
Visually-Guided Robot Navigation: From
Artificial To Natural Landmarks

Enric Celaya, Jose-Luis Albarral, Pablo Jiménez, and Carme Torras
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Summary. Landmark-based navigation in unknown unstructured environments is
far from solved. The bottleneck nowadays seems to be the fast detection of reliable
visual references in the image stream as the robot moves. In our research, we have
decoupled the navigation issues from this visual bottleneck, by first using artificial
landmarks that could be easily detected and identified. Once we had a navigation
system working, we developed a strategy to detect and track salient regions along
image streams by just performing on-line pixel sampling. This strategy continuously
updates the mean and covariances of the salient regions, as well as creates, deletes
and merges regions according to the sample flow. Regions detected as salient can be
considered as potential landmarks to be used in the navigation task.

1 Introduction

The robotics community has devoted many efforts to specific indoor naviga-
tion schemes for wheeled robots, often strongly dependent on structured visual
features [1]. Nowadays, the demand for outdoor applications is increasing, and
the research attention is shifting towards more general, though perhaps less
accurate, navigation strategies that rely on unstructured visual cues.

Not only unstructured environments pose new challenges, but also the
mobility capabilities of the robots themselves -outdoor robots usually use
legs, tracks, or deformable frames- imply that concepts like what is actually
an obstacle have to be reconsidered. Even the very goal of outdoor navigation
is usually different from that of indoors. The typical goal in indoor navigation
applications is to reach a desired place in a previously known environment,
usually using a map, whereas in outdoor navigation, e.g., in a rescue task,
the environment is often unknown and the goal must be specified on-line and
redefined during the navigation task, based on the observations made from
the positions already reached. Full teleoperation is not always possible, as
shown by NASA’s Mars Exploration Rovers project [2, 3] operating Spirit and
Opportunity rovers in the surface of Mars, due to the time delay introduced
by the travel of the control signal between the Earth and Mars. The possibility
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of fully autonomous navigation may also be severely limited by the processing
capabilities available to the rover’s CPU.

Thus, in applications such as planetary exploration or rescue in catas-
trophic areas, partly teleoperated robots, able to reach autonomously a des-
tination marked by a human operator on the image as seen by the robot, are
agreed to be very handy. Updating the target as the robot advances, permits
long-range journeys even with low-bandwidth and long-delay communications.
Additionally, it would be desirable that these robots were able to find their
way back autonomously without relying on any a priori knowledge of the en-
vironment. This so-called homing problem has been addressed in some works
[4], where visual homing with bearings-based control is experimented in nat-
ural environments by using correlation of SIFT features [5] in images taken
from different robot poses.

In our visually-guided navigation approach we have addressed these is-
sues by relying on landmarks. Only few previous works have tackled a similar
visually-guided landmark-based approach. In [6] a landmark-based environ-
mental model is incrementally built using color and stereo range information.
Then, the landmarks in the model are used for the robot localization and
for long-range robot navigation, through the selection of different landmarks
that form a sequence of sub-goals that the robot must successively reach. The
system differs from ours in that, instead of being user-guided, it performs
an automatic goal selection by searching for the landmark with the highest
elevation peak among all detected landmarks in the scene.

The paper is structured as follows: Section 2 describes our approach to
visually-guided navigation. In Section 3, we show the viability of the approach
by testing it for indoor navigation using artificial landmarks. Section 4 intro-
duces our approach to natural landmark detection, and some results are shown
for real image sequences taken by a mobile robot in an outdoor setting. Finally,
some conclusions and future work are pointed out.

2 Our approach to visually-guided navigation

A problem we had to face while designing our visually-guided navigation sys-
tem was how to specify the navigation target. Map-based approaches, and
those based on absolute coordinate systems like GPS, were discarded since we
required our system to be useful also in completely unknown environments.
Ideally, the user should be able to select any object in sight and mark it as
navigation target. As the navigation proceeds, the user could select new tar-
gets, thus guiding the robot towards the desired location in a way similar to
what a human explorer would do himself.

The problem with this approach is that, what can be a clearly identifiable
object for the user, may be difficult to discern for an artificial vision system,
so that the robot can be lost very soon. Our strategy to solve this problem
consists in limiting the selection of possible targets to those that the robot is
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Fig. 1. Camera Window and Robot Control Interface.

able to identify with its vision system. Thus, it is the system that first shows
to the user the available landmarks, and the user may select one of them
as the target. To overcome the limitations that this approach could have in
environments with sparse identifiable landmarks, it is possible for the user to
directly drive the robot in the desired direction.

