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Abstract--Most geometric constraint problems can be
reduced to give coordinates to a set of points from a
subset of their pairwise distances. By exploiting this fact,
this paper presents an algorithm that solves geometric
constraint systems by iteratively reducing and expanding
the dimension of the problem. In general, these pro-
Jectiowbackprojection iterations permit tightening the
ranges for the possible solutions but, if at a given point
no progress is made, the algorithm bisects the search
space and proceeds recursively for both subproblems.
This branch-and-prune strategy is shown to converge to
all solutions.

I. INTRODUCTION

The resolution of systems of geometric constraints

has aroused interest in many areas of Robotics {con- -

tact formation between polyhedra, assembly planning,
forward/inverse kinematics of parallel/serial manipu-
lators, path planning of closed-loop kinematic chains,
etc.) and CAD/CAM (constraint-based sketching and
design, interactive placement of objects, etc. ). The
solution of such problems entails finding object po-
sitions and orientations that satisfy all established con-

straints simultaneously. Reviews of the methods pro- -

posed to solve this problem in the context of Robotics,
CAD/CAM and Molecular Conformation can be found
in [14], [10], and [8], respectively.

Most of the proposed methods consist in translat-
ing the original geometric problem into a system of
algebraic equations. In this paper, we depart from
this usual formulation in that our algorithm does not
rely on an algebrization of the problem. Contrarily,
all operations have a direct interpretation in terms of
geometric transformations in the embedding space of
the problem and variables are distances instead of
degrees of freedom linked to artificial reference frames.

Most direct and inverse kinematics problems can be
expressed in terms of systems of distance constraints
between points. Consider, for example, the problem of
finding all valid configurations of a closed 6R linkage,
a cycle of six binary links pairwise articuiated with
revolute joints Fig. la. A binary link can be modelled
by taking two points on each of its two revolute axes
and connecting them all with rigid bars to form a
tetrahedron. By doing so, a 6R linkage is easily trans-
lated into a ring of six tetrahedra, pairwise articulated
through a commen edge (Fig. 1b) which can be simply
regarded as a set of points that keep some pairwise

Fig. 1. A general OR linkage (a) and its translation into a
tetrahedral ring (b).

distances, Observe that the valid configurations of this
ring are in one-to-one correspondence with those of
the original 6R linkage.

The total number of pairwise distances between n
points are 5("2—_11 The above example involves 12
points and 66 distances from which 30 are known.
Likewise, it can be checked that the translation of
the forward kinematics the general Gough-Stewart

platform into distance constraints between points also
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involves 12 points and 66 distances. In this case 36 of
these distances are known. Therefore, if a computer
program, able to obtain all sets of values for the
unknown distances compatible with the known ones,
would be available, obtaining all possible selutions of
the inverse kinematics of a 6R robot or the forwards
kinematics of a Gough-Stewart platform would become
trivial.

Our problem can be more formally stated as fol-
lows: Given a graph G = (V,,, E), with node set
Vo = {1,...,n} and edge set E, and a real partial
symmetric matrix A = {(a;;) with pattern G and with
zero diagonal entries, determine whether A can be
completed to a Euclidean distance matrix [12]; that
is, whether there exist vectors Xr,...,%, € R for a
given d > 1 such that

ai; = ”x,; - J(J‘”2 “forall ije E,

where ||x|| denotes the Euclidean norm of x € ®¢. The
vectors Xj,...,Xy are then said to form a realization
of A. Unfortunately, this problem has been showa to be
NP-complete if ¢ = 1 and NP-hard if d > 2 [18]. Thus,
the best we can expect is to come up with an algorithm
that, despite its unavoidable exponential complexity,
works well for problems of reasonable size.

Euclidean distance matrices are a central notion in
the area of Distance Geometry [4]. Their study was
initiated -by Cayley in 1841 {5], but they were not
systematically studied until 1928, when K. Menger
showed how they could be used to study convexity
and other basic geometric problems [13]. Nowadays,
in dimension 3, these matrices play a fundamental role
in the study of molecular conformations in chemistry
t6}.

