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Revisiting Trilateration for Robot Localization

Federico Thomas and Lluis Ros

Abstract—Locating a robot from its distances, or range mea-
surements, to three other known points or stations is a common
operation, known as trilateration. This problem has been tra-
ditionally solved either by algebraic or numerical methods. An
approach that avoids the direct algebrization of the problem is
proposed here. Using constructive geometric arguments, a coordi-
nate-free formula containing a small number of Cayley—-Menger
determinants is derived. This formulation accommodates a more
thorough investigation of the effects caused by all possible sources
of error, including round-off errors, for the first time in this
context. New formulas for the variance and bias of the unknown
robot location estimation, due to station location and range mea-
surements errors, are derived and analyzed. They are proved to
be more tractable compared with previous ones, because all their
terms have geometric meaning, allowing a simple analysis of their
asymptotic behavior near singularities.

Index Terms—Cayley—Menger determinants, error analysis, nu-
merical conditioning, robot localization, trilateration.

1. INTRODUCTION

RILATERATION is a method to determine the position of

an object based on simultaneous range measurements from
three stations located at known sites. This is a common opera-
tion not only in robot localization [20], but also in kinematics
[2], [22], aeronautics [17], crystallography [16], and computer
graphics [8]. It can be trivially expressed as the problem of
finding the intersection of three spheres, that is, finding the so-
lutions to the following system of quadratic equations:

(z—m)?+(y—wn)’+(z—=)’ =0
(x—z2)?+ (y—y2)? + (z—22)?* =13
(x—x3)?+(y—ys)?+ (2 —23)2 =13

ey

where p; = (z;,¥:,2:),% = 1,2, 3 are the coordinates of station
1, and [; is the range measurement associated with it. In Fig. 1,
thick segments between stations define the base plane, and thin
ones, those connecting the moving object and the stations, cor-
respond to the range measurements.

The problem of intersecting three spheres can be easily re-
duced to that of obtaining the intersection of a line and a sphere.
Indeed, system (1) can be simplified into the following system of
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Fig. 1. The trilateration problem consists of obtaining the location of a mobile

robot (p4) from its distance to three stations (located at p1, p2, and p3).
two linear equations, whose solution is a line, and one quadratic
equation:

(z—21)2+(y—mn)?+(z—=)2 =1}
(3-13+a7)

x(wy —x1) +y(y2 — y1) + 2(22 — 21) = 2 2
w(xy — 1) +y(ys —y1) + 2(2z3 — 21) = @

where a = ||p2 — p1| and b = [|p3 — p1]|.

The most straightforward way to obtain the two linear equa-
tions in (2) consists of subtracting the second and third equations
from the first in (1), respectively, so that the quadratic terms
cancel [8], [17], though other alternatives are possible [2].

Further simplifications are still possible by expressing the sta-
tion coordinates according to a specific coordinate frame [9].
For example, by making the XY plane of the reference frame
be the base plane, or making one coordinate axis coincide with
the baseline between two stations, or simply locating the origin
at one station. Nevertheless, this kind of simplification has an
important drawback. If any other frame has to be used, a trans-
formation has to be applied and, what is more important, the nu-
merical conditioning of the resulting formulation depends on the
chosen reference frame. This is why those formulations which
are not linked to a particular reference frame, or coordinate-
free formulations, are preferable. Available closed-form formu-
lations of this kind directly take as input either system (1) [4]
or (2) [17] and, despite their apparent simplicity, the expres-
sions can be quite involved, in particular, those presented in
[17], which are the standard formulas used in robotics [20]. In
all cases, the results are obtained, apart from a square root, by
employing standard techniques from linear algebra.
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As an alternative to closed-form formulations, there also
exist numerical resolution methods for the trilateration problem.
They take an approximation of the object position and itera-
tively achieve a better estimation by linearizing the measure-
ment equations [10]. When analyzing what kind of influence
the different sources of error have on the estimations, numerical
approaches are of little help, so that closed-form formulations
are obviously preferable.