2.1 The Navigation Interface

Fig. 1 shows the two main windows of the navigation interface: The Camera
Window and the Robot Control Interface. In the first, the user can see the
images taken from the camera of the robot and control its gaze direction.
Superimposed on the image, landmarks detected by the vision system are
marked in red. The user may select one of these landmarks as the navigation
target with a mouse click. Alternatively, the target can be selected using
the Robot Control Interface, where landmarks are displayed in a simulated
environment. In developing our platform for visually-guided navigation, our
aim was to achieve a robot-independent control, so that the user could use it
without being concerned about specific features of the robot that is performing
the navigation task. The only assumptions we made about the robot are that it
carries a camera, it is endowed with appropriate sensors to detect obstacles,
and it is able of a short-term estimation of its own displacements (e.g. by
odometry). For the tests of the system, two robots as different as a four
wheeled Pioneer II and a six-legged Lauron III (Fig. 2) have been used.

The interface allows two control modes: Manual Drive and Go to Target.
In the Manual Drive mode, the user directly controls the robot speed and di-
rection with a slider and a driving wheel. Once a landmark has been selected
as navigation target, the Go to Target mode can be triggered to let the robot
reach the target in a completely autonomous way. Both modes can use the
option collision reaction, which implements a high priority behavior that per-
forms a pre-defined evading maneuver when an obstacle is detected. Obstacle
detection is specific of each robot. In the case of the Pioneer, an activation of
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Fig. 2. The six-legged robot Lauron III used in the experiments.

the bumpers or a null advance of the robot in response of a movement com-
mand are interpreted as obstacles. In the legged robot, the activation above
a threshold of the front infrared sensor, the collision with one leg at a given
height, or the impossibility to find a stable support, are all considered as
obstacles. Both robots also consider very close landmarks as obstacles.

In the Go to Target mode, by default, the robot simply heads directly to-
wards the direction of the target. This simple reactive form of goal attraction,
together with the collision reaction behavior, is enough to succeed in simple
environments where path planning is not strictly necessary. For more com-
plex environments, the Navigator option can be used to invoke a landmark-
based navigation algorithm with map building and path planning capabilities.
Our current implementation features the algorithm described in [7], but other
landmark-based navigation algorithms could be used.

3 Navigating with artificial landmarks

A major problem in landmark-based navigation outdoors is a reliable iden-
tification of landmarks. In order to validate our visually-guided navigation
approach, we isolated the landmark recognition problem and provisionally
solved it by using artificial landmarks. For this, we designed a set of land-
marks inspired by the work of Scharstein and Briggs in [8], who proposed the
use of self-similar patterns, invariant to scaling, rotation, and viewing angle,
whose detection indicates the presence of a landmark. A second pattern at-
tached to the landmark composing a binary code served as identifier. This
design has the drawback that most of the landmark area is used to indicate
the presence of a landmark, but only a small area is devoted to the landmark
code. This may prevent a correct identification of landmarks that are far away.

To improve on this, we modified the landmark design so that the code
pattern is at the same time part of the landmark-presence indicator. The result
is a set of landmarks like those marked in red in fig. 1, consisting in a header
rectangle and five half-sized ones, whose relative positions, at the right or the
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Fig. 3. Navigation experiment

left, allows the composition of 25 = 32 different codes. Landmark detection
tests performed with different cameras resulted in identification rates near
100% for non-occluded landmarks in the distance range from 60cm to almost
5m, provided the image is not too blurred due to fast camera movements. No
false identifications of landmarks have been observed.