Given an arbitrary symmetric matrix with 0 en-
tries in its diagonal and strictly positive entries in
the rest, two different. criteria have been found to
decide whether it comesponds to a Euclidean distance
matrix. One derives from the theory of Cayley-Menger
determinants and the other from the theory of positive
semidefinite matrices. These two criteria lie at the
innermost of the two main families of algorithms
that have been proposed for solving the problem at
hand. We will briefly comment on them in the next
section. Nevertheless, it is: worth saying here that
all these algorithms lead to a rapid algebrization of
the problem while the one proposed in this paper
is based on clementary geometric operations, thus
keeping the geometric flavor of the problem. Despite its
geometric nature, it is closely related to the algorithm
tools developed for positive semidefinitive matrices.
This connection permits proving the correctness of the
proposed algorithm.

This paper is structured as follows. Section I pre-
pares -the ground for the sections that follow. To
keep it short we give the needed material in intuitive
terms without going into mathematical details. Section
_ IIT describes the two basic geometric operations in

which our algorithm is based; namely, projection and
backprojection. Section IV presents the algorithm and
Section V gives simple examples to clarify the main
points. Finally, section VI contains the conclusions and
points that deserve further research.

II. PRELIMINARIES
A. Incomplete distances matrices as interval matrices

The pairwise distances between n points, say
X1,X2,...,Xn, will be arranged in a8 symmetric matrix
of the form D° = (dfj), 4,j = 1,...,n, where d;;
is the Euclidean distance between x; and x;. In our
case, not all elements of D are known but lower
and upper bounds on them can readily be obtained.
For example, all unknown distances are necessarily
smaller than the sum of all known distances, say o.
Then, all unknown distances can be bound to lie in
the interval [0, o]. But this trivial bound can be further
tightened. In the literature this process is referred to
as bound-smoothing. In this process, given the upper
and lower bounds on a subset of pairwise distances.
triangle and/or tetrangle inequalities are used to obtain
the bounds to further tighten the existing ones [6, pp.
221-285].

Since any three points in the Euclidean space have
to satisfy the triangle inequality, bounds could be
tightened by applying this inequality to three points at a
time [7]. The distance bounds thus obtained can still be
tightened further by applying the tetrangle inequality
—the limits imposed on the six pairwise distances
among a set of four points (instead of three for the
triangle inequalities) [17].

As a consequence, in what follows, it is convenient
to assume that all entries in vectors and matrices are
real compact intervals, and that alt ordinary arithmetic
operations on them are carried out according to the
standard interval arithmetics [I}. That is, intervals are
added, subtracted, multiplied, etc. in such a way that
each computed interval is generated to contain the
unknown value of the quantity it represents.

Although it introduces a slight abuse of language,
vectors and matrices will be treated as sets which,
under certain circumstances, could be operated as such.
For example, two matrices of the same size.can be
intersected provided that the result is also a matrix with
real compact intervals.

B. Necessary and sufficient conditions of realizability

The elements of D have to satisfy certain algebraic
conditions to be the set of pairwise squared Euclidean
distances between n points in R¢. These conditions
are equalities, due to Cayley, and inequalities —such -
as the triangular and tetrangle inequalities— due to
Menger. Subsets of these equalities and inequalities can
be chosen to complete sets of necessary and sufficient
conditions for D° be an Euclidean distance matrix
[6]. Unfortunately, this characterization of realizability
does not seem useful for our purposes because it
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teads to a rapid algebrization of the problem and
we are interested on obtaining an algorithm based on
purely geometric constructions. For more details on an
algorithm for solving the problem at hand based on this
characterization of realizability, the reader is addressed
o [16].

To find an alternative characterization of the realiz-
ability, let us organize, without loss of generality, the
coordinates of xi1,...,X,—1 with reference to x,, in
the following (n ~ 1) % d matrix:

X — X
Xy — Xp
= . ?
Xn—1 — Xn

where row { contains the coordinates of the vector

" pointing from xy, 1o x;. Then, the element (7, 7) of the
(n—1)x(n—1) matrix XX* contains the inner product
(X; — Xp, X;
a Gram matrix, a positive semidefinite matrix whose
rank is equal to the dimension of the space in which
the n points are embedded (in our case d).