In some applications, the range measurements or the station
locations may not be known accurately, and this can lead to diffi-
culties, particularly near singularities of the Jacobian of system
(1), which correspond to locations in which the moving object
is close to the base plane or the three stations are nearly aligned.
Hereafter, these configurations will be referred to as singulari-
ties. In such cases, the problem can be formulated as a nonlinear
least-squares problem to identify the best approximate solution
[4]. Under these circumstances, it seems inevitable to rely on a
numerical approach, because a closed-form formulation might
yield no solution.

We propose here an alternative approach to previous closed-
form formulations that avoids the algebrization of the problem
given by (1) or (2). Instead, by using barycentric coordinates, we
derive a formula containing a few number of Cayley—Menger
determinants, all of them having a geometric interpretation in
terms of squared volumes, areas, or lengths. In this formulation,
the station location coordinates appear explicitly as vectors, al-
lowing a simple analysis of the effects caused by errors in these
locations. In general, the analysis of how the different errors
contribute to the estimation error, and how this error behaves
near a singularity, is straightforward.

The paper is organized as follows. Section II presents some
basic properties of Cayley—Menger determinants related to the
geometry of tetrahedra, which are the key elements for the new
vectorial coordinate-free solution to the trilateration problem
presented in Section III. Based on this formulation, a complete
error analysis of the trilateration operation is then given in Sec-
tion I'V. This analysis includes the study of the effects caused by
range and station location errors in terms of variances and bias
errors in the results. Section V is a digression on the minimiza-
tion of the effects caused by roundoff errors when using limited
computational resources and, finally, Section VI summarizes the
main contributions and points that deserve further research.

II. CAYLEY-MENGER DETERMINANTS

The Cayley—Menger bideterminant of two sequences of n
points, [p1, ..., Px] and [q1, . .., qy], is defined as

0 1 1 1 1
1 n 1 D(plvql) D(plqu) D(Pl»Qn)
:2(%) 1 D(p2,q1) D(p2,q2) D(p2,qn)
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where D(p;,q;) denotes the squared distance between the
points p; and q;. This determinant plays a fundamental role in
the so-called “distance geometry,” a term coined by Blumen-
thal in [1] which refers to the analytical study of Euclidean
geometry in terms of invariants, without resorting to artificial
coordinate systems. Since in many cases of interest the two
sequences of points are the same, it will be convenient to abbre-
viate D(p1,-..,Pn;P1,---
simply called a Cayley—Menger determinant. Next, we give the
geometric interpretation of these determinants for n = 2,3, 4.
For further details, the reader is referred to [6, pp. 126—129]
and [12].

As for the Cayley—Menger determinants, it can be shown that
D(p1,.-.,Pn)is ((n—1)")?2 times the squared hypervolume of

forn = 2

D(p1,p2) = d(p1,p2)?

where d(p1,p2) is the Euclidean distance between p; and
p2. Observe that the use of the symbol D(p;,p;) for both
the squared distance from p; to po and their Cayley—Menger
determinant is thus consistent.

For n = 3, if A is the area of the triangle spanned by p1, pa,
and p3, we obtain Herron’s formula relating A with the side
lengths

D(p1,p2,p3) = 44% = |[(p2 —p1) X (ps —p1)|I>. (3

For n = 4, if V is the volume of the tetrahedron spanned by
P1, P2, P3, and py, we obtain Euler’s formula, relating V' to the
edge lengths

D(p17p27p37p4) = 36V2 (4)

For the Cayley—Menger bideterminants, it can be shown that,
forn =2

D(p1,p2:q1,92) = (P1 — P2) - (41 — q2).

Since this dot product <can be expressed as
d(p1,p2)d(q1,q2)cos(f), with 6 being the angle be-
tween the lines supporting the segments p1p2 and q;qo, this
yields the following formula for cos(f), in terms of the six
interpoint distances:

D(p1,pP2; 91, 92)
D(p17 PZ)D((hv q2)

By expanding D(p1,p2;q1,q2) in terms of the involved dis-
tances, the reader can easily see that when p; = qi, this for-
mula reduces to the law of cosines for a triangle.

