Exact interval propagation for the efficient solution of planar linkages

E. Celaya, T. Creemers, and L. Ros*
Institut de Robotica i Informatica Industrial (UPC-CSIC)
Llorens Artigas 4-6, 08028 Barcelona, Spain

Abstract— This paper presents an interval propagation
algorithm for variables in single-loop linkages. Given al-
lowed intervals of values for all variables, the algorithm
provides, for every variable, the exact interval of values for
which the linkage can actually be assembled. We show fur-
ther how this algorithm can be integrated in a branch-and-
bound search scheme, in order to solve the position analysis
of general multi-loop linkages. Experimental results are in-
cluded, comparing the method’s performance with that of
previous techniques given for the same task.

Keywords: Interval propagation, planar linkages, box approxima-
tion, loop closure equation, position analysis.

|. Introduction

In recent years there has been a growing interest in the
use of interval methods in kinematics, specially for the task
of finding the solutions of complex linkages which, when
performed analytically, may involve either a large number
of equations, or high-degree polynomials [1], [2], [3], [4],
[5]. When the solution space is continuous, interval meth-
ods can provide a discrete approximation of such space as a
set of enclosing boxes, which can be refined to the desired
precision [6], [7]. Advantages of interval methods include
their completeness, the fact that they do not require com-
plex algebraic manipulations, and that the solution set is
not populated with imaginary values.

At the core of interval methods there uses to be a branch
and bound algorithm: given an initial set of intervals for the
involved variables, which determine an initial box where
solutions will be sought, a bounding method is applied to
reduce the box by eliminating regions that cannot contain
a solution. When the bounding method cannot further re-
duce the box, it is split, usually in two halves (branches),
each of which is treated recursively by the same process.
The bounding method may be a general interval propaga-
tion algorithm applied to the kinematic equations of the
linkage [3], [4], [5], or a more specific method suited to
the problem [1], [6], [7].

Often, interval methods are, by design, subject to overes-
timation [8]. This fact prevents reducing a box as much as
possible before branching, which may result in important
efficiency losses. There is a trade-off between the accu-
racy of the bounding process and its efficiency: an exces-
sive complexity of the bounding algorithm may overshadow

* E-mails:celaya/creemers/ros@iri.upc.edu

its better accuracy in the reduction of a box, resulting in a
globally less efficient algorithm.

In this paper we present an exact, though simple, inter-
val propagation algorithm for variables in planar kinematic
loops with revolute pairs. The algorithm provides the exact
angle intervals for which a solution exists, assuming the re-
maining angles can vary within specified ranges. The paper
also shows how this algorithm may be embedded within a
branch-and-bound process in order to solve complex, multi-
loop linkages as described above. Comparisons with alter-
native general techniques for planar mechanisms show an
improvement in performance in many cases.

The paper is organized as follows. Section Il consid-
ers the case of single-loop linkages and derives the ex-
act intervals enclosing all joint angles for which the loop
closes, assuming all joints can freely rotate within the
[0,27] range. The following three sections compute the
same intervals, but assuming that further constraints hold
on the joint ranges: Section IIl assumes one joint is held
fixed, Section IV assumes one joint can only move within
a sub-interval of [0, 2x], and Section V assumes all joints
move within different sub-intervals each. Based on these
results, Section VI considers the case of multi-loop linkages
and derives a branch-and-bound algorithm able to isolate
all linkage configurations satisfying the required loop clo-
sure conditions. Section VI shows some experiments on an
implementation of this algorithm and, finally, Section VI1I
concludes the paper and highlights points deserving further
attention.

II. Solution intervalsin single loop linkages

For clarity purposes, we limit our analysis here to pla-
nar linkages with revolute joints. Similar results can be
obtained for planar linkages with both revolute and slider
joints, as well as for spherical linkages [9].

