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Abstract

This paper presents a numerical method to compute all possible con-
formations of distance-constrained molecular loops, i.e., loops where some
inter-atomic distances are held fixed, while others can vary. The method
is general (it can be applied to single or multiple intermingled loops of ar-
bitrary topology) and complete (it isolates all solutions, even if they form
positive-dimensional sets). Generality is achieved by reducing the prob-
lem to finding all embeddings of a set of points constrained by pairwise
distances, which can be formulated as computing the roots of a system
of Cayley-Menger determinants. Completeness is achieved by expressing
these determinants in Bernstein form and using a numerical algorithm that
exploits such form to bound all root locations at any desired precision.
The method is readily parallelizable, and the current implementation can
be run on single- or multi-processor machines. Experiments are included
that show the method’s performance on rigid loops, mobile loops, and
multi-loop molecules. In all cases, complete maps including all possible
conformations are obtained, thus allowing an exhaustive analysis and vi-
sualization of all pseudo-rotation paths between different conformations
satisfying loop closure.

Keywords: loop closure, ring, conformational space, complete method, Cayley-

Menger determinant, Bézier clipping, tripeptide loop, disulfide bond, seven-atom loop,

cycloheptane, cyclooctane, bicyclohexane, adamantane, bound smoothing.

1 Introduction

A problem frequently arising in Molecular Modelling is the computation of the
valid conformations of a molecular loop, a sequence of pairwise-bonded atoms,
either cyclic or with fixed end-points. In this work, a valid conformation will be
defined in a kinematic sense: as an assignment of positions to all atoms, respect-
ing the constraints imposed by all bonds, regardless of whether the assignment
provides an energetically-favorable arrangement or not. This is usually known
as the molecular loop closure problem [23, 52], instances of which occur when
determining the possible conformations of cyclic molecular structures, when
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looking for localized moves of an atom chain with fixed ends, or when predict-
ing the spatial shape of non-matched segments in protein homology modelling,
for example.

When modelling a molecule, one can treat the bond-stretching and bond-
bending degrees of freedom as variable quantities, subject to appropriate bond-
stretching and bond-bending potentials. This realistically models the flexible
nature of molecules, but it usually requires a large number of variables and
expensive computations. A simpler model can be used, however, if only the
principal motions of the molecule need to be elucidated. Since the stiffness
constants associated with the deformation of torsion angles are one or two orders
of magnitude smaller than those associated with deforming bond lengths and
bond angles, it seems plausible to assume that all bond lengths and bond angles
are fixed, and only torsion angles vary. This assumption, known as the rigid-

geometry hypothesis [21], will be adopted throughout the paper.
A rigid-geometry loop can be viewed as a closed sequence of rigid bodies,

pairwise articulated through hinge joints. In simple situations the bodies and
hinges are easily identified: if all atoms are allowed to rotate about their cova-
lent bonds, we may consider every atom as a body and every torsional degree
of freedom as a hinge (Figs. 1a and 1c). This yields a loop of specific geometry
where all hinge axes of a same body are coincident at its atom center. More
general and difficult-to-solve loops can arise, though, when one knows the rel-
ative positions of all atoms on some subchains of a long loop. In such cases,
the bodies are constituted by these subchains and the hinges are the rotations
about the bonds that join them, yielding a body-and-hinge model with all hinge
axes in general position (Figs. 1b and 1d).

Clearly, for a loop of s solids and s hinges one cannot vary all hinge angles
arbitrarily without breaking the loop. Mathematically, this translates into the
fact that the closure condition, in general, imposes six constraints among the s
hinge angles and, thus, only s−6 angles can be arbitrarily chosen, the remaining
six being dependent on these [23]. Actually, the s-tuples of valid angle assign-
ments must satisfy a system of polynomial loop closure equations, and thus form
an (s−6)-dimensional algebraic variety. This means that, except for degenerate
cases:

1. If s < 6 the loop is over-constrained and cannot be assembled. (The
variety is the empty set.)

2. If s = 6 the loop is well-constrained, but it can only adopt a finite num-
ber of rigid conformations1. (The variety is a finite collection of isolated
points.)

3. If s > 6 the loop is under-constrained and it can adopt infinitely many mo-

bile conformations along continuous pseudo-rotation paths. (The variety
is a finite number of positive-dimensional connected components.)

The solution of loop closure equations is in general difficult, specially when
the loops are long (with s > 6) and all possible solutions are required. Thus,
a common trend in the literature has been to provide exact methods for the
s = 6 case, and use them to explore the conformational space of longer loops by
repeatedly sampling s − 6 angles. Using elimination techniques and exploiting

1Throughout the paper a rigid conformation is one that cannot be deformed while keeping
all loop closure constraints satisfied. A conformation is said to be mobile if such deformation
can be done.
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Figure 1: (a): A 6-atom ring. (b): A general 6-torsion loop on a long molecular
chain with fixed end-points. Within the shaded sub-chains, the relative positions
of all atoms are known and they can hence be viewed as a single rigid body.
Having fixed positions in 3-space, atoms 1, 2, 11 and 12 also define a rigid body.
Free torsion angles are indicated with circular arrows. (c) and (d): Body-and-
hinge models of the two loops, with the bodies labelled B1, . . . , B6. (e) and (f):
Their distance models.

geometric particularities like the planarity of peptide bonds or the coincidence
of consecutive hinge axes, for example, efficient ad-hoc solutions have been given
for the 6-atom ring, the 7-atom chain, the tripeptide loop and the disulfide bond,
to name a few [23, 52, 11, 12], but no efficient technique for general multi-loop
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structures has been given yet.
Rather than following such trend, this paper presents a method to solve

the problem in its full generality. The method is able to find all spatial con-
formations of single or multiple intermingled loops, irrespectively of the loop
lengths, of the relative positions of the hinge axes, and of the loops’ intercon-
nection pattern. In all cases, the method returns complete approximations of
the conformational space, given as collections of small boxes that contain all
of its points. These approximations, moreover, can be refined to any desired
precision. The result is a discrete map of the whole conformational space where
isolated boxes correspond to rigid conformations and sets of adjacent boxes cor-
respond to positive-dimensional components associated with pseudo-rotation
paths satisfying loop closure.

The rest of the paper is organized as follows. Section “Distance Models”
prepares the ground and shows how the problem can be formulated as one
of satisfying a number of distance constraints between points. Based on such
formulation, Section “Related work” presents a unified view of previous solu-
tion methods from Molecular Modelling and Robotics. Section “Computational
method” develops the proposed loop-closure strategy: It first shows how the
problem reduces to finding the zero-set of a system of Cayley-Menger deter-
minants, then presents a technique to solve such systems, and finally analyzes
its computational cost. Section “Study Cases” illustrates the method’s perfor-
mance on various single- and multi-loop structures: the tripeptide loop, the
7-atom ring, the disulfide bond, and adamantane (which are rigid) and cyclo-
hexane, cycloheptane, cyclooctane and bicyclohexane (which are mobile). The
paper’s conclusions and points deserving further attention are finally summa-
rized in the end.

2 Distance models

Mathematically, molecular loops can be modelled as systems of distance con-
straints between points [14]. Assuming the rigid-geometry hypothesis, such
modelling entails placing a point for each atom, and fixing enough distances be-
tween the atoms to lock all bond lengths, bond angles, and torsion angles that
are constant in the molecule. A constant bond length simply implies a fixed
distance between two atoms. A constant bond angle θ between atoms i, j and
k is specified by fixing the i − k distance (Fig. 2a). A constant torsion angle φ
on four consecutive atoms h, i, j, k, can be set by specifying the h− k distance
(Fig. 2b). Finally, if the torsion angles within m consecutive atoms a1, . . . , am

are constant, the m atoms can be seen as a rigid body, which can be modelled
by fixing the distances of the tetrahedron defined by a1, a2, am−1, am (Fig. 2c).