Likewise, for n = 3, it can be shown that

cosf =

D(p1, P2, P3; 41,92, q3)
=((p1—P3) x(P2—P3)) - (a1 —a3) x (g2 —q3)) -
The right-hand side (RHS) of this equation can be easily

shown to be equal to 441 A5 - cos(¢), where A; and A, are
the areas of the triangles p;p2ps and q;q2qs, respectively,
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Fig. 2. An interior dihedral angle of the tetrahedron defined by p1, p2, P3,
and p4.

and ¢ is the dihedral angle between the planes they define. By
expressing these areas as Cayley—Menger determinants of the
triangles’ vertices, this yields the following formula for the
cosine of ¢, in terms of interpoint distances:

D(p1,p2,P3:d1,92,93)
1 1
Di(Pl; P27P3)D5(CI1; q27q3>

which can be regarded as the law of cosines generalized to a
tetrahedron when q; = p; and q2 = p3 (see Fig. 2). In other
words

)

cos ¢ =

D%(p1, P2, P3; P1, P3, P4)

2
cos” ¢p = .
D(p1,p2,p3)D(P1,P3.Pa)

(6)

An alternative formulation for the law of cosines generalized
to a tetrahedron can be found in [15], which permits alterna-
tively expressing cos? ¢ as

D(ph P2, P3; P4)D(P1; p3)

2
cos“¢p=1— . @)
D(p1,p2,p3)D(p1,P3, Pa)
Identifying the RHSs of (6) and (7), we get
D*(p1, P2, P3; P1, Ps3; P4) = D(p1, P2, P3) D(P1, P3, P4)
_D(Pl:p2>P3;p4)D(p17P3) (8)

which will be useful later.
Finally, for n = 4, the bideterminant is equal to the product
of two triple products

D(p1,P2,P3,P4; d1, 92, 43, q4)
= |P1—P47P2—p47p3—P4| : |Q1—Q4,Q2—Q4,Q3—Q4|

and hence, it can be interpreted as 36 times the product of the
volumes of the tetrahedra p1, p2, P3,» P4, and q1, 92, 3, 94.

III. A NEW FORMULATION FOR TRILATERATION

Given three points in space, say pi, p2, and ps, the tri-
lateration problem consists of finding the location of another
point, say p4, whose distance to these three points is known.
According to Fig. 3, using barycentric coordinates [5, pp.
216-221], the location of the orthogonal projection of p4 onto
the base, say p, can be expressed as

_ Ayp1 + Aspa + Asps
P= A
b

95

Fig. 3. Barycentric coordinates of the projection of p4 onto the plane defined
by p1, P2, and p3.

where A;, Ay, and A3 are the signed areas! of the triangles
P2P3P, P3P1P, and p1p2p, respectively, and A, is the area of
the triangle p1p2p3. Alternatively

+ A2 + A3
= —YV _—
P b1 Ab ! Ab

V2

where vi{ = p2 — p1 and vo = p3 — p1.
The values A; can be obtained by projecting the areas of the
triangles coincident in p4, onto the base plane. Hence, using (3)

Ay | D(p1,p3,P4)

= =4 =" cos

Ay D(p1,p2,Ps) ($24)
As D(p1,p2,p4)
=t oy cos

Ay D(p1,p2,p3) ($33)

where ¢o4 and ¢34 are the dihedral angles indicated in Fig. 3.
Moreover, using (5), we can write

P=p1+kivi+ kv

where
k= — D(p1,P2: P3; P1, P3; P4)
D(p1,p2.Ps3)
hy = 2(PL P2, P3iP1, P2, i)
D(p1,p2, P3)

Now, p4 can be obtained as

Pa=DPp + k‘g(Vl X Vz) (9)
where the + sign accounts for the two mirror symmetric loca-
tions of p4 with respect to the base plane, and k3 is equal to the
height A of the tetrahedron, divided by the norm of v; X va.