The navigation interface has been tested indoors using artificial landmarks
with robots as different as a four wheeled Pioneer II and a six-legged Lauron
III (Fig. 2). Users not familiar with the interface could easily drive the robot
using the manual mode, no matter what robot was at work. On the other hand,
the simple Go to Target mode, with the Navigator inactive, shows itself to
be very intuitive. The collision reaction capability allows for a successful task
completion even when the target is behind some obstacle. An unanticipated
way to drive a robot was soon discovered: taking the selected landmark away
causes the robot to track it, despite the fact that it is continuously moving
or suddenly changes its position. With respect to the Navigator mode, it
could be seen that the interaction between the navigation algorithm and the
collision reaction behavior, naturally adapts the resulting trajectory to the
actual capabilities of the robot performing the task, a feature that could be
hard to implement in a more traditional map-based approach. To show this,
we put the two robots in the same environment, and launched the navigator
with the same target (Fig. 3). Since the legged robot has a much greater
capability for obstacle crossing, what for the wheeled robot was an obstacle
that caused the navigator to plan an alternative path, was considered just
as an irregular patch of terrain by the legged robot, which followed its way
walking over it with no further planning. Note that, for a map-based navigator
to do the same, it should be provided with robot-specific maps, with different
distributions of obstacles and free space.
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4 Natural landmarks

Having shown that our visually-guided navigation approach was satisfactory,
our next focus was on solving the problem of natural landmarks detection.
For this, we relied on the assumption that useful landmarks must be salient,
i.e., they must constitute distinctive regions in the image, so that its repeated
detection and identification is facilitated. The saliency of a region is not de-
termined by the absolute value of any intrinsic magnitude, but rather, by the
contrast or difference of this value with respect to the value of the same mag-
nitude in the surroundings [9]. This is also known as opponency [10]. Many
variables can be used to define the saliency of a region, like color components,
intensity, or feature orientation.Works like [11] compute saliency as a combi-
nation of the opponency values of these three variables. In what follows, we
present a very simple approach that just considers RGB color values, but the
same idea could be used with more informative features.

4.1 Detecting Salient Regions: a random exploration approach

Instead of processing each incoming individual frame captured by the camera,
the sequence of snapshots is treated as a continuously varying image. To
this end, individual pixels are picked up at random from the current image
and processed independently of whether the frame has already changed or
not. In this way, a frame-rate and resolution-independent processing system
is obtained, and the power of the computational resources only affects the
number of pixels that can be processed per time step.

In the process, a number of so-called units are competing for the most
relevant parts of the image, which we call Regions of Interest: each time a
pixel is examined, the unit that best responds to it is selected and updated.
By responding we mean to have a similar color while being in its proximity,
and by updating, the process of adjusting the location and dimensions of the
unit so as to improve its response to this pixel. In the case that no unit
responds to a pixel, it may be considered as the seed of a new unit.

Units have elliptic receptive fields in the image plane, which adapt through
successive updates to cover regions whose pixels have similar colors. These el-
lipses arise naturally from considering normal distributions for pixels taken at
random from each region: the center of the ellipse corresponds to the mean
value of the pixels’ positions, whereas its dimensions (the major and the minor
axes) and orientation are given by the covariances. Each unit also has a spher-
ical receptive field in the RGB color space centered at the mean color value
and fixed radius, which is a parameter of the system. Units are implemented
as data structures with the following fields:

• Center vector Uxy and covariance matrix Σxy in the image plane,
• Center vector Urgb in the color space,
• Contrast CU , a scalar that measures saliency, as explained below,
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• Creation date, to record the time since which the unit exists,
• Counter UpdatesU for the number of times a unit has been updated,
• Counter InsideU for the number of times an input pixel has fallen inside

the receptive field of the unit in the image plane, and
• Strength SU , a scalar that estimates the current proportion between the

number of pixels to which the unit responds and those lying into the unit’s
receptive field in the image plane.

In the main loop of the algorithm, a random input pixel I is selected
and, for each unit U , its Mahalanobis distance in the image coordinates and
Euclidean distance in color space are computed as:

Mdistxy(U, I) =
√

(Ixy −Uxy)>Σ−1
xy (Ixy −Uxy), (1)

where Σxy is the covariance matrix of unit U , and

Edist2RGB(U, I) =
∑

i

(Ii − Ui)2, with i ∈ {r, g, b}. (2)

The Mahalanobis distance is used in the image space in order to take into
account the shape of the spatial distribution. If both distances are below
given thresholds (MAXDISTXY and MAXDISTRGB, respectively) then the
unit is said to respond to the input pixel. Among the units that respond, the
one which is closest in the image space, is considered as the winner.