The points and distances defined in this way will be herafter referred to as
the distance model of the loop. Figs. 1e and 1f provide distance models for
the 6-atom ring and the general 6-torsion loop. Observe that, in essence, we
shall always obtain a ring of hinged triangles or tetrahedra, where each triangle
(tetrahedron) models a rigid body between two intersecting (skew) hinge axes.
For ease of visualization, cross-linking bars of the tetrahedra involved in such
models will be omitted in Figs. 1 and 3.

In sum, a molecular loop can be represented as a graph G = (V,E), and an
assignment d : E −→ R, where each vertex in V represents one of v chosen
points p1, . . . ,pv, and each edge (i, j) in E represents a pair of points pi and pj

whose distance is fixed to the value d(i, j). With these definitions, the molecular
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Figure 2: Translation of bond-bending (a), torsion-angle (b), and rigid-
body (c) constraints. Bars between atoms indicate fixed distances.

loop closure problem is simply to determine whether there exist actual vectors
p1, . . . ,pv ∈ R

3 such that

d(i, j) = ‖pi − pj‖, for all (i, j) ∈ E,

where ‖x‖ denotes the Euclidean norm of x ∈ R
3. If they exist, these vectors

are said to form a feasible embedding of G and our interest is to map out (up
to isometries) the whole set of such embeddings, i.e., the entire conformational
space of the molecular loop. Unfortunately, although some problem sub-classes
can be solved efficiently [25, 37], the problem is NP-hard in general [44]. Thus,
the best we can expect in our case is to come up with an algorithm that works
well for problems of reasonable size, despite the unavoidable exponential com-
plexity.

Viewing a loop as a distance model presents three main advantages. First,
NMR-derived ranges for some interatomic distances can be readily used to re-
duce the size of the search space: they simply impose upper and lower bounds
on some of the involved distances. Second, the conditions that the points must
fulfill to be embeddable in 3-space are well-characterized [5]. They encompass
a number of determinantal equalities and inequalities involving point-to-point
distances only (see Subsec. “Loop closure equations”). Following [48, 14], this
permits formulating the loop closure problem directly as a polynomial system
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of equations, which avoids the algebraization step required by other approaches
departing from trigonometric relations among torsion angles [23, 52, 12]. Third,
a distance model is convenient to predict the mobility of the molecule, i.e., the
dimension of its conformational space. Although, this is an easy task on a single
loop, it is not trivial at all on complex molecules with multiple interconnected
loops, where regions with zero, one, or larger mobility might coexist. Detect-
ing such regions is crucial not only to predict which atoms can undergo finite
motions, but also to develop divide-and-conquer strategies to tackle the loop clo-
sure problem in a modular way. A wealth of results from Rigidity Theory can
be used to this end [53], which are already available as implemented algorithms
in recent packages like FIRST [2, 27, 50] or ProFlex [4].

3 Related work

Efficient solutions to the molecular loop closure problem have been pursued for
over three decades within Molecular Modelling. Already in the sixties, the pi-
oneering work by Go and Scheraga pinpointed the soundness of rigid-geometry
approaches to low-energy conformational search [22], and provided the first solu-
tions for several loop topologies [23]. Although posed in a different vocabulary,
the issue has also surfaced in modern Robotics, where it has been a topic of
major research during the same time span, specially after the early work by
Pieper [36] and Roth et al. [43] on the position analysis of robot manipulators.
Given the interdisciplinarity of the problem, we opt for surveying relevant tech-
niques from both fields. We shall focus on exact, complete methods for rigid
loops (with s = 6). Sampling methods for longer loops, or local search methods
based on minimizing an objective function also abound, but the former usually
rely on an exact method for the s = 6 case [52], and surveys of the latter can
be found in [45, 26, 9].

The kinematic equivalence between molecular and robotic loops can be bet-
ter appreciated by resorting to their distance models. Fig. 3 gives such models
for the most-studied loop topologies: the general 6-torsion loop, the tripeptide
loop, the disulfide bond, the generic 7-atom loop, and the 6-atom ring. Ac-
cording to [38], the robots in the right column have the same distance models,
meaning that the loops in the left column either correspond to a serial 6R ma-
nipulator (an arm with six hinged bodies, and a gripper mounted on one end) or
to a parallel one (a platform linked to a base through six actuated leg-pistons).
Assuming that the gripper’s position relative to the ground is known in the for-
mer case, and that the leg lengths are fixed in the latter, the goal in Robotics is
to find all configurations of the robot links that respect such constraints. This
is clearly analogous to finding the kinematically-feasible conformations of the
related molecules.

Actually, the models also reveal that the last four loops in the figure are
successive specializations of the first one. To obtain the tripeptide loop, for
example, reduce edges (2, 3), (6, 7), and (10, 11) to single points on the general
6-torsion loop. Reducing (2, 3), (4, 5), (8, 9), and (10, 11), contrarily, yields the
disulfide bond structure. The 7-atom loop can be viewed as a special case of
both the tripeptide or the disulfide bond loops: one can reduce the edge between
the two Sγ atoms on the latter, for example. Finally, the 6-atom ring is trivially
derived by reducing (1, 7) to a single point on the 7-atom loop. It is important
to realize this hierarchy of specializations, since any method we cite next for a
loop, actually works for any of its special cases.
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Figure 3: The mainly studied molecular loops (left) together with their distance
models (center) and equivalent robots (right). For each loop, we cite the main
applicable techniques under its distance model. All loops can attain, at most,
16 conformations.
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The tripeptide loop, the 7-atom loop and the 6-atom ring were first solved by
Go and Scheraga in 1970 [23]. They tackled the problem by assigning a reference
frame to each atom and then writing the matrix equations that allow moving
from one frame to a vicinal one in the loop. Since one must obtain the identity
matrix when composing all such moves, this gives a necessary and sufficient
condition for loop closure. For a general loop, the condition yields a system of
trigonometric equations that is difficult to solve. However, Go and Scheraga
found it can be reduced to a univariate polynomial equation in the mentioned
three cases, thus permitting the computation of all loop conformations via fast
polynomial root finding techniques. This result was largely unnoticed in the
Robotics literature of that time, and it was not until the work by Griffis and
Duffy [24], for example, that the octahedral manipulator equivalent to the 6-
atom ring was considered solved.

During the 80s, a quest started within Robotics for an exact solution to
the general 6-torsion loop. Although homotopy techniques were also compet-
ing [51], the preferred strategy was the algebraization of the loop equations and
their reduction to a resultant, a univariate polynomial whose solutions, once
backsubstituted into intermediate equations, permitted the efficient computa-
tion of all possible conformations. Although many topological subcases were
solved, it was not until 1986 that Primrose proved the 6-torsion loop could
adopt, at most, 16 different conformations [39]. Since Pieper had already found
an example with exactly 16 conformations [36], this was a tight bound. Soon
after, the problem was definitely settled by Lee and Liang [30], and Raghavan
and Roth [40], who gave the first 16th-degree resultants for this loop, and by
Manocha and Canny, who derived a numerically robust technique to compute
their roots in a few milliseconds [33]. Such methods can all be applied to solve
any specialization of this loop and, in particular, those in Fig. 3.