Given a single-loop planar linkage with n bars joined by
n revolute pairs, the goal is to determine the set of valid
values for each joint angle for which there exists a solution
(i.e., the linkage closes). We can express the closure condi-
tion of an n-bar planar linkage as

Rz(6,)Tx(l1) ... Rz(0,)Tx(l,) = I, (1)

where Rz are rotations around the z axis, Tx are transla-
tions along the z axis, I; are constant lengths, and 6; are the
(exterior) angles between them.

The simplest possible loop, with n =2, is trivial and has a
solution only if [y =I5, in which case we have 8, = 6, = 7.

For n = 3 the closure condition is given by the triangle
inequalities |l, — Ip| < I. <1, + Ip. By the cosine rule, we
have: 12 =12 + IZ + 2,1, cos(6y), and thus

2-12-1
= e %a "% 2
0y = arccos (TR A) 2

When the triangle inequalities hold, eq. (2) provides two
solutions for g, corresponding to the positive and negative
determinations of the arccos function. A single solution
exists when the argument of the arccos function is £1.

In the general case, for n > 3, an infinite number of so-
lutions is possible. The closure condition is that the lengths
[; are such that a closed polygon can be formed with them.
A way to express this condition that is convenient for our
purposes involves the length L of the segment connecting
joints (k — 1) and (k + 1), which is a function of 6, and
its adjacent link lengths /(,_1 and [(Fig. 1) given by the
cosine rule:

Ly =13y + L + 2ge—1)lx cos(0). (3)

Clearly, the condition for the polygon to close is that the
links [;,4 # (k—1), k can be made to reach some length Ly,
compatible with eq. (3), that is, some value in the interval
Iy = [|l(k=1) = Ik, l(k—1) + Ix]. To determine this, we
prove the following:

Lemma: The set {L,,} of lengths reachable by m links
of lengths /; joined by revolute joints are all the values in
the interval

I =[maz(0, Iy — Y L), Y L,
i=1,i#AM i=1
where [is the longest of the [;: Iy > ;i =1,...,m.

The proof is by induction: We assume that the result is
true for m — 1 links and prove it for m links. Clearly the

O(kt1)

l(k41)

lik-1)

Ok-1)

lk—2)
Fig. 1. A planar nR linkage.

maximum value for L,,, is reached when all angles = 0,
which corresponds to the upper bound of the interval I,,,.
Varying one or more of the 6; the length L,,, will vary con-
tinuously with a minimal value that we will determine next.
We distinguish two cases:

a) In the case of Iy > Z;’;L#M l;, the lower bound of
the interval I, is just{ar — Y-, ;. p, li, @nd this value can
be reached by making all 8; = 0, except for the two angles
next to /5y, for which we make 6y = 0(pr_1) = 7.

b) Inthe case Iar < 3737, ;5 Li, the lower bound of the
interval I,,, is 0, and we must prove that it can be reached
with the m links. This amounts to proving that the length
I5r can be reached with the remaining m — 1 links. Let [
be the second longest link: [p; > 1;,i =1,...,m;1 # M.
By induction hypothesis, the m — 1 links can reach any
length in the interval

m m
I(m—l) = [mam(O,lM: — z l,), Z lz]
i=1,i#M,iA M’ i=1,i#M
Now we have:
I > 0,
m
e >l >lbe = Y L
i=1,iAM,i#M'
and .
In < Z l;,
i=1,i#M

and therefore Iy € I(,—1), SO that according to the induc-
tion hypothesis, it can be effectively reached by the m — 1
links.

Next we prove the lemma for m = 3 to complete the
induction.

It is enough to prove that for m = 3, case b) is satisfied.
We rename the links so that [, < I, < I., and we assume
that I, <1, + I;.

We have:

|lb_la|slbslcsla+lb-

So, the triangle inequalities, the necessary and sufficient
conditions for three sides to form a triangle, are fulfilled
by links 1,,1,1., which means that the distance between
the ends of the links can be made equal to zero.

m|

Thus, the condition for Equation (1) to have a solution
is that the intervals I, and I,,, have a non-empty intersec-
tion. In this case, the set Sy of valid values for 6, can be
obtained from the interval I N I,,, of valid values for Ly
simply by transforming the bounds of this interval into the
corresponding values of 8y, using (3):

Ly =) — li)

4
2 p—1)lk @)

0, = arccos (

Since the arccos function is double-valued, we will ob-
tain two symmetric intervals S,j and S, corresponding to
its positive and negative determinations, respectively. So,
in general, Sy, is formed by two symmetric intervals that
may join into a single interval or even into the whole cir-
cumference in the case that these intervals reach the value
0or .