Fig. 2. The triangle formed by x;, x; and x,.

According to Fig. 2, and using the cosine theorem,
we can directly obtain the elements of G from those
of D° as follows:

G4, 4] = {xi = Xn, %; = %)

1
= dind;n cos By = %(d?n +d2, —d}). M

Schoenberg showed that D? is a proper Euclidean
matrix if, and conly if, G, obtained using (1), is
positive semidefinite and its rank gives the dimension
of the space in which the points can be embedded
[19]. This characterization of realizability has led to
several algorithms for solving the matrix completion
problem by semidefinite programming and variations
[3], [12], [15). The problem with these algorithms is
that they are only able to find a realization within the
provided ranges for the distances, while we are actually
interested in all possible realizations,

What is important for us is that the Schoenberg’s
characterization of realizability permits concluding that
the Gram matrix G can be uniguely factorized into the
product LL?, where L is an (n— 1) x d lower triangular
matrix because it is positive semidefinite of rank d.
This factorization can be obtained by the application

— Xp). Actually, G = XX* is known as-

of d steps of the Cholesky factorization algorithmn (see
[20, p. 188] for a standard presentation and [2] for the
analysis of the interval version of this algorithm), Then,
the rows of L: can be directly seen as the coordinates
of x3,...,%,—1 and therefore it is equivalent to X up
to rotations. This algebraic fact has a nice geometric
interpretation in which the algorithm given below is
based but, before we explain it, Iet us introduce the
two basic operation in which it is based.

III. THE TWO BASIC OPERATIONS

A. Projection

Fig. 3. Projecting distances onto the axis defined by XnX;.

Let us take as a reference the coordinate axis defined
by x.x: with origin at x, and pointing to x; in
the positive direction. Then, according to Fig. 3, the
projection dir, of d;, on this axis is, using the cosine
theorem,

- 1
din = dincos B = ——(df, + d3, —d3). @
2d1n

Hence,
dij = din ~ djn
- ),
and the orthogonal component d3; of d;; is
(¢)? = dfs ~
R N YR
Then, we can construct the vector
vii|=dm, i=1,...,n (5)

that contains the projections of d;; on the axis defined
by X,x,, and the matrix

Dl[’v]] = (dt',-)zx iJ = 1:' T (6)
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which is a distance matrix containing all squared
distances involved in DP projected onto the hyperplane
orthogonal 1o the axis defined by x,x;. Note that
D![1,n] = 0, and, as a consequence, D'[i,1] =
D, n],i=1,...,n, so that we can define D' [i, j] =
D{i,§), 4,5 = 1,--- ,n — 1, from which D* can be
straightforwardly recovered. Then, deciding whether n
points can be embedded in R¢ from their interpoint
distances boils down to decide whether n — 1 points
can be embedded in ®%~! from a new set of interpoint
distances obtained by projection. The above projection
process can be iteratively repeated so that D! yields
D? and v? and so on. Note that, after d iterations, if our
points can be embedded in ¢, D9 must be identically
null. Space limitations prevents us from showing that,
if DY is a point matrix, this is a necessary and sufficient
condition of realizability because v1,. .., v? provide a
Cholesky factorization of the Gram matrix associated
with DY,

Remind that all distances should be treated as in-
tervals and, as a consequence, all expressions above
should be evaluated using interval arithmetics.. There-
fore, the following facts must be taken into account:

1) The interval resulting from evaluating (4) can
contain negative values. Since they do not cor-
respond- to real ‘solutions, they can be mled
out from the result. If the resulting interval is
empty, the matrix being projected is not a proper
Euclidean matrix. :

2) If the interval for the denominator in (4) contains
the origin, the projection cannot be performed.
Another projection should be chosen to reduce
the dimension of the problem.

