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Abstract: This paper presents an efficient approach to outdoor visually augmented
odometry. The technique computes relative pose constraints via a robust least
squares minimisation of 3D point correspondences, which are in turn obtained
from the matching of SIFT features over two consecutive image pairs. Pose
constraints are then used to build a history of pose estimates with and incremental
delayed-state information filter. The efficiency of the approach resides on the exact
sparseness of the delayed-state information form used.
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1. INTRODUCTION

Accurate localisation is an essential component
for any outdoor autonomous navigation system.
When no exteroceptive sensors are available, such
as GPS signals, a robot must rely on its own sen-
sors to maintain good localisation. Most successful
vision-based localisation techniques require the
environment to be contaminated with distinc-
tive artificial landmarks. It is desirable however
for outdoor navigation, that natural features or
salient interest points be used insted. Feature ob-
servations generated from different poses can then
be matched to produce an estimate of the change
in camera pose. When not only the sensor pose
is maintained, but the location of the features
also, the problem is typically referred as Simulta-
neous Localisation and Mapping (SLAM) in the
robotics community, or Structure From Motion
(SFM) in the computer vision community. Recent
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approaches to SLAM suggest that instead of es-
timating feature locations, a delayed-state history
of pose constraints could be maintained (Bosse
et al., 2004; Cole and Newman, 2006; Eustice et

al., 2006).

In this paper we present such an approach to
outdoor vision-based delayed-state SLAM. Given
the fact that we are not yet closing large loops and
only using consecutive frames, we rather refer to
the method only as visually-augmented odometry.
The technique iterates as follows: SIFT image fea-
tures are extracted and matched from two stereo
image pairs at consecutive frames. In order to
obtain a set of 3D feature matches, point cor-
respondences are found in all four images and
then, they are independently triangulate in each
set of stereo images. These are used to compute a
least squares best fit pose transformation. Robust
feature outlier rejection is obtained via RANSAC
during the computation of the best camera pose
constraint. These camera pose constraints are
used as relative pose measurements in a delayed-
state information-form SLAM. A substantial com-
putational complexity advantage of the delayed-
state information-form SLAM is that predictions



and updates take constant time given its exact
sparseness (Eustice et al., 2006).

In a delayed-state SLAM representation, estima-
tion is performed on an information vector of a
history of poses, in which the information links
relating two nearby poses are updated from sensor
reading matches emanating from such two loca-
tions. The computed pose difference relating such
sensor matches is commonly referred as pose con-

straint, in the sense that it provides information
that tightens the link between the two poses, thus
reducing their relative localisation uncertainty.
Robust pose constraints are typically computed
from the matching of 2D range data in planar
scenes (Bosse et al., 2004), 3D range data in out-
door scenes (Cole and Newman, 2006), or indoor
and outdoor image data (Se et al., 2005; Eustice
et al., 2006).

Some approaches that use local maps within the
EKF SLAM context to augment dead-reckoning
visual data include the Compressed Filter (Guivant
and Nebot, 2001) or Postponement (Knight et

al., 2001). Others rely only on pure vision instead
for the computation of the egomotion for example
by tracking Harris features at frame-rate (Nister
et al., 2004) (Levin and Szeleski, 2004).

SIFTs have been used for indoor SLAM in the
past, most notably in (Se et al., 2002). And also,
for closing large loops (Se et al., 2005), as well
as for local 3D map alignment. In these works,
a conventional EKF SLAM formulation is used.
Our interest lies in using such robust features in
a delayed-state information-form framework, and
for outdoor environments. The difference of our
approach when compared to that in (Eustice et

al., 2006) is in the use of SIFT feature matches
over consecutive pairs of images for the computa-
tion of 6D relative pose constraints (3D position
and Euler angles) instead of the use of combined
Harris and SIFT matches over monocular camera
sequences for the computation of 5DOF relative
orientation constraints (azimuth, elevation and
Euler angles).