In recent years, resultant methods have also been used in Molecular Mod-
elling. In their 1999 work [52], for example, Wedemeyer and Scheraga use spher-
ical geometry and elimination to derive resultants for the tripeptide, the 7-atom
ring, and the disulfide bond loops. They obtain polynomials of degree 16, 16,
and 32 for these three cases respectively. According to the previous paragraph,
however, only the first two can be minimal-degree resultants. In fact, a 16th-
degree resultant for the disulfide bond’s equivalent robot (the 4-4 parallel ma-
nipulator) was already known by 1994 [31], and using the distance models of
Fig. 3 we readily see that 16 is the lowest possible degree in any case. This
must be so, since Griffis and Duffy [24] proved the 6-atom ring can really adopt
16 possible conformations, and all other loops have this ring as a special case.
Also, recent work by Coutsias et al. [11, 12] finds that the standard Dixon and
Sylvester resultants for the tripeptide loop has degree 16, which is in accordance
with these observations.

In closing this section we highlight that, being reducible to a system of
polynomial equations, the loop closure problem can in principle be solved by
any general technique for such systems. Resultant- [15, 17] and homotopy-based
techniques [49] exist for that purpose, but they have a number of limitations
in practice. On the one hand, resultant techniques only work for systems with
0-dimensional solution sets, usually introduce extraneous roots, and lead to
eigenvalue problems of rapidly growing size. On the other hand, while advanced
homotopy techniques can compute the irreducible decomposition of the solution
set (which determines its connectivity) they are unable to isolate all of its points
if its dimension is larger than one.

The method presented in this paper continues previous work in [6, 7, 38]
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and does not exhibit such limitations. In fact, the authors know of only one
related technique that, as done in the paper, exploits the Bernstein form of
the input equations within a similar branch-and-prune scheme [54]. Contrarily
to such technique, however, we directly formulate the equations in distance
space, which allows the easy integration of NMR-derived bounds, and exploit the
convex-hull property to its fullest extent, which yields a more accurate output,
faster convergence, and the ability to isolate positive-dimensional solutions in
lower times.

4 Computational method

In Section “Distance Models” we rephrased the loop closure problem as one
of finding all possible embeddings of a distance model. This section presents a
method to compute all such embeddings. We first derive the loop equations that
the embeddings must fulfill, then provide a complete root-finding algorithm for
such equations, and finally analyze the overall computational cost.

4.1 Loop closure equations

Let p1, . . . ,pk, be k points in R
3 and define the function

D(1, 2, . . . , k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 r1,2 r1,3 · · · r1,k 1
r2,1 0 r2,3 · · · r2,k 1
r3,1 r3,2 0 · · · r3,k 1
· · · · · · · · · · · · · · · · · ·
rk,1 rk,2 rk,3 · · · 0 1
1 1 1 · · · 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where ri,j = rj,i = ‖pi − pj‖
2, i.e. the square distance between pi and pj .

D(1, . . . , k) is the general form of the Cayley-Menger determinant, initially used
by A. Cayley in 1841 [10], but not systematically studied until 1928, when
K. Menger showed its relevance in convexity analysis and other basic geometric
problems [34]. Nowadays, this determinant plays a fundamental role in the
Distance Geometry approach to molecular conformation [14, 25]. To gain further
insight, we recall its geometric interpretation for several cases.

If k = 2,
D(1, 2) = 2 r1,2.

If k = 3, and assuming D(1, 2, 3) ≤ 0,

D(1, 2, 3) = −16 A2, (1)

where A is the area of the triangle defined by p1, p2, and p3. If D(p1,p2,p3)
vanishes, the three points are collinear, and if it gives a positive value, the
triangle cannot be assembled with the given distances.

If k = 4, and assuming D(1, 2, 3, 4) ≥ 0,

D(1, 2, 3, 4) = 288 V 2, (2)

where V is the volume of the tetrahedron defined by p1, p2, p3, and p4. Simi-
larly to the k = 3 case, D(1, 2, 3, 4) vanishes if and only if p1, p2, p3, and p4 lie
on the same plane, and if it gives a negative value then the tetrahedron cannot
be constructed with the specified distances.
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If k > 4,
D(1, . . . , k) = 0 (3)

because D(1, . . . , k) essentially gives the squared volume of the (k−1)-dimensional
simplex defined by p1, . . . ,pk, but since this simplex is degenerate in R

3, its vol-
ume must be zero.

If we have a set of points p1, . . . ,pv, and all distances between them are
given, we can use conditions of this kind to check whether such a point con-
figuration is embeddable in R

3. The following theorem of Distance Geometry
provides a set of necessary and sufficient conditions to this end.

The v points p1, . . . ,pv (v > 3) are embeddable in R
3, satisfying the pre-

scribed distances between them, if, and only if, there exist four of those points,
say p1, . . . ,p4 without loss of generality, for which

D(1, 2) > 0, (4)

D(1, 2, 3) < 0, (5)

D(1, 2, 3, 4) > 0, (6)

and for every pair (pi, pj), i, j = 5, . . . , v, with i < j, we have

D(R, i) = 0, (7)

D(R, j) = 0, (8)

D(R, i, j) = 0, (9)

where R stands for the index sequence 1, . . . , 4.
While conditions (4)-(6) guarantee the embeddability of the tetrahedron de-

fined by the points indexed in R, conditions (7)-(9) guarantee the compatibility
of the distances between points in R and other point pairs (pi, pj) not in R.
Observe these conditions are indeed necessary, as D(1, 2) is twice the squared
distance between p1 and p2, and, in accordance with Eqs. (1)-(3), a Cayley-
Menger determinant must be negative, positive, or strictly zero depending on
whether it involves three, four, or more than four points, respectively. A proof
that these are also sufficient conditions was given by Blumenthal in [5].

The previous theorem provides a system of polynomial constraints whose
solutions yield the possible spatial embeddings of a distance model: simply
select any four points defining a non-coplanar tetrahedron, and collect inequal-
ities (4)-(6) and equations (7)-(9). The fixed distances provide scalar entries in
the Cayley-Menger determinants, and the unspecified ones are the system’s un-
knowns. If, by some means, we are able to compute all possible values for such
unknowns, then it is straightforward to derive a set of Cartesian coordinates for
the points, using the method in [47] for example.

Actually, Sippl and Scheraga showed that the previous system can be further
simplified using Jacobi’s theorem [48]. Assuming all conditions in Eqs. (4)-(8)
hold, Eq. (9) can be substituted by

D∗(R, i, j) = 0, (10)

where

D∗(R, i, j) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 r1,2 r1,3 r1,4 r1,i 1
r2,1 0 r2,3 r2,4 r2,i 1
r3,1 r3,2 0 r3,4 r3,i 1
r4,1 r4,2 r4,3 0 r4,i 1
r1,j r2,j r3,j r4,j ri,j 1
1 1 1 1 1 0

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣
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Having one less row and column, D∗(R, i, j) contains much less monomi-
als (and usually less variables) than D(R, i, j), which yields faster evaluations
in the algorithm below. Thus, we will use condition (10), in substitution of
condition (9) above.

To summarize, the above conditions yield a polynomial system of the form

F(x) = 0, G(x) > 0, (11)

where F = (f1(x), . . . , fm(x)), G = (g1(x), . . . , gl(x)), x = (x1, . . . , xn), and
each function fi or gi is a Cayley-Menger or Sippl-Scheraga determinant in-
volving the variables x1, . . . , xn, which simply are new names for the unknown
distances ri,j of the model. The new names and the re-indexing facilitate the
explanations that follow, which describe a complete method to solve such equa-
tions efficiently.

4.2 A complete root-finding algorithm

This section provides an algorithm to isolate all solutions of System (11), based
on the Bézier clipping technique developed in [46]. The algorithm receives Sys-
tem (11) as input, together with a box B of R

n where its solutions are to be
sought for. This box is a rectangloid domain of the form B = [a1, b1] × · · · ×
[an, bn], where [ai, bi] denotes the closed real interval of possible values for the
xi variable. As output, the algorithm provides a collection of small sub-boxes
of B bounding all solutions. The user can control the precision of the output by
asking all box sides to be smaller than a threshold σ.