IFor a triangle pqr in the Euclidean plane with area A, the signed area is
defined as + A (respectively, —A) if the point q is to the right (resp. to the left)
of the line pr, when going from p to r.
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Since the volume of the tetrahedron is (1/3)Ayh, using (3) and
(4), we can write

D . P2,
h=1 (P1,P2,P37P4)‘
D(p1,p2,p3)

(10)

Moreover, again using (3)

[vi X va|| = /D(p1, P2, P3) (11)

one concludes that

_ +\/D(P17P2~, p37p4)

k
’ D(p1,p2,Pp3)

Hence, the final expression for p is
P4=P1+ ———=
D(P17P27P3)
' (_D(P17P2»P3§p17P37P4) * Vi
+ D(p1, P2, P3;P1, P2, P4) - V2
£v/D(p1, P2, P3, P4) - (V1 X Vz)) .

12)

This formula can be easily rewritten in matrix form as

Pa=A - (.l 1s) ey (. o, 1y, 03,13, Ll Lals, 1ols) b
(13)

where A, b, and c are appropriate constant matrices and
vectors involving cofactors of D(p1,p2,P3;P1;P3,P4)s
D(p1, P2, P3; P1; P2, P4), and D(p1, P2, 3, p4). This form
coincides with Manolakis’ expression, given in [17], considered
as the computationally most efficient formula for trilateration
and used in robot localization [20]. While obtaining (13) from
(12) is straightforward, the converse is by no means obvious.

The main advantage of (12) over (13) is that it is mathe-
matically more tractable, because all terms are determinants
with geometric meaning. For example, (12) permits realizing
that only when D(p1, p2,p3) = 0, i.e., when p1, p2, and p3
are aligned, the location of p4 is undefined, and only when
D(p1,p2,p3,p4) = 0, i.e., when py lies on the base plane,
the solution for p4 is unique. This kind of reasoning cannot be
carried out on (13).

IV. ERROR ANALYSIS

This section shows how (12) accommodates a more thorough
error analysis than previously done for the trilateration problem.
Under the assumption that both the station locations and range
measurements are corrupted by zero-mean uncorrelated random
noise with a Gaussian probability density function, explicit ex-
pressions for the variance and bias errors of the object location
estimation are obtained in terms of squared distances, areas, and
volumes.

A. Station Location Errors

The station location error analysis given in [18] requires the
inversion of the Jacobian matrix resulting from the linearization
of system (1). Unfortunately, this inversion becomes ill-condi-
tioned near a singularity. We can take full advantage of (12),

IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 1, FEBRUARY 2005

though, to avoid this inversion. Since (12) is linear with respect
to each station location, it allows us to prove that when station
locations errors are the only source of error, the object location
estimation is unbiased, despite all involved nonlinearities. Also,
its associated covariance matrix has a simple expression in terms
of lengths, areas, and volumes.

Let 6p; and p? denote the additive random error and the ac-
tual value of station location p;, ¢ = 1, 2, 3, respectively. Then,
Pi = p? + 6p;. These errors are assumed to have zero-mean
value, that is E{6p;} = 0, where E{-} stands for the expected
value operation. We also assume that their three coordinates are
uncorrelated with the same variance 05 for the three stations. In
other words

021, ifi=j

E{‘Smpz}:{E{ﬁpi}E{6p§}=o7 ifizg Y

where I denotes the identity matrix. Then, using (12), it is easy
to check that

0Ps =P4 — pi
=0p1 + k16vy1 + kabva
+ k3 [(v? X 6v2) + (6v1 X Vg) + (6vy % 5V2)] (15)
where vy = 0p2 — 6p1 and 6ve = dps — Op1. Then, the bias

error due to the error in the location of the stations can be stated
as follows:

E{6p4} = :|:]€3E{5V1 X 6V2}
= k3 E{(6p1 X 6p2)+(6p2 X 0p3)+(0p3 X op1)}

which is identically zero because all scalar products required
to compute the above cross products involve uncorrelated
random variables (reminding that if two Gaussian variables,
say a and b, are uncorrelated, they are independent, that is,
E(ab) = E(a)E(b)).