I11. Propagating asingle valueto other variables

If one variable 6; is fixed to a given value, we can read-
ily find the set of compatible values for the remaining vari-
ables. We just need to substitute this value in the loop equa-
tion and rewrite it so that it takes the form given in Eq. (1).
The new equation is equivalent to a new linkage withn — 1
bars, which can be solved for their variables as explained in
the previous section. The basic rule for rewriting the equa-
tion is the following: If variable 8; is fixed to a value «, the
loop equation will contain a subchain of the form:

Rz(0(i—1)) Tx(l(i—1)) Rz () Tx(l;)Rz(0(i41))... (5)
which can be substituted by
Rz(0(i—1) + B)Tx(la)RZ(0(it1) +7)-.. (6)

where

+\/l(z 1)—}—l + 2l (;_1)licosa

B = arctan 2(I;sina, l(;_1y +l; cosa)
v =a—f = arctan 2(l(;_1) sin a, l; + l(;_1) cos a)

Note that care must be taken to check whether the new
length [, is O, in which case the equation should be simpli-
fied in a trivial way. We denote by P;;, () the set of values
for 8}, obtained by propagation of the value 8; = a.

IV. Interval propagation between two variables

In some situations, a given variable may have been con-
strained to take not just a specific value, but any value inside
an interval I; = [a, B]. In this case, we are interested in the
set of all the allowed values for variable 6, that are compat-
ible with at least one value 8; € I;. We call this the interval
propagation from variable 6; to variable 8y, in a loop equa-
tion. In essence, what we need to obtain is the union of all
the intervals obtained for 8, after substituting variable 6;
for each value in I, that is, the set

zk [(1 U sz

$€[a,p]

We next devise an interval propagation algorithm to com-
pute P ([a, B]) in an efficient way.

Let us consider the graph of P, (6;) (Fig. 2). As we have
seen, for each value ¢ of 6;, the set of compatible values
of 4, is composed by two symmetric intervals, which we

denote by P;f (¢) and P, (¢), respectively. In what follows
we use the notation P, (¢), with o = +1, to denote them.

We define the functions Lg, (6;) and U7, (6;) as the lower
and upper values, respectively, of P7,(6;). It is clear that,
if S7 = [I7,u{] is the corresponding determination of the
whole feasible set S}, for 8, then the minimum value taken
by the function [,{#;) isf, and the maximum value taken
by the function U, (6;) is uf.

211

w,;mm | 77777777777]

0 a2 i B 3m2 o

0;

Fig. 2. Graph P;(8;) for variables §; = 62 and 8}, = 5 for the equation
R2(61)Tz(4)Rz(02)Tz(8)Rz(03)Tx(1) Rz(04)Tx(8) Rz(05)Tx(6) =
I, and propagation of an interval [«, 3].

Now observe that the graph of P;;(6;) can also be inter-
preted as the graph of the inverse mapping Py;(6x) when
looking at it rotated 90°, so, any horizontal slice of the fig-
ure must also consist of two (connected or not) symmet-
ric intervals. This fact allows us to establish that [{6;)
(resp. U5, (6;)) cannot have a local minimum (resp. maxi-
mum) with a value different from the global one because,
in such case, the inverse mapping would not show the re-
quired symmetry. Thus we can assert that if [.{6;) (resp.
U?$,.(6;)) has a local minimum (resp. maximum), its value is
precisely that of the lower bound Ij (resp. the upper bound

uy) of the interval S7 .

