 gives the main loop of the process. It receives
as input the boxB, the lists L, P, and H containing the
equationsL(v) = 0, P(v) = 0, and H(v) = 0, and two
threshold parametersσ and ρ, and it returns as output a list
of solution boxes. The functions VOLUME(B) and SIZE(B)
compute the volume and the length of the longest side ofB,
respectively.

Initially, two lists are set up in lines 1 and 2: an empty listS
of “solution boxes”, and a listP of “boxes to be processed”
containingB. A while loop is then executed untilP gets
empty (lines 3-18), by iterating the following steps. Line 4



SOLVE-L INKAGE(B,L,P,H, σ, ρ)

1: S ← ∅
2: P ← {B}
3: while P 6= ∅ do
4: Bc ← EXTRACT(P )
5: repeat
6: Vp ← VOLUME(Bc)
7: SHRINK-BOX(Bc,L,P,H)
8: Vc ← VOLUME(Bc)
9: until IS-VOID(Bc) or SIZE(Bc) ≤ σ or Vc

Vp
> ρ

10: if not IS-VOID(Bc) then
11: if SIZE(Bc) ≤ σ then
12: S ← S ∪ {Bc}
13: else
14: SPLIT-BOX(Bc,B1,B2)
15: P ← P ∪ {B1,B2}
16: end if
17: end if
18: end while
19: return S

Algorithm 1: The top-level search scheme.

SHRINK-BOX(B,L,P,H)

1: T← L

2: for all equationsqi = x2
i in P do

3: T ← T ∪ { The secant and tangent lines bounding
feasible area of the equation for the ranges ofqi, xi }

4: end for
5: for all equationsbk = xixj in H do
6: T ← T ∪ { Four planes bounding the feasible area of

the equation for the ranges ofbk, xi, xj }
7: end for
8: for eachi ∈ {1, . . . , vl} do
9: xl

i ← min. xi subject to all eqs. inT andv ∈ B
10: xu

i ← max.xi subject to all eqs. inT andv ∈ B
11: end for

Algorithm 2: The SHRINK-BOX procedure.

extracts one box fromP . Lines 5-9 repeatedly reduce this
box as much as possible, via the SHRINK-BOX function, until
either the box is an empty set (IS-VOID(Bc) is true), or it
cannot be significantly reduced (Vc/Vp > ρ), or it becomes
small enough (SIZE(B) ≤ σ). In this last case, the box is
considered a solution for the problem If a box is neither a
solution nor it is empty, lines 14 and 15 split it into two sub-
boxes and add them toP for further processing (line 15).

Notice that this algorithm implicitly explores a binary tree
of boxes, the internal nodes being boxes that have been splitat
some time, and its leaves being either solution or empty boxes.
Solution boxes are collected in listS and returned as output in
line 19. Clearly, the tree may be explored in either depth-first
or breadth-first order, depending on whether line 15 insertsthe
boxes at the head or tail ofP , getting identical output in any
case.

The SHRINK-BOX procedure is sketched in Algorithm 2. It
takes as input the boxB to shrink, and the equation blocksL,
P andH. The procedure starts by gathering into a listT all
linear constraints inL (line 1), all half planes approximating
the parabolic equations inP (lines 2-4) and all half spaces
approximating the hyperbolic equations inH (lines 5-7). Then,
the procedure uses these constraints to reduce every dimension
of the box, solving the linear programs in lines 9 to 12, which
possibly give tighter bounds for the corresponding intervals.
Observe that the linear programs need only be solved for the
primary variables (x1, . . . , xvl

) and not for the dummy ones.
This largely reduces the cost of the process since the number
of primary variables is small with respect to the total number
of variables in the problem.

If System (5) has a finite number of isolated solutions,
the previous algorithm returns a collection of small boxes
containing them all, with each solution lying in one, and only
one box. If, on the contrary, the solution space is an algebraic
variety of dimension one or higher, the returned boxes will
form a discrete envelope of the variety. The accuracy of the
output can be adjusted at will by using theσ parameter, which
fixes an upper bound for the width of the widest interval on
all returned boxes.