Observe that if δ is the sum of all known distances in the model, then all
unknown distances can be bound to lie in the interval [0, δ2], and we can set
B = [0, δ2]n initially. This trivial bound, however, can be further tightened using
efficient bound-smoothing techniques like [16] or [41]. Without loss of generality,
however, we will assume that all variables in System (11) vary within the [0, 1]
interval, so that B is actually the unit box U = [0, 1]n. Note that one can
always perform an affine parameter transformation to the x variables 2, to get
B scaled to U . This transformation also increases the numerical stability of the
computations, as all variables now take values in the same interval.

Initially, the algorithm converts the polynomials in System (11) to the so-
called Bernstein form. Using properties of such form, then, it reduces U as much
as possible, by narrowing some of its defining intervals, to remove regions of U
that contain no solution. The reduction is iterated until either (1) the box is
found to contain no solution, or (2) all box intervals are smaller than σ in width,
or (3) the reduction is insignificant. In the latter case the box is split into two
halves, and each of the halves is recursively reduced and split again in the same
manner. The algorithm, in sum, follows a classic branch-and-prune scheme, but
the pruning operation, as we will see, is quite elaborated.

The process is next described in detail. We first show how to translate Sys-
tem (11) to Bernstein form, then explain the root-finding procedure for a system
with just one equation, next give its generalization to arbitrary polynomial sys-
tems, and finally show how it can be readily parallelized.

2This can be done by applying a change of variables of the form x′

i = (xi − ai)/(bi − ai)
for i = 1, . . . , n on the input polynomials, using the multidimensional Horner scheme, for
example.
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Conversion to Bernstein form

Let mi be the maximum degree of xi in System (11) and define M = (m1, . . . ,mn).
It is well-known that RM [x], the set of polynomials in the variables x1, . . . , xn

of degree ≤ mi in xi, forms a vector space. Usually, any polynomial f(x) of
System (11) will be expressed in the monomial basis of such space, in the form

f(x) =

M
∑

I=0

aIx
I ,

where the sum extends to all multi-index combinations from 0 to M (all I =
(i1, . . . , in) such that 0 ≤ ik ≤ mk, for k = 1, . . . , n) and xI denotes the product
xi1

1 xi2
2 · · ·xin

n . The employed root-finding algorithm, however, requires these
polynomials to be given in the multivariate Bernstein basis [19], formed by the
multinomials BI,M (x), I = 0, . . . ,M , defined as

BI,M (x) = bi1,m1
(x1) · · · bin,mn

(xn),

where bi,m(x) =
(

i
m

)

xi(1−x)m−i denotes the ith Bernstein polynomial of degree
m. Therefore, we have to convert every polynomial in (11) to the form

f(x) =
M
∑

I=0

cIBI,M (x). (12)

This expression is the Bernstein form of f(x) and the coefficients cI are called
its control points relative to the unit box. The cI can easily be computed from
the aI using the formula

cI =

I
∑

J=0

(

I
J

)

(

M
J

)aJ , (13)

where the multi-index binomial coefficient for I = (i1, . . . , in) and J = (j1, . . . , jn)
is defined as

(

I

J

)

=

(

i1
j1

)

. . .

(

in
jn

)

.

The algorithm for one equation

Let us assume for a moment that System (11) only contains one equation, say
f(x) = 0. This limitation will be removed later. To compute all of its solutions
we first write f(x) in Bernstein form, as in Eq. (12). We then construct the
function F : R

n −→ R
n+1 defined as F (x) = (x1, . . . , xn, f(x)). Clearly, finding

the roots of f(x) is equivalent to detecting all points of the form (x, 0) in the
graph of F (x). However, the latter formulation is advantageous. First, the graph
of F (x) is an algebraic variety in R

n+1 whose points can be parameterized with
polynomials in Bernstein form as

F (x) =
M
∑

I=0

vIBI,M (x),

where vI = (i1/m1, i2/m2, . . . , in/mn, cI) are the control points of F (x) [46],
relative to the unit box of R

n+1. Second, to isolate all roots, we can use two
useful properties of the Bernstein form of F (x), illustrated in Fig. 4:
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• The convex-hull property dictates that when x ∈ [0, 1]n, F (x) is totally
contained within the convex hull of its control points vI . This follows
immediately from the values taken by the Bernstein polynomials BI,M

in the unit box. Since they are non-negative and form a partition of
unity [19], the linear combination of control points vI in

∑M
I=0

vIBI,M (x)
is actually a convex combination when x ∈ [0, 1]n. Actually, it is equally
possible to compute the control points of F (x) relative to a sub-box B ⊂
[0, 1]n and, again, it will happen that their convex hull will enclose the
graph of F (x) for x ∈ B′.

• The subdivision property states that if we are interested in the values that
F (x) takes within a sub-box B ⊂ [0, 1]n, then the control points relative
to B can be computed from the control points relative to [0, 1]n via the
Blossom algorithm for Bézier patches [19].

The important point to retain here is that, after subdivision, the new control
points for F (x) are closer to the graph of F (x) than the previous ones (Fig. 4,
right). These considerations permit the following recursive procedure to find all
roots of f(x) inside an arbitrary box B ⊆ [0, 1]n:

1. Initialization: Compute the control points vI of F (x) relative to the unit
box [0, 1]n, using Eq. (13).

2. Box reduction: Using the vI ’s and the subdivision property, compute
the control points of F (x) relative to B. Using the convex hull property,
reduce B to a smaller sub-box B′ ⊆ B still containing all solution points of
f(x) = 0 within B (see the details below). If B gets reduced to an empty
set then it contains no solution. In such case, mark B as an empty box.

3. Iterate reduction Set B = B′ and repeat Step 2 again until either (1) no
significant reduction of B′ with respect to B is achieved, or (2) B gets
empty.

4. Convergence test and box splitting: If B′ is not empty, see if it is
“sufficiently” small. For this, just check whether its sides are shorter than

a ab b0 01 1

v0

v1

v2

v3

v′

0

v′

1

v′

2

v′

3

x x

f(x) f(x)

Figure 4: The convex-hull and subdivision properties illustrated for a planar
curve of parametric form (x, f(x)) =

∑3
i=0 vibi,3. Left: for x ∈ [0, 1] the curve

is inside the convex hull of the control points v0, . . . , v3. Right: the control
points v′

i corresponding to a subinterval [a, b] ⊂ [0, 1] can be computed from the
vi’s using the subdivision property. The v′

i’s are closer to (x, f(x)) than the vi’s.
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a specified threshold σ. If it does, conclude that there is a root inside
it, mark it as a solution box, and return B′. Otherwise, split B′ into
two halves, yielding two equally-sized smaller boxes, and recursively apply
Steps 2 to 4 on each of such boxes.

Note that, on termination, this process will have explored a binary tree
of boxes whose internal nodes are boxes being split at some time, and whose
leaves are either solution or empty boxes. Solution boxes form a discrete
approximation of the solution set, as they enclose all of its points. Clearly, the
smaller the σ, the more accurate this approximation will be.

It remains to see how the box reduction in Step 2 can be performed. Al-
though there are several ways to implement it, leading to several variants of this
algorithm, we restrict here to the most effective of them, that uses linear pro-
gramming. Let C ⊂ R

n+1 denote the convex hull of the control points vI , and
let R be the region of intersection of C with the hyperplane {(x, 0) : x ∈ R

n}.
Then, we define B′ in Step 2 as the smallest rectangular box enclosing R. Al-
though the explicit computation of R is a complex and time-consuming task, it
is not necessary to carry it out explicitly if all we need is just a bounding box
for it. Indeed, R can be described with a set of linear equalities and inequalities
as follows. Since any point x ∈ R must be a convex combination of the control
points vI , there must be coefficients λI ∈ R such that

(x, 0) =

M
∑

I=0

λI vI , λI ≥ 0 ∀I, and

M
∑

I=0

λI = 1. (14)

Then, to obtain the bounds of B′ along dimension xi we only need to maximize
and minimize xi, subject to the constraints in Eqs. (14). These optimizations
are linear programming problems and, hence, they can be efficiently solved via
Simplex or interior-point methods. In sum, since there are n variables, the
computation of B′ in Step 2 involves solving a total of 2n linear programs.