Since Pg,(6;) is a continuous mapping, in the sense that
its bounding functions [,{¢;) and UZ,(6;) are continuous,
Pg. ([, 3]) will consist of a single interval (17,17, ,.],
whose bounds are given by the extrema of [,{#;) and

5.(6;) inthe interval [, 3]

Yin = mMin(L§(0:)); ¢4, = max(U (6:)).
[e.0] [e.0]
Thus, all we need is to determine these two extreme val-
ues. According to the Extreme Value Theorem, the lower
value taken by the function [{6;) in the interval [a, §]

occurs either at an interior local minimum point or at one
bound of the interval. Since we know that the only possi-
ble value for a local minimum is [7, it is enough to check
whether this value is included in P7, ([, 8]) or not: If it is,
theny? . =17, otherwise, ¥7 . = min([{a), L{53))
Checking whether I7 is included in P7, ([, 5]) can be done
by computing its anti-image through the inverse propa-
gation P;(I7) and checking whether its intersection with
[, 8] is empty or not. An analogous reasoning can be done
for the upper extreme 97, , ...

Summarizing, the algorithm for interval propagation
from 6; to 6y, taking into account the positive and negative
determinations, requires finding the solution set for the out-
put variable 6, according to the method presented in Sec-
tion 11, the propagation of the two bounds of the interval of
the input variable 6; as explained in Section 111, and, even-
tually, some additional propagations of the bounding values
of the output variable 8.

V. Multipleinterval propagation

The propagation algorithm described above is not
enough for our purposes. Consider a situation in which two
variables, 6; and 8;, have been constrained to the intervals
I; and I, respectively, and we want to find the set of com-
patible values for 6;,. Obviously, a compatible value £ of 6y,
must satisfy & € P;(I;) NP, (I;). However, this condition
is not sufficient. To show this, let us assume that the equa-
tion has two discrete solutions for 85, = &, the first yielding
{6; = ¢;";6; = ¢ } and the second {8; = ¢;;60; = ¢; }.
If 6; is constrained to an interval including ¢;", but not ¢,

and 6; is constrained to an interval including ¢;, but not

z/;j, then none of the solutions satisfies both constraints at
the same time, and £ is not compatible with them despite
the fact that £ € Py, (Iz) N ij (IJ)

What we need in such situations is a multiple interval
propagation algorithm that provides the set of values of a
variable that are simultaneously compatible with all the in-
terval constraints imposed on other variables. The general
problem can be posed in this way: given a set of variables®
01,...,0, and a set of interval constraints I ,...,I. for
them, find the set Py, x(I1,...,I,) of values of) for
which there is at least one solutionwith 8, € I, ..., 8, € I,..

To find this set, we next generalize the algorithm for sin-
gle interval propagation explained in Section 1V. In this
case, we must consider the graph of Py, x(61,...,6;),
which, as before, is composed of two symmetric parts
Py 5 (01,...,0:), witho = £1.

Like in the » = 1 case, these functions satisfy the im-
portant property that all their local extrema are also global
extrema. This can be directly proved for the case r = 2
corresponding to P;; x (6;,0;), and, for higher dimensions,
by induction on the number of input variables r. The proof,

Lwithout loss of generality, and to ease the notation, we rename the
input variables with consecutive indices 1 to r

that will not be reproduced here for space limitations, is
based on two main facts:

1. The projection of P;; ;. (6;,6;) on the 6;-6; plane is the
graph of Py (6;), which we already know satisfies the prop-
erty.

2. The 2-dimensional slice of the graph P;; 1. (6;,6;) at6; =
1, defined as the function P;; (¢, 6;), corresponds to the
graph P (6;) of the linkage that results from fixing 6; =
1. Therefore, the slice must also satisfy the property of
equivalence between local and global extrema.

In sketch, the proof shows that the existence of an ex-
treme of P;;;(0;,0;) in a point (6;,0;) = (3, ¢) with
the value 8, = =z, implies that the 2-dimensional slice of
P;; 1(6:,6;) at 0; = 1) also shows this extreme in 6; = ¢,
and this implies that the projection P;;(6;) also presents
this extreme in §; = . It follows that the extreme value z
must be a global extreme of P;; 1 (6;,6;).