V. EXPERIMENTS

We illustrate the performance of the algorithm in the three
test cases shown in Figure 4. The one on the left was used
by Manocha and Canny in [1] to test a general method for
the inverse kinematics of 6R manipulators. We use it to verify
the correctness of the presented system. Despite its efficiency,
Manocha and Canny’s method is not able to deal with solution
sets containing infinite points. To show the applicability of
our approach even to this case, we employ the example
in Figure 4-(b), a special 6R loop with a one-dimensional
configuration space. Another shortcoming of many position
analysis methods is their inability to deal with multi-loop
linkages. The example of Figure 4-(c) will be used to show
our method’s performance in such cases. This linkage arisesin
the bicyclohexane molecule and it is formed by two 6R loops
sharing two links and a common joint. With this example we
also emphasize the applications of the developed techniqueto
fields different from robotics. All tests are performed withan
implementation in C, using theglpk simplex library [32], and
executed on a Pentium Xeon at 3 Ghz. Table I gives Denavit-
Hartenberg parameters for the three examples. They follow the
conventions in Section II, with all angles given in radians.

As shown in [1], the 6R loop of the first example has 16
solutions, the maximum number of configurations that such
a linkage can adopt [22]. The problem can be formulated
as described in Section II with 28 linear, 21 parabolic and
23 hyperbolic equations, involving 23 primary variables and
44 dummies ones. By setting the parametersσ = 10−4 and
ρ = 0.95, we isolate the 16 solutions in Figure 5 in about 30
seconds. In this case, the system processes 53 boxes, 16 of
which contain a solution, 11 are found to be empty, and 26 are
split for recursive processing. The number of empty boxes is
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Fig. 4. (a) A 6R rigid loop solved in [1] that has 16 isolated solutions, (b) a 6R mobile loop with a one-dimensional configuration space, and (c) the
bicyclohexane molecule, a mobile linkage with two intermingled 6R loops.

Parameter Rigid 6R Mobile 6R Bicyclohexane
a1 0.3 0.5 0
a2 1 0 0
a3 0 0 0
a4 1.5 0.5 0
a5 0 0 0
a6 1.1353 0 0
d1 0.0106 1 1.526
d2 0 1 1.526
d3 0.2 1 1.526
d4 0 1 1.526
d5 0 1 1.526
d6 0.1049 1 1.526
α1 π/2 π/3 1.23
α2 0.0175 π/3 1.23
α3 π/2 π/3 1.23
α4 0.0175 π/3 1.23
α5 π/2 π/3 1.23
α6 1.4716 π/3 1.23

TABLE I

DENAVIT-HARTENBERG PARAMETERS OF THE THREE TEST CASES.

small, taking into account the total amount of processed boxes
and solutions, indicating that the box-shrinking strategyis
highly efficient. Note that, ideally, by iterating box-shrinking,
one should end up with a box with solutions lying on its walls
and, therefore, splitting a box at such point should always
separate portions of the search space containing solutions. In
other words, the ideal algorithm should not generate empty
boxes.

Choosing the Denavit-Hartenberg parameters in the third
column of Table I, the 6R loop becomes an overconstrained
mechanism. While existing methods like [1] can not deal with
this degenerate case, the proposed procedure is immune to
such situations and obtains a complete box approximation of
the whole configuration space, as shown in Figure 6. The
problem has been formulated with 22 primary variables and 29
dummy ones. Withσ = 0.1 andρ = 0.95, we obtain the shown
1797 boxes in about 20 seconds, after processing 3617 boxes,
12 of which were found to be empty. The boxes discretizing
the configuration space define a graph where the nodes are the
boxes themselves and the edges are defined by the neighboring
relation between boxes (two boxes are neighbors if their

Fig. 5. The sixteen configurations of the 6R loop shown in Figure 4-(a).

intersection is not empty). This graph can be analyzed using
standard graph techniques to obtain information about the
actual structure of the configuration space. In the case of the
mobile 6R loop, we detect that the configuration space has 2
isolated solutions, and 2 bifurcation points interconnected by
6 different paths (not only 4 as suggested by the projection in
Figure 6).

A model for the third example is given in Figure 7. It has
two loops and each one of them is a specialization of the one
in Figure 1 with the parameters given in the last column of
Table I. The two loops are mutually constrained by fixing the
angles between vectorsd2, d

′

2 and d6, d
′

6 to β = 1.91. In
principle, such a linkage should be rigid, but its symmetries



Fig. 6. The one-dimensional configuration space of the 6R mobile loop in
Figure 4, projected on three of the dimensions of the ambientspace.
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Fig. 7. Vector model of bicyclohexane’s linkage.

allow a self-motion with one degree of freedom. Actually, this
motion has two disconnected paths as can be appreciated in the
projection shown in Figure 8. Interestingly, it additionally has
fifteen isolated solutions out of those paths, corresponding to
rigid assembly modes of the molecule. These are shown as red
boxes in Figure 8. The size of these boxes has been magnified
to make them visible. Note that some of the isolated solutions
overlap in the particular projection shown in the figure. Using
σ = 0.1 andρ = 0.95, the solution manifold gets discretized
into 258 boxes, after processing 553 boxes in 150 seconds.
Only 19 boxes were found empty along the way.