The algorithm for general systems

The generalization of the previous strategy to the case of multiple equations and
inequalities only requires slight modifications. First, we redefine B′ in Step 2
as a sub-box of B that contains the simultaneous solutions of all equations and
inequalities within B. Second, to compute B′, note that while the solutions
of each individual equation f(x) = 0 are bound to lie in a region defined by
Eqs. (14), the solutions of each individual inequality g(x) > 0 are bound to lie
in the convex region defined by

(x, xn+1) =

M
∑

I=0

µI uI , xn+1 ≥ 0, µI ≥ 0 ∀I, and

M
∑

I=0

µI = 1, (15)

where the µI are real coefficients, xn+1 refers to the last coordinate of R
n+1,

and the uI are the control points of G(x) = (x, g(x)). Thus, to compute B′, we
simply need to minimize and maximize xi, i = 1, . . . , n, subject to all constraints
of the form of (14) and (15) simultaneously, gathered for all equations and
inequalities in System (11). As before, such linear programs can be solved using
standard linear programming tools.

As it turns out, the previous strategy works for polynomial systems of any
kind (either under-, well- or over-constrained) with no modification. Actually,
the algorithm usually performs better in over-constrained systems (i.e., with
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more equations than unknowns) than on equivalent well-constrained ones (with
an equal number of equations and unknowns). This is because redundant equa-
tions introduce additional constraints in the linear programs to be solved, thus
pruning larger portions of the search space at each iteration. This fact can
be exploited by introducing more Cayley-Menger equations than those strictly
induced by the reference tetrahedron.

Observe that the previous algorithm is complete, in the sense that there is a
guarantee that every solution point will be contained in at least one solution

box. Empirical tests show it is also correct, meaning that, for a small enough σ,
all solution boxes will contain at least one solution point. In other words,
the output is free of the cluster effect observed in other branch-and-prune ap-
proaches [35, 38]. Moreover, note also that, as the subdivision proceeds, the
roots of F can be moved away from their true positions due to the inevitable
round-off errors. Nevertheless, Theorem 5 in [20] ensures that the sensitivity of
the roots versus small perturbations of the control points decreases monotoni-
cally under subdivision, which makes the algorithm quite robust in this sense.

Parallelization

The previous algorithm can be easily parallelized to be run on multi-processor
computers. To this end, we can just implement the book-keeping of the search
tree on a selected “supervisor” processor which, at all times, keeps track of
the tree leafs. Every leaf that is neither an empty nor a solution box needs
to be further reduced. Since box reduction is the most time-consuming task,
and several boxes await for it simultaneously, it makes sense to perform the
reductions in parallel, by assigning each of them to any of the remaining “child”
processors. A child processor’s task is thus to receive a box from the supervisor,
to reduce it as much as possible solving the linear programs related to Eqs. (14)
and (15), and to return the reduced box back to the supervisor, which will
queue it for further splitting and reduction, if needed, or mark it as solution

or empty otherwise.

4.3 Computational cost

The computational cost of the algorithm can be analyzed by evaluating the
cost of one iteration and the number of iterations it will have to perform, all
in terms of the problem size. In our case, such size depends on two parameters
essentially: the number of points (v) and known distances (e) in the model. Let
us see how these parameters influence the two factors above.

Cost of one iteration

We will assume that an iteration encompasses the application of Steps 2 to 4 to a
particular box, and evaluate the worst-case cost of these steps using O-notation.

As for Step 2 (box reduction), note that it requires the solution of 2n linear
programs, where n is the number of variables in the distance model. The best
bound for the complexity of linear programming is due to Karmarkar [28], who
showed the problem can be solved in O(p3.5) time, where p is the number of
variables intervening in the program. Thus, the total cost of Step 2 in terms
of n and p is CStep 2 = O(np3.5). To evaluate this cost in terms of v and e we
consider the worst possible case, which occurs when only the six distances in
the reference tetrahedron R are known. In that situation, both n and p attain
the largest possible value. Clearly, n reaches the peak value n =

(

v
2

)

− 6 =
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O(v2). To evaluate p note that, in addition to the variables x1, . . . , xn, the
linear programs also involve the λI variables introduced by each Cayley-Menger
or Sippl-Scheraga determinant in Eqs. (14). For each determinant there are as
many λI variables as control points its Bernstein form requires. Determinants of
the type D(R, i) are quadratic in each variable and involve four variables each,
meaning they require 34 control points. Determinants of the type D∗(R, i, j)
are bilinear and involve nine variables each, meaning they require 29 control
points. Since there are v − 4 equations of the former determinant type, and
(

v−4
2

)

of the latter, we have p = n + (v − 4)34 +
(

v−4
2

)

29 = O(v2), and thus we
get CStep 2 = O(v9) in the worst case.

As for Steps 3 and 4, note that their operations (box copying, reduction
checking, emptiness verification, convergence test, and splitting) only require
visiting all box intervals once, and can hence be accomplished in time CStep 3 =
CStep 4 = O(n) = O(v2). In conclusion, the overall cost of one iteration is O(v9)
in the worst case, since it is dominated by the cost of the box reduction step.

Number of iterations

It is difficult to predict how many steps will the algorithm require to isolate all
solutions. The number of iterations largely depends on the chosen σ, and on
the dimension d of the solution set. Clearly, the smaller the σ, the larger the
number of box splittings and iterations required. Also, for a fixed σ, the amount
of solution boxes grows exponentially with d. Thus, for a specific problem, an
initial guess on the execution time is usually made on the basis of d only.

We can guess d from a global count of variables and constraints. Note that for
v vertices we have a total of 3v− 6 coordinates to be determined (the minus six
corresponding to the elimination of global isometries by anchoring the reference
tetrahedron to an absolute frame). Since there are e constraints, the dimension
of the solution set should be d = 3v − 6 − e in principle. This count, however,
is a mere estimation, as it does not take into account the connectivity graph of
points and constraints in any way, nor the values of the known distances. Even
if such graph had no over-constrained sub-graph, the count could fail to predict
d correctly [53]. It is worth mentioning, however, that if the distance model
corresponds to a bond-bending network (the bond network of a molecule, plus
extra distances locking the bond-bending angles), then there is strong evidence
that the previous count is correct (assuming generic dimension values and no
over-constrained parts). This is also conjectured for a corresponding count in
terms of the number of rigid bodies (b) and free torsion angles (h) of such model,
d = 6b−6−5h [53]. A formal proof of these statements is still lacking, however.

Extra information on the algorithm’s speed can be drawn from analyz-
ing the local convergence properties. It has been proven that a branch-and-
prune scheme like the one presented is quadratically convergent to each root if
d = 0 [46]. Intuitively, this means that once the algorithm is able to produce
a list of boxes containing a solution each, the error committed when approxi-
mating a solution by any point of its enclosing box decreases quadratically on
subsequent iterations. Thus, when the solution space is 0-dimensional, the al-
gorithm exhibits similar asymptotic performance than that of fast single-root
finding procedures like Newton-Raphson. Being a multi-root finder, however,
the algorithm will converge to all roots, and it is well-known that, yet in the
0-dimensional case, the number of such roots is exponential with v [8], which
renders the number of iterations at least exponential with v. Finally, we men-
tion that the determination of the convergence rate for d > 0 is still an open
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problem, but our empirical tests indicate that the algorithm converges linearly
to the roots if d = 1, and sub-linearly if d ≥ 2.