2. COMPUTATION OF VISION-BASED POSE
CONSTRAINTS

2.1 Feature Extraction

Simple correlation-based features, such as Harris
corners (Harris and Stephens, 1988) or Shi and
Tomasi features (Shi and Tomasi, 1994), are of
common use in vision-based SFM and SLAM.
From the early uses of Harris himself to the
popular work of Davison (Davison et al., 2007).
This kind of features can be robustly tracked when
camera displacement is small and are tailored
to real-time applications. However, given their

Fig. 1. SIFT correspondences in two consecutive
stereo image pairs after outlier removal using
RANSAC.

sensitivity to scale, their matching is prone to
fail under larger camera motions; less to say
for loop-closing hypotheses testing. Given their
scale and local affine invariance properties, we
opt to use SIFTs instead (Lowe, 2004), as they
constitute a better option for matching visual
features from varying poses. To deal with scale
and affine distortions in SIFTs, keypoint patches
are selected from difference-of-Gaussian images at
various scales, for which the dominant gradient
orientation and scale are stored.

In our system, two consecutive 640 × 480 image
pairs are acquired from a well calibrated stereo
rig 1 . Features are extracted and matched in the
four image set. The surviving ones are then inde-
pendently triangulated in each set of stereo images
enforcing epipolar and disparity constraints. The
epipolar constraint is enforced by allowing feature
matches only within ±1 pixel rows on rectified
images. The disparity constraint is set to allow
matches within a 1− 10 meter range, where cam-
era resolution is best. See Figure 1. The result
is a set of two clouds of matching 3D points pt
and pt+1 referenced to the coordinate frames of
the left camera before and after the motion step,
respectively.

2.2 Pose Estimation

The homogeneous transformation relating the two
aforementioned clouds of points can be computed
by solving a set of equations of the form

pt = Rpt+1 + t . (1)

A solution for the rotation matrix R is computed
by minimising the sum of the squared errors be-
tween the rotated directional vectors 2 of feature

1 Point Gray’s Bumblebee firewire stereo camera.
2 A directional vector v can be computed as the unit norm
direction along p, and indicates the orientation of such
point.



matches after the motion step and the corre-
sponding directional vectors prior to the motion
step. The solution to this minimisation problem
gives an estimate of the orientation of one cloud
of points with respect to the other, and can be
expressed in quaternion form as

∂

∂R

(

q⊤Aq
)

= 0 , (2)

where A is given by

A =
N

∑

i=1

BiB
⊤

i , (3)

Bi =









0 −cix −ciy −ciz
cix 0 biz −biy
ciy −biz 0 bix
ciz biy −bix 0









, (4)

and

bi = vit+1 + vit, ci = vit+1 − vit . (5)

The quaternion q that minimises the argument of
the derivative operator in the differential equation
(2) is the smallest eigenvector of the matrix A. 3

Once the rotation matrix R is computed, we can
use again the matched set of points to compute
the translation vector t

t =
N

∑

i=1

pit − R

N
∑

i=1

pit+1 . (6)

It might be the case that SIFT matches occur on
areas of the scene that experienced motion during
the acquisition of the two image stereo pairs. For
example, an interest point might appear at an
acute angle of a tree leaf shadow, or on a person
walking in front of the robot. The corresponding
matched 3D points will not represent good fits to
the camera motion model, and might introduce
large bias to our least squares pose error minimi-
sation. To eliminate such outliers, we resort to the
use of RANSAC (Fischler and Bolles, 1981). The
use of such a robust model fitting technique allows
us to preserve the largest number of point matches
that at the same time minimise the square sum of
the residuals ‖Rpt+1+t−pt‖, as shown in Figure
1.

3 If we denote this smallest eigenvector by the 4-tuple
(α1, α2, α3, α4)⊤, it follows that the rotational angle θ

associated with the rotational transform is given by θ =
2cos−1(α1), and the axis of rotation would be given by

â =
(α2,α3,α4)⊤

sin(θ/2)
. Then, it can be shown that the elements

of the rotation submatrix R are related to the orientation
parameters â and θ by

R =

[

a2
x + (1 − a2

x)cθ axayc′θ − azsθ axazc′θ + aysθ

axayc′θ + azsθ a2
y + (1 − a2

y)cθ ayazc′θ − axsθ

axazc′
θ
− aysθ ayazc′

θ
+ axsθ a2

z + (1 − a2
z)cθ

]

,

where sθ = sin θ, cθ = cos θ, and c′θ = 1 − cos θ (Kim and
Kak, 1991).