In turn, the covariance matrix of the position estimate error
Op4 can be evaluated as

C. = B {[sps — B{opa}] [5ps — E{opa)]'|
=E {6ps0p} — E{6ps} E {6p}}

Then, after expanding the above expected value operation and
removing expected values involving products of uncorrelated
variables, we have

Co = (1= k1~ k2)°E {8p16p} }
+ K E {6p26p5} + k3 E {psdps }
+ k%E{(v(l] X 5p3) (v(l) X 5p3)t}
+ kgE{(vg X 5p2) (vg X 5p2)t}
+ kgE{(vg X 6p1) (vg X 5p1)t}
where v = p9 — p{. That is

Co=o0p (ki + k3 4+ (1 — k1 — ko) + 2k3(a® + b* + %)) I
(16)
,and ¢ = ||ps — p1]|-

where a = ||p2 — p1ll. b = ||P3 — p1
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Fig. 4. Relative error (02/¢?) in the robot location for two representative

cases (see text for details).

The resulting covariance matrix is isotropic: the variance in
the robot location is the same along any direction, say 2. Then
ol =0, (ki + k3 + (1 — k1 — k2)® + 2k3(a® + 0% + 7)) .

a7
Finally, in terms of volume, areas, and lengths, we have

2
(E) 1;2 (A2 + A2+ A2) +

Op

2

2,72, 2
. (1
Aﬁ(a+b+c)(8)

Assuming that the three stations are not aligned, for high dis-
tances to the base plane, (18) can be approximated by

2
s 18V2
<0_> ~ ——(a®+b*+ %) (19)
Tp V—o0o Ab
and for low distances by
s\ 2 1
(-5) ~ (A} + A3 + A3) . (20)
P/ |y b

Fig. 4 examines this relative error for two representative
cases. In the first case, the three stations form an equilateral
triangle on the XY plane inscribed in a circle centered in
the origin of radius 1000 distance units. The locations of the

97

stations are p; = (—500v/3, —500,0)%, p2 = (0, 1000,0)?,
and p3 = (500v/3, —500,0)*. The data-acquisition area of the
system is a square area at a distance of 8000 units from the base
plane, spanning in each direction from —4000 to 4000 units
[see Fig. 4(a)]. In the second case, the stations are located at
p1 = (=500, —5,0)%, p2 = (0,5,0)%, and p3 = (500, —5,0)?,
i.e., they are almost aligned along the X axis. The acquisition
area in this case is on the base plane itself [see Fig. 4(b)]. We
observe that while in Fig. 4(a), the error increases as we move
away from the stations’ barycenter, in Fig. 4(b), a privileged
direction of low error arises coinciding with the axis along
which the sum A% + A% + A3 in (20) is minimum.

Although the error analysis given in [18] is not carried out for
Gaussian error distributions, the provided results are consistent
with the results obtained here for the first case. The results of the
second case cannot be compared with previous results, because
it corresponds to a singularity in which the robot is located on
the base plane, which cannot be treated by previous formula-
tions.

B. Range Measurement Errors

The error analysis given here for the range measurements is
parallel to that presented in [17]. We adapt it to our formulation,
showing that the same results can be obtained in a more concise
form.

Let &/; and [ denote the additive random error and the
actual value of range measurement [;, respectively. Let
81 = (614, 6l2,613)t and 19 = (19,19,19)". Then, 1 = 1° + 1.

The range errors are assumed to have zero-mean value, that is
E{61} = 0. We also assume that they are uncorrelated with the
same variance o2. Consequently, their covariance matrix can be
expressed as

E{8161'} = 021 1)

For small range errors, the robot location can be well ap-
proximated by retaining the terms up to the second-order partial
derivatives in the Taylor expansion of (9), that is

aP4

aP4
o, it g ZZ oL,

Then the expected value of robot location error, i.e., the bias
error, is

pl = 51,61

=1

0ps = P4 —

9%b
E{ops} = ZZ g B8l 8l3}.
10y
Using (21)
°py | 9’py | 0’py
E{5p4}_7<az2 o o )

Finally, substituting (12)

E{6p4} = (V2k1v1 + VszVQ + Vzkg(vl X Vg)) (22)

o |~sqm

where V2k; = (0%k;/013) + (0%k;/013) + (0%k;/013), and
the 4+ or — sign is used, depending on the chosen trilateration
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solution. The analytic expression for these derivatives can be
found in Appendix I.