5 Study cases

The algorithm has been implemented in C. The current program employs the
parallel processing scheme explained previously, implemented via the Message
Passing Interface library [3], and the optimization problems involved in box
reduction are solved with the Simplex method implementation provided by the
GLPK package [32].

The program has been successfully tested on single- and multi-processor
machines. We next illustrate its performance on rigid loops, mobile loops, and
multi-loop molecules. In all cases, the algorithm outputs a collection of small
boxes enclosing all points of the conformational space. In rigid loops, the boxes
are isolated, with one box for each possible conformation. In mobile ones, they
form groups of adjacent boxes approximating the different connected compo-
nents of the conformational space. Such components correspond to continuous
self-motions of the molecule that maintain loop closure (also known as pseudo-
rotation paths), which can be easily simulated. Except on one indicated case
(where super-computation is used), all CPU times will be given for a single-
processor Intel Xeon PC, running at 3 GHz under Linux. Detailed numerical
output of all experiments can be obtained by contacting the authors.

5.1 Closing rigid loops

Rigid loops have zero-dimensional conformational spaces. They can only adopt a
finite number of conformations, which correspond to a number of isolated points
in distance space. To test the algorithm on such cases, we have applied it to the
disulfide bond, the tripeptide, and the 7-atom loops. The chosen instances of
such problems respectively had 18, 4, and 3 possible solutions. The algorithm
correctly found them in 825, 193, and 2.8 seconds, respectively, with the σ
threshold set to 0.001 Å2 in all cases. Although it has not been checked, these
times probably compare unfavorably with those of specific methods like [23, 52]
which, being based on resultants, should be faster. To have an idea, previous
work in Robotics [33] reports execution times of a few milliseconds when solving
the resultant of the most general s = 6 loop, which has the mentioned three
loops as special cases. However, we note that the strength of the presented
method is not its speed but, rather, its ability to deal with arbitrary single- or
multi-loop structures.

We shall work out the disulfide bond in detail. The tripeptide and 7-atom
loops are formulated and solved in an analogous way. Fig. 5a depicts this loop
and the distance model we employ. The model fixes the same atom-atom dis-
tances as the one in [52]. It is assumed that the 3D coordinates of NA, Cα

A,
Cα

B , and C ′

B are held fixed, while the positions of the four other atoms remain
to be determined. All torsion angles are to be determined too, except Ω, which
is fixed to 90◦ and determines the distance between the two Cβ atoms. The
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Figure 5: Some of the analyzed loops and their distance models. (a): The
disulfide bond. (b): Cyclohexane. (c): Bicyclohexane. (d): Adamantane. In
all models, a line joining two atoms indicates that the distance between them
is fixed. Thick lines correspond to covalent bonds. Except Ω in (a), all torsion
angles are a priori unknown.
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(a) (b) (c) (d)

Figure 6: Four stages of the root search performed on the disulfide-bond loop.
The x and y axes correspond to r2,5 and r3,7, respectively.

geometric parameters we chose yield

r1,2 = 2.1050, r7,8 = 2.3892, r5,7 = 7.9244,

r2,3 = 2.4106, r8,1 = 57.3503, r6,8 = 6.6307,

r3,4 = 3.2178, r1,3 = 6.1279, r3,6 = 16.6496,

r4,5 = 4.1544, r2,4 = 7.9290, r1,7 = 39.8786,

r5,6 = 3.2133, r3,5 = 10.0384, r2,8 = 45.0087,

r6,7 = 2.4105, r4,6 = 10.0348, r2,7 = 31.7352,

where ri,j denotes the squared distance between atoms i and j, in Å2. The
remaining distances, r4,8, r1,6, r4,7, r1,5, r1,4, r5,8, r2,5, r2,6, r3,7, and r3,8 are to
be determined by the algorithm.

To collect the embeddability conditions for this loop, we choose the reference
tetrahedron R defined by atoms NA, Cα

A, Cα
B , and C ′

B . In this case, since the
distances within R are all known and consistent, Eqs. (4)-(6) trivially hold and
only Eqs. (7), (8), and (10) are relevant. Then, the minimal system to be solved
is

D(1, 2, 7, 8, 3) = 0, D∗(1, 2, 7, 8, 3, 4) = 0,
D(1, 2, 7, 8, 4) = 0, D∗(1, 2, 7, 8, 3, 5) = 0,
D(1, 2, 7, 8, 5) = 0, D∗(1, 2, 7, 8, 3, 6) = 0,
D(1, 2, 7, 8, 6) = 0, D∗(1, 2, 7, 8, 4, 5) = 0,

D∗(1, 2, 7, 8, 4, 6) = 0,
D∗(1, 2, 7, 8, 5, 6) = 0.

Fig. 6 illustrates how the algorithm iteratively bounds all roots of these
equations. Since there are 10 distances to be determined, the search space
is 10-dimensional. The initial box B is defined by setting all its intervals to
[0, 40] Å2. The figure depicts the boxes created during intermediate stages of
the algorithm, projected on the r2,5–r3,7 plane. As shown, by iterating box
reduction and box splitting, the roots get progressively bounded with more and
more precision (Figs. 6a-c), until only one box per solution remains in the end
(Fig. 6d). A total of 18 solutions are found, listed in Table 1, which, as shown,
project onto 11 points on the r2,5–r3,7 plane.

The solutions must be properly interpreted. Since a distance model cannot
distinguish between a given conformation and its specular image (all pairwise
distances will be the same in both cases), each of the output boxes actually
corresponds to two possible Euclidean embeddings of such model. Thus, the 18
boxes correspond to 36 different conformations, divided into two groups of 18
conformations each, having positive and negative orientation on the reference
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Figure 7: The 18 conformations of the chosen disulfide bond loop, for Ω = ±90◦.
The bottom row shows a stereogram of all conformations overlaid.
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r4,8 r1,6 r4,7 r1,5 r1,4 r5,8 r2,5 r2,6 r3,7 r3,8

29.696 25.081 18.420 23.724 11.519 13.114 15.321 17.362 30.259 42.602
31.559 29.822 20.465 15.252 9.262 17.530 13.227 23.474 26.735 37.174
28.402 25.027 19.428 13.653 11.504 16.928 10.623 17.352 30.923 41.689
18.105 36.516 12.201 30.660 16.092 11.755 21.018 28.985 21.509 32.861
18.769 32.039 13.541 28.523 16.005 10.706 20.212 26.005 24.031 34.299
25.771 38.441 14.755 27.928 11.186 13.418 19.967 31.104 16.673 27.036
27.899 29.104 21.053 21.223 16.486 11.945 12.019 21.114 29.363 41.620
26.216 26.432 20.905 20.111 16.255 12.143 11.304 19.438 30.635 41.376
25.010 26.870 13.454 13.764 10.202 17.654 11.521 19.979 23.882 35.542
28.012 25.149 20.966 23.178 16.296 13.675 15.346 17.394 30.476 42.840
26.249 25.117 20.960 23.150 16.292 11.821 15.333 17.377 30.495 41.224
27.267 25.199 18.347 23.785 11.512 11.361 15.369 17.423 30.199 40.903
24.739 38.449 14.756 23.222 12.412 17.430 20.024 31.113 16.674 27.039
24.669 36.620 14.756 21.139 10.336 17.415 19.907 31.092 16.674 26.952
22.756 37.995 11.317 23.831 9.546 17.590 20.920 30.611 19.478 30.525
21.889 36.646 10.770 21.299 9.689 17.442 20.111 31.121 17.894 27.998
25.708 36.646 14.761 25.311 9.311 13.367 20.103 31.121 16.681 26.953
22.203 32.682 11.238 17.495 9.534 17.476 14.038 24.850 19.273 29.363

Table 1: Solutions of the disulfide-bond loop. All values are in Å2.

tetrahedron. The positively oriented ones are depicted in Fig. 7. Nine of them
correspond to solutions for Ω = 90◦, and the other nine for Ω = −90◦.