Updating the winner unit

The center of the unit is approached to the coordinates of the pixel in the
image plane as well as in color space:

Ui ← Ui + γdi, (3)
where di = Ii − Ui, whith i ∈ {x, y, r, g, b} and 0 < γ < 1

Covariances in image space determine the dimensions and orientation of
the elliptic receptive field of the unit, and are updated according to:

σij ← σij + γ(didj − σij), where i, j ∈ {x, y}. (4)

Finally, the counter of updates is incremented by 1:

UpdatesU ← UpdatesU + 1 (5)

Updating other units

If the Mahalanobis distance from the input pixel to a non-winner unit is
below three times MAXDISTXY, the pixel is considered to lay in the unit’s
neighborhood, and the pixel color is used to update the unit contrast:
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CU ← αCU + (1− α)
√ ∑

i∈{r,g,b}
(Ii − Ui)2, 0 < α < 1 (6)

i.e., increasing or decreasing according to the Euclidean distance in the color
space between the input pixel and the unit.

The updating of the strength SU and InsideU is done for all units for
which the Mahalanobis distance of the input pixel is below MAXDISTXY,
i.e., the pixel is in the receptive field of the unit. While InsideU is simply
incremented by one, the strength is increased when the unit responds to the
input (i.e., also chromatically) according to:

SU ← βSU + (1− β), with 0 < β < 1. (7)

If the unit does not respond to the input color, SU is decreased according to:

SU ← βSU (8)

Removing irrelevant units

To avoid an unlimited proliferation of units, their number is limited by a pa-
rameter of the system. To allow the creation of new units when the maximum
number has been reached, the less useful ones must be removed. This is done
in the following way: First, the unit with the lowest strength is sought. If its
strength is below a given value, it is assumed that the region it represents is no
longer there, and the unit is removed. Otherwise, a unit will only be replaced
provided a contrast estimation of the unit to be created is above that of the
lowest-contrast unit. The contrast estimation is given by the distance in color
space of the input pixel to its spatially closest unit.

The new unit is initialized with a circular receptive field with center at the
position of the input pixel and radius equal to its distance to the closest unit.

Merging of units

If two units respond to a given pixel, they are probably representing different
parts of the same region and can be merged. The center and covariance values
of the merged unit are computed as a weighted sum of those of the merging
ones, with weights proportional to the respective area and strength, roughly
corresponding to the “mass”, or number of pixels each unit responds to:

Weight(U) = Area(U)SU (9)

The area is computed from the covariances as

Area(U) =
√

((σxx + σyy + ∆) · (σxx + σyy −∆)) (10)

∆ = (σxx − σyy)2 + 4σ2
xy

The contrast of the merged unit is set to the highest contrast value of the
two original ones, and for the strength, the weighted sum of the strengths is
computed, this time using the respective values of UpdatesU as weights.
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Output of the system

As for the output of the system, only the units that correspond to the most
salient regions are returned as possible landmarks. To this end, units covering
too large regions of the image are discarded, as they usually capture the
background and are not useful for navigation. Regions that are too small are
also discarded to remove isolated pixels or noise. Finally, units that have not
been updated a minimum number of times are not considered, since they are
still not reliable enough. From the remaining units, those with contrast values
above a given threshold are selected and output as landmarks.

4.2 Navigation using natural landmarks

Fig. 4 shows some snapshots of a preliminary test of the use of the salience
detector for the guidance of a robot outdoors. The legged robot Lauron III
is facing the situation shown in frame 1, in which the blue bag is chosen as
initial navigation target. After some progress towards it (frame 2), two bright
objects enter the field of view and are identified as salient landmarks by the
system (frame 3). One of these objects is selected as a new target and the
robot proceeds towards it letting the old target back (frames 4-6).

Fig. 4. Six snapshots of the navigation experiment with the robot Lauron III.

5 Conclusions

We have presented a working system for visually-guided navigation, which
differs from others in the following features: (1) The interface is robot-
independent even if the notion of obstacle varies from one robot to another,
depending on their locomotion capabilities. Experiments have shown that the
same navigation algorithm generates different trajectories for a legged and a
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wheeled robot. (2) A partial teleoperation scheme has been adopted, in which
the goal is selected by the user among a set of landmarks previously detected
by the robot. (3) Navigation issues have been decoupled from vision ones by
designing artificial landmarks that could be easily detected and identified. (4)
Once we had a navigation system working, artificial landmarks were replaced
by natural ones. A color-contrast saliency detection algorithm has been de-
veloped which relies on randomly sampling pixels from the continuous video
stream acquired by an on-board camera. This algorithm has been tested on a
legged robot in an outdoor scenario with promising results.
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