As we already mentioned, the trilateration bias error was al-
ready examined in [17], where two main results were drawn:

(R1) projection of the bias error onto the base plane can be

neglected;

(R2) bias error becomes relevant as the robot location ap-

proaches the base plane.

Contrary to all other formulations, these two facts have a di-
rect accommodation in ours. It is important to realize that V?k;
and VZ%ko are constant, i.e., the bias error parallel to the base
plane is constant, independent of the robot location. This con-
tradicts, in part, the results presented in [17]. Nevertheless, this
has no practical effects because, as a consequence of (R1), V2k,
and V2k, can be neglected in front of V2ks, and (22) can be ap-
proximated by

2
E{ép,} ~ i%’"v%g(vl X V3). (23)
As a consequence of (R2), this can be further simplified, for
low distances to the base plane, into (see Appendix I for the
details)
13A2 +12A2 + 1242
B{spaly_o ~ Foz BT A B

(Vl X Vg). (24)
This equation is remarkable because of its simplicity, when
compared with its counterpart in [17].

It can be checked that, as a consequence of this error, when
the robot moves on a plane parallel to the base plane, the estima-
tion will erroneously indicate that it increases and decreases its
distance to this plane when it approaches, and goes away from,
the barycenter of the stations, respectively.

Fig. 5 examines this error for the first representative case used
in the previous section. The maximum bias error in the consid-
ered acquisition area is —0.0302 (Fig. 5, top). This amount ex-
ponentially increases as the robot reduces its distance to the base
plane, i.e., the singularity is approached. When the distance is
400, the maximum bias error is —1203, and when it is reduced
to 40, the maximum bias error mounts to —1184203 (Fig. 5,
middle). These results fully agree with those presented in [17].

V. A DIGRESSION ON NUMERICAL ERRORS

Although (12) and (13) are algebraically equivalent, their be-
havior in the presence of roundoff of errors could be quite dif-
ferent. Actually, near a singularity, one can even obtain different
results with the same formulation just by scaling data or per-
muting indexes. Nevertheless, in practice, fine results can be ob-
tained using any formulation by evaluating their subexpressions
in double precision if all involved values are given in single pre-
cision [13].

This section shows how the effect of round-off errors can
be minimized during the evaluation of (12) by using Kahan’s
factorizations. This has interest when the involved evaluations
cannot be performed in higher precision than that of the data be-
cause of limited computational resources.

The analysis of the numerical stability of (12) can be reduced
to that of evaluating Cayley—Menger determinants. Although no

IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 1, FEBRUARY 2005
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Fig. 5. Component of the trilateration bias error orthogonal to the base plane,
normalized with respect to o2, for a representative example where the distance
to the base plane is 4000 (top) and 40 (middle) distance units. The bottom plot
shows an enlargement of the dotted region shown in the middle plot.

general numerically stable method for evaluating determinants
is known to the authors, nor satisfactory error bounds for their
evaluation having been proposed [11, p. 13], extensive research
has been done in the stable evaluation of Cayley—Menger deter-
minants of the form D(a, b, c) and D(a, b, c,d) [13]. Before
reviewing the results presented therein, it is worth giving a gen-
eral idea about the nature and complexity of the problem.
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The direct expansion of a n x n determinant leads to n! terms.
The way these terms are added is fundamental to attaining high
numerical stability. Following the discussion given in [11], con-
sider the substractior}, in exact arithmetic, £ = a — l;, where
4 =a(l+ Aa)and b = b(1 + Ab). The terms Aa and Ab are
relative errors or uncertainties in the data, perhaps attributable
to previous computations. With z = a — b, we have

_ | —ala+bAD
o a—2b

al+|b
‘ < max (|Aal, |Ab]) %.