5.2 Closing mobile loops

The algorithm was also tested on cyclohexane, cycloheptane and cyclooctane,
which have conformational spaces of dimension 1, 1, and 2, respectively. The
spaces of the first two molecules were already mapped out completely by Crip-
pen using linearized embedding [13], and our results are in agreement with his.
It is worth mentioning that, while our technique is complete (it guarantees all
solutions are found) Crippen’s method relies on an initial grid sampling, and

.

. . .

..

“skew boat” form
(mobile)

“chair” form
(rigid)

r1,4

r2,5

r3,6

Figure 8: The conformational space of cyclohexane has one isolated point and
a cyclic one-dimensional path, corresponding to the chair and skew boat con-
formations, respectively. The intervals of the shown bounding box are [6.1, 9.3]
Å2 in all dimensions.
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hence may fail to find all solutions if the grid is not fine enough. Regarding cy-
clooctane, to our knowledge, this is the first time that a complete accurate map
of its conformational space is obtained. As admitted by Crippen, cyclooctane’s
surface is complicated to describe analytically and computationally difficult to
map out [13]. Linearized embedding could be used to isolate its conformational
space, but the obtained map would not be complete in the sense defined in this
paper. Moreover, other previous work on this molecule just focuses on find-
ing low-energy conformers with sampling and local search techniques [29, 42].
The map we provide is exhaustive (it contains all points of the conformational
space) and may thus be used to determine its topology, or derive the whole
(guaranteed) network of minimum-energy conformers and saddle point transi-
tions between them.

Fig. 5b illustrates how such single-loop cycloalkanes can be encoded as dis-
tance models. We only provide cyclohexane’s model, but models of larger car-
bon rings are analogous. Since all bond lengths and bond angles are fixed, and
all torsion angles can vary, the model is simply a closed sequence of “carbon
triangles”, pairwise sharing an edge. Carbon atoms are numbered 1, 2, 3, . . .
clockwise, following their order in the ring. The number of variable distances
to be determined is 3 in cyclohexane, 7 in cycloheptane and 12 in cyclooctane.
Note that hydrogen atoms need not be encoded in the models because they
impose no closure condition, and their position can be determined once the
conformation for the carbon ring is obtained.

For these loops, the reference R may be defined on three consecutive carbons
and one of the hydrogen atoms bonded to the middle one of such carbons. This,
however, obliges introducing this hydrogen as part of the distance model, which
increases the number of unknowns in the problem. An alternative is to iden-
tify four carbons in the ring whose enclosed volume never vanishes, and gather
the equations such reference generates. However, a 4-tuple with this property
does not exist in these rings. (The boat form of cyclohexane is a conformation
where this volume gets zero, for example.) On cyclohexane, nevertheless, the
two 4-tuples defined by four consecutive atoms, i, . . . , i + 3, and the next four,
i+1, . . . , i+4, never get coplanar simultaneously. On cycloheptane and cyclooc-
tane, this happens for three consecutive such tuples3. Thus, we may gather the
equations all of these references generate, saving, for a ring with c carbons, c−3
variables with respect to the previous formulation.

Fig. 8 shows the output boxes returned by the algorithm on the cyclohexane
loop, plotted in the space defined by r1,4, r2,5, and r3,6. The problem was solved
in 1.16 seconds, at σ = 0.1 Å2. As expected, the conformational space is formed
by an isolated point plus a closed curve of mobile conformations, corresponding
to the “chair” and “skew boat” forms of this molecule, respectively. For clarity,
hydrogen atoms are omitted in the boat-form conformations of the figure.

The output boxes for cycloheptane are shown in Fig. 9, computed at decreas-
ing σ values, and plotted on the r1,4 − r3,7 plane. The figure also illustrates the
sequence of box splittings and reductions performed by the algorithm, during
the computation of the rightmost plot in the middle row. Using three consec-
utive 4-tuples of carbons as references, this problem involves 18 equations in 7
unknowns and was solved in 11.2 minutes, at σ = 0.1 Å2. From the output, we
see the conformational space is formed by two cyclic curves (shown in yellow
and red). They correspond to the two possible forms of this molecule (the chair
and the boat) which are mobile and exhibit a one-dimensional pseudo-rotation

3This can be verified with the implemented software by solving System (11) for these
molecules, with the Cayley-Menger determinants of such tetrahedra equated to zero.
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path. Although the plots seems to indicate so, the curves do not intersect, but
this can only be realized by checking the adjacency relationships of the actual 7-
dimensional boxes. This corresponds to the known fact that one cannot convert
the chair to the boat form without deforming the bond lengths and angles.

We had to rely on supercomputation to obtain a complete map for cyclooc-
tane. Certainly, although the minimal formulation only involves 20 equations in
12 unknowns, being a two-dimensional hypersurface, the number of boxes ap-
proximating this space is huge for σ = 0.1 Å2. The estimated time to compute
this approximation is of 83 days on a Pentium Xeon PC at 3 GHz, but we were
able to complete it in 72 hours using the parallelized algorithm on 128 processors
of the Barcelona MareNostrum computer grid [1]. A total of 273626 solution
boxes were obtained, constituting (to the authors’ knowledge) the most com-
prehensive description to date of this molecule’s conformational space. Fig. 10
offers a view of these boxes, projected onto the r1,4, r2,5, and r3,6 dimensions.
To realize the complex topology of the approximated space, we have drawn the
boxes with semitransparent walls. A highly contorted surface arises, with many
self-intersections and singularity points, as can be appreciated from the two iso-
distance curves of such surface given in the figure. By analyzing all boxes, we
found they form a single connected component, meaning this molecule can move
from any two conformations without distorting all bond lengths and angles. This
contradicts previous conjectures stating that cyclooctane’s space could have two
or more connected components [13, 18].

5.3 Closing multiple intermingled loops

The presented methodology can also be used on multi-loop structures. We refer
here to interconnected loops where the motion of any loop influences the motion
of the others, so that the analysis of the overall conformational space is irre-
ducible to the analysis of the individual loop spaces. To illustrate the method’s
performance on them, we will employ it to derive the feasible conformations of
bicyclohexane and adamantane. The former molecule serves testing the perfor-
mance on a complex conformational space (with isolated conformations, one-
dimensional paths and bifurcation points), and both problems demonstrate the
method’s utility on finding the feasible conformations of a multi-loop molecule
without resorting to Dreiding models or energy-minimization techniques,

The bicyclohexane molecule can be seen as two cyclohexane loops sharing
one torsion angle. Its distance model is given in Fig. 5c. Here, we defined
the reference tetrahedron on carbons 3, 4, 5, and 7. Overall, the minimal
system involves 21 equations in 20 unknowns. Fig. 11a shows its solution boxes,
plotted on the space of r3,8, r3,10, and r4,7. They were computed for σ = 0.1
Å2 in 6.6 hours on the above-mentioned desktop PC. A detailed analysis of the
output reveals the boxes form 17 connected components, 15 of which are isolated
boxes, and the remaining two are one-dimensional box paths (shown in yellow
and blue in the figure). While the isolated boxes yield the indicated 15 rigid
conformations (3 chair-chair, 6 boat-chair, and 6 chair-boat forms), the one-
dimensional paths correspond to two different pseudo-rotations of the molecule
(with the two rings in boat form). Interestingly, the yellow path actually exhibits
two bifurcation points with four branches each. (Other apparent crossings are
not true bifurcations when analyzed in the full 20-dimensional distance space.)
In other words, when the molecule attains one of such points, its motion can
continue in either of four ways, as the figure indicates. In sum, the topology
of the conformational space is as depicted in Fig. 11b: 15 isolated points, two
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Figure 9: Top and middle: The conformational space of cycloheptane ob-
tained at different precisions. Red and yellow boxes correspond to the chair and
boat pseudo-rotation paths. Bottom: Box splittings and reductions performed
by the algorithm to obtain the rightmost plot of middle row.
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r1,4
r2,5

r3,6

π1

π1

π2

π2

Figure 10: Top: Boxes approximating the conformational space of cyclooctane,
plotted for their r1,4, r2,5 and r3,6 dimensions. The approximation contains
273626 boxes, which are here shown with semitransparent walls. Bottom:
Two slices of such space, corresponding to clipping the surface with the planes
π1 and π2 shown above. The left slice corresponds to fixing r3,6 = 8.5Å2, and
the right one to r3,6 = 11.5Å2.