3. VISUALLY AUGMENTED ODOMETRY IN
INFORMATION FORM

3.1 Exactly Sparse Delayed-State SLAM

The Extended Kalman Filter SLAM inference has
time complexity quadratic in the number of states.
As a consequence, the direct application of EKF
SLAM is limited to relatively small environments.
In contrast, the delayed-state information-form
SLAM has been shown to produce exactly sparse
information matrices (Eustice et al., 2006), which
in our case are tri-block diagonal, linking consec-
utive measurements each time. This situation al-
lows for constant predictions and updates, with a
considerable advantage in terms of computational
cost.

The delayed-state information-form SLAM rep-
resentation consists on estimating a state vector
with the history of poses

x = [xt, yt, θt, . . . x1, y1, θ1]
⊤
, (7)

parameterised as an inverse normal distribution.
This representation, dual to the EKF, maintains
the information vector and matrix of the state
rather than its mean and covariance.

p(x) = N (x; µ,Σ) = N−1(x; η,Λ) , (8)

where

Λ = Σ−1 and η = Λµ . (9)

Let µt be the state mean for the pose at time t.
In a delayed state representation, the map state
is simply the history of pose estimates

µ =







µt
...

µ1






,

and the information vector is

η =







ηt
...

η1






.

From dead-reckoning readings we get the absolute
position and orientation xd, yd and θd at two
consecutive time steps t and t + 1. The relative
travelled distance in polar coordinates is given by
the length d and angle ψ. Moreover, the relative
change of orientation is ∆θ:

d=
√

(xdt+1 − xdt )
2 + (ydt+1 − ydt )

2 (10)

ψ = tan−1

(

ydt+1 − ydt
xdt+1 − xdt

)

− θdt (11)

∆θ= θdt+1 − θdt . (12)
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
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(16)

The terms in (10-12) form the input ut to the
model for the prediction of vehicle motion purely
from odometry.

xt+1 = xt + d cos(θt + ψ) (13)

yt+1 = yt + d sin(θt + ψ) (14)

θt+1 = θt + ∆θ . (15)

As in most SLAM formulations, white noise wt

with covariance Q is added to the vehicle mo-
tion prediction model (13-15), and its linearised
version used in the computation of covariance
prediction (information prediction in our case)

xt+1 = f(xt,ut) + wt

≈ f(µt,ut) + F(xt − µt) + wt
. (17)

The revision of the entire history of poses, as a
result of adding the odometry information that
links the current and predicted poses, can be
computed in information form (Eustice et al.,
2006) with

η̄ =





Q−1 (f(µt,ut) − Fµt)
ηt − F⊤Q−1 (f(µt,ut) − Fµt)

ηt−1:1



 , (18)

and the associated information matrix is

Λ̄ =





Q−1 −Q−1F 0

F⊤Q−1 Λt,t + F⊤Q−1F Λt,t−1

0 Λt−1:1,t Λt−1:1,t−1:1



 ,

(19)

F =





1 0 −d sin(θt + ψ)
0 1 d cos(θt + ψ)
0 0 1



 . (20)

Augmenting the information vector in this form
introduces shared information only between the
new robot pose xt+1 and the previous one xt.
moreover, the shared information between xt+1

and the delayed-states (t− 1 to 1) is always zero,
resulting in an information matrix with a block
tridiagonal structure.

Given the fact that in the information-form mea-
surement updates are additive, they can be also
computed in constant-time. Pose differences relat-
ing the current and previous poses, as measured
by our vision system would be of the form

zt+1 = h(xt+1:t) + vt+1

≈ h(µ̄t+1:t) + H(xt+1:t − µ̄t+1:t) + vt+1

,

(21)

with vt+1 the zero mean, white measurement
noise with covariance R and H the measurement
Jacobian in (16) with

d=
√

(xt+1 − xt)2 + (yt+1 − yt)2 (22)

ψ = tan−1

(

yt+1 − yt
xt+1 − xt

)