Hence, we can apply the Extreme Value Theorem in
the box Iy x ... xI. of PY ,(6:,...,6,). Exactly as
in Section 1V, we have to find the extreme values ¢,
and 7,,., which must be either {J, w{, or the ex-
treme values of P7 ,(6:,...,6,) at the boundary of
the box. The only difficulty is that, in this case, the
boundary of the box, instead of consisting of the two
bounds of an interval, is composed of 2r hyperplanes, or
boxes of dimension » — 1. Thus, the problem reduces
to computing the extreme values in each of these (r—1)-
dimensional boxes. For this, we just need to compute
Py vy kT Igo1y, Igays - 1), e, the
propagation of all intervals except I; in the equation ob-
tained by substituting 8; with the value that defines this hy-
perplane. Thus, we can reduce the problem of propagation
of r intervals to 2r problems of propagation of » — 1 in-
tervals. If we apply this reduction recursively, the problem
will be reduced to computing a number of single interval
propagations, which we already know how to perform.

This multiple interval propagation algorithm will be used
below to infer feasibility ranges for n variables, constrained
to a given n-dimensional box I; x ... x I,,. To this end,
for each variable 6y, a propagation of the intervals for the
remaining variables towards 6y, is performed, and the result
is then intersected with interval Ij,. Note that each process
of propagation and intersection can give rise to one or more
disjoint intervals.

V1. Solving multi-loop linkages

The preceding section has showed how to compute ex-
act ranges for all angles of a single loop. General link-
ages, though, may consist of multiple interconnected loops
(Fig. 3), and the angles must be compatible with all loop
equations simultaneously. No procedure is known to com-
pute the exact ranges in such cases but, as shown next, the
previous propagation scheme can be used to estimate them
iteratively, and also to isolate all linkage configurations sat-
isfying the equations.

To derive feasibility ranges for all angles we proceed as
follows. We start gathering all equations of the form of
Eq. (1) for all loops of the linkage?. For each equation, we
(1) label as shared those angles appearing in some other
equation, and (2) infer feasibility ranges for all shared an-
gles, as described in Section V above. Any time an interval
is reduced as a consequence of such inference, its angle is
said to have been “touched”. The touching of an angle will
trigger all constraints it appears in (except the one that pro-
voked the touch), and all triggered constraints are kept on
a “wake-up” stack. To ensure that all possible propagations
are performed, we repeatedly select one equation from the
stack, infer new ranges for its shared angles, and trigger any
other equations involving them, until the stack gets empty.
The latter situation is known as a fixpoint of the propagation
process [11], meaning that all intervals are locally consis-
tent with each equation.

To isolate all feasible configurations, we embed the pre-
vious process within a standard branch-and-bound algo-
rithm. Two operators will be employed to this end, TRIM-
Box and SpLIT-Box. The former prunes portions of a
box containing no solution, using the propagation mecha-
nism of the previous paragraph. The latter simply bisects a
box into two sub-boxes by dividing its largest interval at its
midpoint. Initially, the algorithm applies TRIM-BoX to the
whole box [0, 27]™. As mentioned earlier, such reduction
may yield several “child” boxes in general, and either one
of three actions is applied on each one of them:

1. If the box has an empty interval, then it contains no so-
lution and we label it as empty.

2. If the box is “small enough”, then we label it as a solu-
tion box.

3. If the box is not “small enough”, then we bisect it in into
two sub-boxes using SPLIT-BOX.

If the last case occurs, the whole process is recursively ap-
plied to the new sub-boxes until all non-empty boxes are
“small enough”. A small-enough box is defined as one for
which all its intervals are shorter than a given threshold o.

Note that, on termination, this process will have ex-
plored a tree of boxes whose internal nodes are boxes be-
ing split at some time, and whose leaves are either solution
or empty boxes. Solution boxes form an approximation of
the linkage configuration space and are returned as output.
Note also that the accuracy of such output can be adjusted
through the o threshold. In other words, the lower the cho-
sen o, the less the error committed when approximating a
solution by any point inside a box.