3} The direct interval evaluation of all projected

distances does not necessarily lead to a interval:

symmetric matrix. Then, projected matrices must
be regularized: their diagonal entries must be set
to zero and all other entries substituted by their
ranges intersected with their symmetric ones.

.81 ) X3 X1 . X3

Tay . (b)

Fig. 4. If there is only an unknown distance between four
points in ®? —represented here by a dotted segment—, two
possible realizations arise, up to congruences.

As an example, let us consider four points in R?
so that all distances between them but one are known.
In general, this leads to two possible realizations, as
shown in Fig. 4, up to congruences.

If the corresponding distance matrix is

0 16 36 di,
6 0 5 13

4 _
D'=13 5 0o 17])
2, 13 17T 0

the two realizations correspond te the values for d2,
of 5 and 23.461.

Let us suppose that d2, = [4.9,5.1]. This interval
contains the realization in Fig.4a. The application of
the first and second projections lead to:

- [0,0] [12.77,12.82)  [6.86,7.53).
D! = ([12.77,12.82] [0,0] [38.94,39.45]),
16.86,7.53]  [38.94,39.45) [6,0]
and
= 0,0 0,1.35
D?= ([0[,1.3}51 0.0 ])’

respectively. The last projection contains the null ma-
trix. In other words, DO might contain a realization in
R2 within the analyzed interval.

Now, let us suppose that %, = [5.1,5.2] where no
realization exists. This is readily detected because, after
the same two projections, one gets

= 0,0
D* = ([G.E%, 1!.5]

which does not contain the null matrix.

Finally, let us assume that d%, = {0.0001,21.0). In
this case, the second projection can no be performed
because the denominator in expression (4) includes the
origin. To proceed, we can change the projecting axis
by permuting rows and columns in the input distance
matrix.

[0.26, 1,50])
(0,0

B. Backprbjection

It can be checked that
D*~i, j] = D[4, 51 + (v¥[i] - v*[3])%,

fori,j=1,...,n— 1. Therefore, it is clear that D?-1
can be recovered from D¢ and v¥. This backprojection
operation can take as input D¢ and repeated till DY is
recovered. Since D¢ must be identically nuil for solu-
tions embedded in R?, one concludes that v1,...,v?
encodes all the information required to recover D°.
Actually, it can be shown that the rows of the (n—1) xd
matrix ’

vi[] 0 0

v1[2] v2[1] ses o

v [n-— 1] vz[n.— 2] v"[n‘— d]

provides a set of coordinates for x;,...,x,_1, respec-
tively, taking x, at the origin.
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Projection phase
D

I D® C DY biseet .
ese D° — D ND°

ﬁl

]“:)0
Backprojection phase

Fig. 5. The proposed algorithm iteratively projects and
backprojects the input distance matrix thus tightening the
bounds for the unknown distances. The process is repeated
till it is proved that the input matrix cannot contain any
realization or no relevant bound improvement is observed.

IV. THE ALGORITHM

If we want to find all the realizations in B¢ contained
in a given distance matrix DY, the proposed algorithm
first projects it  — 1 times yielding D?!, As a
byproduct of these prajections, we get d — 1 coordinate
vectors that permit recovering D° from D41,

All elements in D9~! should correspond to pairwise
distances between points on a line. When working
in R, the triangle inequality becomes an equality.
Then, we can tighten the involve interval distances
by imposing this triangle equality to all subsets of
three poiats. This can be done by adapting the distance
smoothing algorithm proposed in [7]. The following
algorithm, with O(r3) complexity, is thus obtained:

' for j=lton
for i=1 to n-1
for k=i+1 to n
dZ, = hull ((d2, N (di; — djx)*),
' (d% N (dij + djx)))
end
end
‘end

where the hull function returns the smallest interval
containing two given intervals.