On the three test cases, the presented method is more than
one order of magnitude faster than general polytope methods
like [25], whose implementation is notably more intricate.

Finally, a note is in order regarding the method’s conver-
gence rate. The asymptotic performance of a root finding
algorithm is normally evaluated by examining its convergence
order. An algorithm is said to exhibit a convergence of order
r if there exists a constantk ∈ (0, 1), such that

d(xi+1,x
∗) ≤ k · d(xi,x

∗)r,

where xi and xi+1 are estimations of the exact rootx
∗ at

iterationsi and i + 1, andd(xi,x
∗) andd(xi+1,x

∗) indicate
their distance tox∗. The algorithm is said to exhibit linear
or quadratic convergence whenr = 1 or r = 2, respectively.

Fig. 8. The configuration space of bicyclohexane projected on three variables
of the ambient space. We can appreciate that it has two disconnected one-
dimensional components and several isolated solutions (inred).

The previous definition is valid for algorithms converging to
a single root, and adapting it to our case requires defining
d(xi,x

∗) and the scope of an iteration. To this end, note that
the diagonal of a box is an upper bound of the distance from
any point inside that box, to any root in it. Thus, assuming that
the search tree explored by Algorithm 1 is traversed in breadth-
first order, it seems reasonable to defined(xi,x

∗) as the
longest diagonal among all boxes waiting to be processed in
the list P . An iteration will then be defined as the application
of lines 4-14 to all boxes in thei-th level of such tree.

Measuring the performance in this way, we have empirically
found that the algorithm converges quadratically to the roots,
if these are a finite number of isolated points, or linearly to
them, if they form a one-dimensional algebraic variety. In the
former case, the convergence order is the same as that of fast
single-root-finding procedures, like e.g. the Newton-Raphson
method. Although the performance seems worse in the latter
case, we should mention that a linear rate is the best one
could expect. Think for example of the behavior of an optimal
shrink-and-split algorithm discretizing a line (the simplest one-
dimensional variety one could consider). At each iteration, any
boxBc adjusted to the line would be split into two half-boxes,
and then, ideally, these would be shrunk to fit the line again.
Note that, in such perfect behavior,d(xi,x

∗) would decrease
by half at each iteration, yielding the linear convergence order
we observe.

VI. CONCLUSIONS

We have presented a complete method able to give box
approximations of the configuration space of arbitrary loop
linkages with revolute and slider joints. The method isgeneral,



in the sense that it can manage any number of links, jointed to
form kinematic loops of arbitrary topology. It is alsocomplete,
in the sense that every solution point will be contained in
one of the returned boxes. In all experiments done so far the
algorithm was alsocorrect, in the sense that all output boxes
contained at least one solution point. Although the latter prop-
erty still lacks a formal proof, returning boxes with no solution
seems rather improbable due to the fact that the linearization
of parabolic and hyperbolic equations introduce errors smaller
than the size of the considered boxes. Moreover, the fact that
all equations are simultaneously taken into account duringbox
reduction (whether directly or in a linearized form) palliates
the so-calledcluster effect, a known problem of bisection-
based techniques of this kind [33], whereby each solution is
obtained as a compact cluster of boxes instead of a single box
containing it. In the experiments performed so far, we never
encountered such spurious output.

A main contribution with respect to previous work is the
method’s ability to deal with configuration spaces of general
structure. This is accomplished by maintaining a collection
of boxes that form a tight envelope of such spaces, which
can be refined to the desired accuracy in a multi-resolutive
fashion. Empirical tests show that the method is quadratically
convergent to all roots if these are isolated points, and linearly
convergent to them if these form one-dimensional connected
components. Although the method’s performance is notable
for a general technique of this kind, an extensive study should
be endeavored to determine how it scales with the complexity
of the tackled linkages, to compare it with other approaches,
and to formally proof the algorithm’s properties.
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