VIIl. Experiments

The previous algorithm has been implemented in C++,
and all CPU times will be given for a Pentium IV processor

21n practice, only the equations of a loop basis of the linkage are suf-
ficient. Note however that the longer a loop is, the less constrained its
angles result. Thus, among all possible loop bases, the minimal ones are
preferred in practice [10], as they keep the loop lengths to a minimum

at 3.4 GHz, under Windows XP.

Results for two experiments are provided. The first one
solves the position analysis of the “double butterfly” link-
age (Fig. 3) when 65 is a fixed, known angle, which yields a
finite number of isolated solutions. The second one solves
the same linkage but assuming that 65 is a free variable,
yielding a 1-dimensional continuum of solutions. The same
benchmarks have been used previously to show the perfor-
mance of elimination [12], [13], continuation [14], [15],
and relaxation techniques [7]. We compare our results with
those derived by such techniques, and employ the same
linkage dimensions used in these papers. Namely:

ag=7 by=13 o =36.87°
ar=7 b1 =6 v = 22.62°
az=5 by=3 7 =53.13°
ag=3 bg=2 Y6 = 36.87°
Is=7 14,=9 Is=12 [y =11

A. Arigid butterfly

The number of solutions of the double butterfly linkage
varies depending on the choice of driving joint and the an-
gle given to it. If we set 3 = 75.75°, the number of ob-
tained solutions is six [7], [12], [13]. They are given in Ta-
ble I. Actually the cited papers employ absolute orientation
angles for the links. Fixing our 83 = 75.75° corresponds
to fixing 8¢ = 67.38° in those works. We note that, while
continuation and elimination methods must filter the solu-
tions among the eighteen possible complex roots, the one
given here directly provides the six real solutions shown in
the table. The obtained solutions are in accordance with
those in [7], [12], [13].

Due to the nature of the algorithm all solutions are ob-
tained as intervals that bound them, which allows estimat-

~

-—-7 01
Fig. 3. The double butterfly linkage involves three interconnected loops.

BB A B o i

0, [3.04335,3.94335] [3.71220,3.71220] [2.48312, 2.48318]
65 3 77017, 3.77017 3 35355, 3.35356 3 95859, 3. 95862
64 [5.51396,5.51396] [5.99340, 5.99340] [2.63872, 2.63877
05 [3.83643,3.83643] [3.97137,3.97138] [3.60317,3.60322
66 [1.86725,1.86726] [2.70201,2.70202] [0.68130, 0.68133
07 [4.69841,4.69841] [3.25715,3.25716] [5.28944, 5.28951]
63 [2.54508,2.54508] [1.46203, 1.46204] [1.78324,1.78326
69 [0.58905,0.58906] [4.25173, 4.25174] [5.00799, 5.00809
610 [5.22246,5.22246] [0.66219, 0.66222] [4.67617, 4.67623

[2.49296, 2.49301] [3.03749, 3.03750] [3.03639, 3.03642]
3 96481, 3. 96482 1 51266, 1. 51266 2 19170, 2.19172
3.02025, 3.02028 2.06012, 2.06014 2.22075, 2.22080
3.13912, 3.13917 1.19287, 1.19287 0.60626, 0.60635
5.53558, 5.53563 3.02443, 3.02445 3.27436, 3.27438
[0.97042,0.97049] [5.71000, 5.71002] [3.43216, 3.43218]
2.82075, 2.82078 5.74756, 5.74760 5.33808, 5.33812
1.27232,1.27238 1.25375, 1.25376 4.26191, 4.26195
3.16983, 3.16988 2.82874, 2.82876 5.01411, 5.01414

TABLE I. The six possible configurations of the double butterfly linkage for 3 =

ing the error with respect to the exact position of the roots.
This error must be equal or less than the chosen ¢ thresh-
old, which was set to 10~* in this case. The solutions were
found in 0.83 sec of CPU time, after processing 11 boxes.
From them, only the six shown in Table | were considered
as solutions (thus returning the minimum possible number
of boxes) and 5 boxes were found to be empty.