1-dimensional paths, one of which containing two bifurcations connected by four
branches.

The adamantane molecule can be seen as four cyclohexane loops, arranged
as shown in Fig. 5d. Topologically, the network of covalent bonds forms a
tetrahedron, with four carbons placed on its vertices and six carbons placed
on its edges. For convenience, we call these two carbon types v-carbons and
e-carbons, respectively. To formulate the loop closure equations, we can employ
Eqs. (7), (8), and (10), with reference to the tetrahedron defined by any v-
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Figure 11: (a): Boxes approximating the conformational space of bicyclohexane.
Red boxes correspond to rigid conformations. They are somewhat enlarged to
appreciate them. Yellow and blue boxes correspond to the two mobile boat-boat
forms. Two bifurcation points exist on the yellow path, corresponding to the
shown twisted boat-boat conformations. (b): The actual topology of the space.
(c): The fifteen rigid conformations, with atoms 1, 2, and 3 held in a fixed
position.
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Study case v e n be bs ne st nbr tbr ttot

Disulfide 8 18 10 525 18 20 120x570 4045 0.20 825
Tripeptide 9 21 15 13 4 45 279x1410 121 1.59 193
7 atom 7 15 6 67 3 6 30x81 423 0.0062 2.8
Cyclohexane 6 12 3 231 116 6 23x63 553 0.0021 1.16
Cycloheptane 7 14 7 1671 651 15 79x445 4073 0.16 672
Cyclooctane 8 16 12 554717 273626 58 379x7122 1710778 4.2 7185268
Bicyclohexane 10 25 20 6441 2219 41 238x848 25968 0.92 23978
Adamantane 10 12 15 25 1 63 414x5146 202 5.86 1184

Table 2: Summary of the experiments. All times are given in CPU seconds,
for an Intel Xeon at 3 GHz. The time ttot for cyclooctane is estimated, as the
actual experiment was carried out in the MareNostrum computer grid [1]. See
the text for details.

carbon and its three neighboring atoms. This yields a minimal system of 21
equations in 15 unknowns, but, if we solve it considering all bond angles set to
the standard sp3 hybridization value, we rapidly find it has no solution. This is
because, being all overlapped, the loops impose more distance constraints than
really needed to fix the spatial positions of all atoms. Technically, the molecule
is said to be “redundantly rigid” or “overconstrained”, which means that almost
all bond angles render the loop-closure constraints unsatisfied. Angles satisfying
the loop constraints can be readily computed by the algorithm, however. By
symmetry, we may assume the angles (though unknown) are equal on all v- and
e-carbons, and we may replace their corresponding distances in the equations
by a single indeterminate variable. In this situation, the 21 equations contain
one more variable and yield one solution (in 19.7 minutes), confirming that the
only possible conformation of adamantane under these constraints is the one in
Fig. 5d.

As a summary, Table 2 provides several statistics illustrating the algorithm’s
computational cost. For each case, v is the number of points in the model, e
the number of known distances, n the number of variables, be the total amount
of explored boxes, bs the number of solution boxes, ne the number of equations
and inequalities (the minimal set, plus redundant equations to speed up the con-
vergence), st the size of the Simplex tableau (rows × columns), nbr the number
of “box reduction” steps performed, tbr the average time needed to complete
one box reduction, and ttot the total time required to solve the problem. All
times are given in seconds.

6 Conclusions

We have presented a method to derive complete maps of molecular loop con-
formational spaces. Such maps are given as box approximations enclosing all
points of the conformational space, and can be obtained at any desired preci-
sion. This means the method is exact, in the sense used in [21, 52], since the
returned conformations satisfy all loop closure constraints up to an error that
can be made arbitrarily small. Moreover, the paper has shown that the method
is also general (it can deal with single or multiple loops interconnected in an
arbitrary way) and complete (it converges to all possible solutions, even if they
form positive-dimensional sets).

The method encodes a multi-loop structure as a distance model, and com-
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putes the unknown distances of such model using a branch-and-prune scheme.
At its core, this scheme employs a new procedure to obtain feasibility inter-
vals for each unknown distance, assuming the remaining distances vary within
known intervals. Since we enforce the compatibility of all distances with the
Cayley-Menger equations involving up to six points, this procedure can be seen
as a generalization of previous bound-smoothing processes like [16] or [41], which
only enforce the compatibility with triangle or tetrangle inequalities (i.e., the
Cayley-Menger equations involving three or four points, respectively).

The method’s performance has been illustrated on conformational spaces
with dimensions ranging from zero to two. Its convergence rate is quadratic for
zero-dimensional spaces, linear for one-dimensional spaces, and sub-linear oth-
erwise. Thus, the algorithm is practical for low dimensions, but it clearly suffers
from the curse of dimensionality, since the amount of boxes needed to approx-
imate a space grows exponentially with its dimension. However, the fact that
the algorithm is easily parallelizable allows alleviating this problem. We have
shown, for example, that the challenging two-dimensional space of cyclooctane,
which could only be approximated by sampling techniques before, can now be
accurately isolated using a grid computer of moderate size. Experiments with
the algorithm have proved, for the first time, that this space is simply-connected,
an information that could not be confirmed with sampling methods. The al-
gorithm could still be useful on larger spaces, if combined with some sampling
technique. A simple way to do so would be to let the algorithm compute a
low-resolution approximation of the conformational space (as done in the first
two plots of Fig. 9) and then launch a stochastic or grid sampling method con-
fined to the returned boxes. Very likely, this would increase the probability of
convergence of the local searches performed by the sampling. This point clearly
deserves further attention.

It is worth mentioning that there are classes of distance models which can
be efficiently embedded in a constructive fashion, without resorting to iterative
techniques [25, 37]. In general, thus, it would be convenient to decompose
any model into constructable and non-constructable parts, in order to apply
the presented solver only to the latter. Although this point requires further
research, the fact that non-constructable distance models of arbitrary size exist
implies that a general solver will always require an iterative technique of some
sort. The paper’s emphasis, thus, has been on providing one such technique.

We remark finally that the loop closure problem arises in several domains,
on any situation where all postures of a ring of hinged bodies need to be known.
In Molecular Modelling such bodies are groups of atoms with fixed relative
positions, but the paper has shown that we also encounter them in Robotics,
as the rigid links of serial and parallel manipulators. Important techniques for
loop closure have been given from within both fields, but techniques obtained
by one community frequently remain unnoticed by the other, probably due to
the lack of previous work clarifying the correspondences between molecular and
robotic loops. To help filling this gap, we have made an effort not only to
survey the main advances in both fields, but also to summarize the principal
robot-molecule correspondences, and to provide tools to detect others.
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