T — I

T

Hence, the relative error for £ is large when |a — b| < |a| + |b],
that is, when there is a heavy cancellation in the substraction.
This shows that subtractive cancellation causes relative errors or
uncertainties already present in a and b to be magnified. Then,
to reduce the effect of cancellation, a summation like (z 4y — 2)
can be computed from an expression like
(max{z,y} — z) + min{z, y}. (25)

At this point, one comes up with two possible solutions
for evaluating a Cayley—Menger determinant: 1) designing a
summation method aiming at minimizing the effects of cancel-
lation of each intermediate sum [11, p. 82], or 2) factorizing
the determinant in as many factors as possible and computing
each of them so that cancellation is minimized. The latter is not
only preferable because the former is NP-hard [14], but also
because Cayley—Menger determinants of the form D(a, b, c)
and D(a, b, c,d) can be decomposed into factors that can be
evaluated using (25). Appendix II compiles these factorizations
due to Kahan [13].

To complete a trilateration operation, it remains to accu-
rately compute Cayley—Menger bideterminants of the form
= = D(a,b,c; b, c,d). Using (8), it turns out that

2 =sign(2)y/D(a,b,c)D(b,c,d) — D(a,b,c,d)D(b,c).

Then, since the square-root part can be computed using Kahan’s
factorizations, the problem is reduced to that of accurately com-
puting the sign of a determinant. Fortunately, the question of
how to be sure that the sign is determined correctly in floating-
point arithmetics has surfaced and been solved in the field of
computational geometry (see [21] and the references therein).

VI. CONCLUSIONS

An alternative closed-form formulation for trilateration
based on constructive geometric arguments, not algebraic,
has been presented. The result is a formula containing a few
Cayley—Menger determinants. It is more general than that
presented in [17], which is considered as the computationally
most efficient, because it can be easily derived from ours.

It has been shown how all algebraic manipulations based on
our formulation can be performed involving only distances, and
the results can always be interpreted in terms of distances, areas,
and volumes. This has been revealed of great interest when cal-
culating the partial derivatives of the robot location with re-
spect to the range measurements, allowing remarkable simple
formulas for the covariances and bias errors due to station lo-
cation and range errors, respectively. Their asymptotic behavior
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near a singularity, due either to the alignment of the three sta-
tions or the proximity of the robot to the base plane, has been
shown to be easily derivable.

It has also been shown how, using our formulation and
Kahan’s factorizations, the effects caused by roundoff errors
can be minimized.

The presented error analysis has been carried out for
static measurements, but, in general, trilateration is used for
estimating trajectories; that is, for tracking purposes. The mea-
surements along a trajectory are not statistically uncorrelated,
so they should be jointly smoothed during tracking to improve
accuracy using, for example, a Kalman filter. The error analysis
given in this paper is of relevance to this end. For example, the
characterization of the bias error must not be ignored at this
point, and it has to be suitably anticipated in this filter. Also,
our error analysis could be of interest for optimal estimation of
the solution when more than three stations are involved. These
issues deserve further research.

APPENDIX |

This appendix is devoted to computing second derivatives of
k1, ko, and k3 with respect to 1, I, and [3. To start with, note
that since the denominator in

D(p1,P2,P3; P1,P3,P4)
D(p1,p2.P3)

k= -

does not depend on [y, 5, or I3, then

0%k,

-1
93— D(p1,p2,p3)

. 9>D(p1, P2, P3; P1: P3, P4)
8l]2

and we only need the second derivatives of

D(p1,P2,P3: P1,P3, P4)

0 1 1 1
_ 1 0 D(p1,p3) 7
o4 D(p1,p2) D(p2,p3) l%
1 D(p1,p3) 0 13

with respect to [y, [, and l3. By expanding this determinant by
the last column, we easily realize that

dD(p1, P2, P3; P1,P3; P4)

= — D(p2,p3;P1,P3)l1

ol
dD(p1,P2,P3; P1, P3; P4)
— =D . l
8[2 (pl,p3)2
OD(p1,P2.P3; P1, P3, P4)
’ Y D(py,pa:pi.p3)l
ol (Pl,Pz,Pl,P3) 3

and, hence, that

9%k1_ D(p2,ps; P1,P3)
oz D(p1,p2,P3)
ki D(p1,P3)
ol3 D(p1,p2,P3)
9’k1 _ D(p1,p2;P1,Ps)
81% B D(P17p27p3) .
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Then, after substituting the above determinants by their geo-
metric interpretations