It is difficult to tell at this point whether the pre-
sented algorithm outperforms the previous methods based
on Dixon’s resultant [12], [13], mainly because no statistics
are given in this respect in those works, and we have found
no publicly available package implementing them. We have
checked, though, that our method converges in substantially
shorter times than those used by the continuation method
in [14], [15], using the implementation available from [16],
which spent about 8 seconds of CPU time on the same ex-
ample, running on the same machine. We remark, though,
that we are comparing our algorithm with a general-purpose
solver targeted to arbitrary systems of algebraic equations,
and that a better performance of our algorithm was to be ex-
pected, given that we exploit the specific structure of the ob-
tained equations. Moreover, in the experiments done on this
and other rigid linkages, the algorithm converges at similar
rates than those of relaxation methods [7], [17].

B. A mobile butterfly

If we now free A3, a one dimensional continuum of so-
lutions is obtained. Figure 4 depicts the projection of the
returned boxes onto the 83-6, plane, on three different runs
of the algorithm, at decreasing values of the o parameter.
If the algorithm is exploring in breadth-first order, the first
two plots can also be interpreted as earlier stages of the run
for the third case (¢ = 0.005). In every plot we indicate the
o threshold, the CPU time spent (t), the number of solution
boxes returned (n), and the number of empty boxes found
(e).

We note that, although from the plots it seems that the
different solution branches cross at many points, these are
not true bifurcations of the linkage, as revealed by observ-
ing other 2D projections of the same output. Actually, four
disjoint cyclic paths appear, corresponding to the four pos-

1.322 rad (75.75°).

sible ways to assemble this mobile mechanism. The labels
in Figure 4-(c) help identifying such paths.

Elimination [12], [13] or continuation-based meth-
ods [14], [15] cannot be directly applied to this mobile
mechanism. Such methods are only applicable when the so-
lution space has a finite number of points, and are complete
in such cases. When infinite points are present they can
also be used to obtain plots similar to the one in Figure 4-
(c) by sampling one angle and solving for the rest itera-
tively. This approach would yield accurate plots for dense-
enough samplings, but it would miss important points in
some cases. For example, on linkages having both rigid
and mobile assembly modes it would fail to detect the for-
mer ones. Being isolated points in configuration space,
those modes would never get sampled in general. In other
words, elimination or continuation-based methods are not
even resolution-complete in such cases. To the authors’
knowledge, the only box approximations reported so far
for this linkage are those in [7], [17], derived with a lin-
ear relaxation technique. A remarkable difference is that
such relaxation technique employs absolute orientation an-
gles for the links, while the present technique uses the rel-
ative angles between them, what allows a natural definition
of constraints in the joints’ ranges of movement.

VIII.

This work fits within a larger project aimed at providing
a general tool for the position analysis of arbitrary multi-
loop linkages, using branch-and-bound algorithms of the
kind presented. At the core of such algorithms there is al-
ways a procedure for bounding the solution set of the link-
age within a rectangular box of the search space. The “de-
gree of exactness” of this procedure is crucial to attain effi-
ciency in the search process. Note that, ideally, one would
like to generate a search tree without empty boxes, and this
can only be assured if the bounding procedure always re-
turns the exact bounds. To the authors’ knowledge, this is
the first time that an exact bounding procedure is given for
planar single-loop linkages. This is clearly an advantage
over other related algorithms [6], [7], [17], which are inex-
act even for such linkages. A limitation of the procedure

Conclusions

with respect to [6], [7], [17], however, is that in multi-loop
linkages only local consistency is enforced, meaning that
the returned intervals are only consistent with each equation
separately. This may slow down the convergence to stable
boxes and, eventually, produce branches of the search tree
containing empty boxes, decreasing the overall efficiency
and the quality of the output. The improvement of the con-
vergence and the extension of the technique to spherical and
spatial linkages are part of the authors’ current efforts.