Let D91 denote the result of applying the above
algorithm to D!, Now, D9~! can be backprojected,
using the obtained coordinate vectors, yielding DO.
Then, if D° N D° provides a reduction in the original
bounds, this process can be iterated for all possible
projections (by simply permuting indices) until either
one of the entries in the obtained distance matrix
gets empty, in which case we can conclude that our
distance matrix contains no realization, or the matrix
is “suofficiently” small, in which case it is considered
a solution, or the matrix cannot be “significantly”
reduced, in which case it is split into two matrices by
bisection. If the latter case occurs, the whole process
is repeated onto the newly created matrices, and to the
matrices recursively created thereafter, until we end
up with a collection of “small” matrices containing all
solutions. Fig. 5 provides an schematic representation
of this process for the three dimensional case.

The presented algorithm has been implemented in
MATLAB using the INTLAB toolbox [9] that imple-
ments the standard interval arithmetics.

V. EXAMPLES

Let us apply the above algorithm so that, besides
iterating for all possible projections, the same pro-
jection/backprojection iteration is repeated while a
reduction in the range for at least ome variable is
higher than 5%. When, during these iterations, the
ranges of all matrix entries go below 0.001, it is
considered that a valid realization has been reached.
Under this circumstances, for the example in Fig. 4
with d?, = [5.001,23.461], the algorithm detects that
no realization is contained in this interval in just 4
projection/backprojection iterations. If d2, = [0, 20],
the algorithm converges to the realization in Fig. 4a
(d3, = 5) after 47 iterations without bisecting. Only
4 iterations do not contribute to any improvement
in the ranges: If d3, = [0,100], the two possible
realizations are obtained after 64 iterations and a single
bisection. In this case 15 iterations do not contribute
to any improvement. It is important noticing that the
number of iterations needed to obtain these solutions
is "highly variable with the chosen sequence of pro-
jections/backprojections. In this case, for example, the
number of iterations drops to 12 by choosing a different
ordering.

2
d1? X2

“®

X4 X5

Fig. 6. Five points whose known pairwise squared distances
are shown close to the corresponding edge.

As another example, let us consider the five point
planar configuration shown in Fig. 6. This example
is interesting for analyzing the behavior of the pro-
posed algorithm near singularities. Observe that, for
0.1715 < d}, < 1, two possible realizations in R?
satisfy the set of distance constraints. For d2, =
0.1715, there is only cne realization. For df, = 1, an
infinite number of realizations arise because x5 and x4
can become coincident and x; can then freely rotate
around these two points. Setting d%, = 0.5 and all
unknown distances to the interval [0, 100}, two real-
izations are obtained, as expected, after 650 iterations
and 7 bisections (357 iterations do not contribute to
any improvement). Setting d3, = 0.999, i.e. quite near
to one of the two singularities, the two realizations are
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Fig. 7.
d?, = 1. Besides the encircled isolated realization at d3, =
2, a continuum arises at da, = 0.

still obtained after 331 iterations and 10 bisections.
In this case, 166 of these iterations do not provide
any improvement. Setting d?, = 0.1716, i.e. near
to the other singularity, the algorithm finds the two
realizations after 379 projections and only ! bisection.
In this case, 165 iterations are useless. For d'ﬁ, =1, one
isolated realization and a one-dimensional continuum
of realizations arise as shown in Fig. 6 thus proving
that the presented algorithm is immune to singularities

and that it can also be used to discretized continuous.

sets of realizations.

VI. CONCLUSIONS

An algorithm for solving systems of pairwise dis-
tances constraints between points, based on two sim-
ple geometric operations, has been presented. For all
analyzed problems, a single box is obtained for each
isolated realization. In other words, the cluster effect
has not been observed contrarily to what happened in
[16]. This is due to the fact that the presented algorithm
is based on a sequence of projection/backprojection
operations, each of them being a necessary and suf-
ficient condition of reahizability, instead of applying
a sequence of necessary conditions, one at a time.
The speed of convergence to the solutions greatly
depends on the chosen sequence of projections that are
iteratively repeated. The development of heuristics for
choosing this sequence is a point that deserves further
efforts.

The algorithm can be easily parallelized on a cluster-
like network of computers where each node work on a
different sequence of distance projections and all nodes
interchange the obtained bounds.
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