2 b*
VZky sA2 (26)
Proceeding in an analogous way for ks, we obtain
9%k __ D(p2,p3;p1,p2)
01% D(p1,p2, P3)
0%ky _ D(p1,P3;P1, P2)
al% D(P17P27P3)
k2 _  D(p1,p2)
31:% D(P17P27P3)'
Then
2 a’
VZk,y 8 A2 (27)

With regard to the second derivatives of k3, it can easily be
checked that by applying the chain rule to

_ VD(p1.p2,P3. P4)

k
° D(p1,p2,P3)
we get
82/{)3 1 1 2
_ _ 28
o~ 18Azv" T 3a56A7v3" 28)
where 7 = (0°D(p1,p2,p3,p4)/0l7), and

p = (0D(p1,P2,P3,P4)/0l;). Then, it only remains to
compute the first and second derivatives of D(p1, p2, P3, P4)
with respect to the desired length. To this end, we write

D(p1, P2, P3,P4)

0 1 1 1 1

1 1 0 D(p1,p2) D(pi,ps) 1
=3 L D(pi1,p2) 0 D(p2,ps) 13
1 D(p1,p3) D(p2,p3) 0 13

1 13 12 13 0

and realize that
dD(p1, P2, P3,P4)
oly
0D(p1, P2, P3, P4)
dlsy
dD(p1,P2.P3,P4)
013

Then, proceeding as for kq and ko, we get

=201 D(p1, P2, P3; P3, P2, P4)

=2[>D(p1, P2, P3; P1, P3, P4)

=2[3D(p1, P2, P3; P2, P1,P4). (29)

aDQ(ph P2, Ps3, p4)
oL
= 2D(p1/ P2, P3; p37p2»P4) + 2l%02
aDZ(ph P2, Ps, p4)
0
= 2D(p17 P2, P3; P17P37P4) + 21%[)2
OD?*(p1, P2, P3, P4)
o
= 2D(p1, P2, P3; P2, P1, P4) + 203a°.

(30)
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Finally, after substituting (29) and (30) into (28), and ex-
pressing the result in terms of volumes, areas, and lengths, we
conclude that

L BE4B0P°+ 13 BA+BAS+13A7

2
ks = —
Viks =Gyt 24 A2V 54V3
€1y
If the three stations are nearly aligned, then A, — 0 and
12 2 l2b2 l2 2
V2hyl,, g~ Ao 27 T 5 (32)

24A3V

If the three stations are not aligned but the object’s location is

near the base plane, then V' — 0 and

13A2 +12A2 +12A2
54V3

V2hsly o~ - (33)
APPENDIX II

This appendix summarizes Kahan’s factorizations for

D(p1,p2, p3) and D(p1, P2, P3, P4) [13].
According to the notation used in Fig. 1, we have that

D(p1,p2,p3) = (a+b+c)(b—c+a)(c—a+b)(a—b+c) (34)

and
1
D(p1,p2,P3,Psa) = W(f‘w-ﬁ-(—/\)@\‘i‘f-ﬁ-n—o
XM+ C+A=C+A+E—n) (35
where
E=VvaYZ, n=+\yzZX, (=VzXY, A= zyz

and
X:(ll—a+l2)(a+l2+ll)
Y=(Us-b+1)b+11+13)
Z:(ZQ—C-i-lg)(C-i-lg-l-lg)
$:(a—l2+l1)(12—ll+a)
y:(b—ll-i-lg)(ll—lg-‘rb)
Z:(C—lg+l2)(lg—l2+c) (36)

By permuting data, other factorizations are possible. The nine
factors of the form (z — y + z) in (36) are called facial dif-
ferences. The total number of facial differences is 12, but the
above factorization only uses nine. The factorization is numer-
ically stable, provided that the smallest of the 12 facial differ-
ences lie among the nine used.
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