Acknowledgements

This work has been partially supported by the Spanish
Ministry of Education and Science through the 1+D project
DPI12004-07358, by the CTP under project 20061 TT-10004,
and by I3 program funds supporting the third author.

References

[1] E. Celaya, “Geometric reasoning for the determination of the posi-
tion of objects linked by spatial relationships,” Ph.D. dissertation,
Technical University of Catalonia, Barcelona, 1992.

[2] A. Castellet, “Solving inverse kinematics problems using interval
methods,” Ph.D. dissertation, Technical University of Catalonia,
1998.

[3] O. Didrit, M. Petitot, and E. Walter, “Guaranteed solution of direct
kinematic problems for general configurations of parallel manipula-
tors,” |EEE Trans. on Robotics and Automation, vol. 14, no. 2, pp.
259-266, 1998.

[4] R.S.Rao, A. Asaithambi, and S. K. Agrawal, “Inverse kinematic so-
lution of robot manipulators using interval analysis,” ASME Journal
of Mechanical Design, vol. 120, pp. 147-150, 1998.

[5] J.-P. Merlet, “Solving the forward kinematics of a gough-type paral-
lel manipulator with interval analysis,” The International Journal of
Robotics Research, vol. 23, no. 3, pp. 221-235, 2004.

[6] J. M. Porta, L. Ros, and F. Thomas, “Multi-loop position analysis
via iterative linear programming,” in Proc. of Robotics, Science, and
Systems, 2006.

[7] J. M. Porta, L. Ros, T. Creemers, and F. Thomas, “Box approxi-
mations of planar linkage configuration spaces,” ASME Journal of
Mechanical Design, accepted for publication.

[8] E. Hansen, Global Optimization Using Interval Analysis. New
York: Dekker, 1992.

[9] E. Celaya and C. Torras, “On finding the set of inverse kinematic so-
lutions for redundant manipulators,” in Computational Kinematics,
J. Angeles, G. Hommel, and P. Kovacs, Eds. Kluwer Academic
Publishers, 1993, pp. 85-94.

[10] D. M. Chickering, D. Geiger, and D. Heckerman, “On finding a cycle
basis with a shortest maximal cycle,” Information Processing Let-
ters, no. 54, pp. 55-58, 1994.

[11] K. R. Apt, “The essence of constraint propagation,” Theoretical
Computer Science, vol. 221, no. 1-2, pp. 179-210, 1999.

[12] J. Nielsen and B. Roth, “Solving the input/output problem for planar
mechanisms,” ASME Journal of Mechanical Design, vol. 121, pp.
206-211, June 1999.

[13] C. W. Wampler, “Solving the kinematics of planar mechanisms by
Dixon’s determinant and a complex plane formulation,” ASME Jour-
nal of Mechanical Design, vol. 123, pp. 382-387, September 2001.

[14] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver
for polynomial systems by homotopy continuation,” ACM Transac-
tions on Mathematical Software, vol. 25, no. 2, pp. 251-276, 1999.

[15] A. J. Sommese, J. Verschelde, and C. W. Wampler, “Advances in
polynomial continuation for solving problems in kinematics,” ASME
Journal of Mechanical Design, vol. 126, pp. 262-268, March 2004.

[16] Jan Verschelde’s home page, http://www.math.uic.edu/ jan.

[17] T. Creemers, J. M. Porta, L. Ros, and F. Thomas, “Fast multiresolu-
tive approximations of planar linkage configuration spaces,” in Proc.
of the IEEE Int. Conf. on Rob. and Aut., 2006, pp. 1511-1517.

:

o =0.005,t = 1840, ny, = 18864, n, = 7931

Fig. 4. Output boxes at increasing resolution. The horizontal and vertical
axes correspond to 63 and 4, respectively, spanning the range [0, 27] in
all cases. Labels in figure (c) help identifying the four connected compo-
nents of this linkage configuration space.