− θt (23)

and

∆x= xt+1 − xt (24)

∆y = yt+1 − yt . (25)

Thus, our nonlinear measurement model is

zxt+1
= d cos(ψ) (26)

zyt+1
= d sin(ψ) (27)

zθt+1
= θt+1 − θt . (28)

The update to the current and previous entries
in the information vector and information matrix
become:

ηt+1:t = η̄t+1:t+H⊤R−1(zt+1−h(µ̄t+1:t)+Hµ̄t+1:t)
(29)

Λt+1:t,t+1:t = Λ̄t+1:t,t+1:t + H⊤R−1H . (30)

It is worth stressing that in this visually aug-
mented SLAM respresentation, the Jacobian H

is always sparse (Thrun et al., 2004) and, in
consequence only the diagonal blocks of Λ will
be updated. Non-zero off-diagonal terms would
appear only for loop closing situations.

4. EXPERIMENTS

4.1 Vision-based Pose Constraints

An initial experiment was conducted to test the
accuracy of our method for the computation of
vision-based pose constraints. Our stereo camera
was calibrated using the pattern shown in Figure
2(a) using the technique described in (Faugeras,
1993). Given that our calibration technique relies
on least squares error minimisation, it was imper-
ative to use a large calibration pattern which was
placed at distances of 2, 3, and 4 meters, in order
to sample as best as possible the actual workspace
of the sensor. Intrinsic and extrinsic parameters of



(a) Calibration pattern (b) Artificial landmark

Fig. 2. Calibration pattern and the artificial land-
mark placed in an outdoor environment and
used to validate the accuracy of stereo recon-
struction.

both cameras were obtained, as well as the rigid
transformation between them.

Once the camera system was calibrated, a con-
trolled experiment was performed to test the accu-
racy in stereo reconstruction taking into account
the effect of daylight on images and other perva-
sive artifacts that might contaminate an outdoor
scene. To that aim, we located an artificial land-
mark as shown in Figure 2(b) at a fixed location,
and had a synchro drive mobile robot 4 travel
through a predefined path taking images at fixed
distances of 2, 3, ..., 6 meters from the landmark.

Table 1 shows the average 3D reconstruction error
along the x,y and z axes when comparing a set
of SIFT features with their manually measured
correspondences. The result of the experiment
indicates that while our vision-based 3D recon-
struction algorithm would have an average error
of nearly 2cm along the xy plane, depth recon-
structions could grow as large as 20cm. These re-
sults suggest the use of a measurement covariance
matrix for the SLAM implementation with

R =





(0.02cm)2 0 0
0 (0.02cm)2 0
0 0 (tan−1(2/20))2



 .

(31)

Table 1. Averrage errors obtained by
comparing the manually measured po-
sitions and the positions obtained using

the vision system.

Dist.(m) Err X (m) Err Y(m) Err Z(m)

2.0 0.01249 0.00831 0.06885
3.0 0.02162 0.01854 0.07128
4.0 0.02314 0.01977 0.09121
5.0 0.02421 0.02243 0.16109
6.0 0.03468 0.02742 0.19377

4.2 Preliminary Experimental Results

To test our strategy for vision-based augmented
odometry we have performed a series of exper-
iments on a urban unstructured environment of

4 Activmedia’s Pioneer 2DX
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Fig. 3. Odometry-only (blue), vision-only (green),
and combined vehicle trajectory (red).

small size (approx 200 sq m). A snapshot on one
of the tests is shown in Figure 3. The robot was
manually driven through a series of predefined via
points previously marked on the floor. To record
odometry and visual data at such keypoints, the
robot stopped at them, only to continue mov-
ing after a few seconds. The results of estimat-
ing the vehicle motion purely from accumulated
raw odometry and purely from concatenating vi-
sion pose constraints are shown in the figure as
blue and green plots, respectively. The delayed-
state information-based revised trajectory result-
ing from the fusion of the two is shown in red.
No motion was accumulated for those cases when
not enough SIFT points were obtained during
the computation of vision-based pose constraints.
This is especially noticeable at the turn at key-
point 8, for which the corresponding turn on accu-
mulated visual odometry happens near keypoint
7. The effect of noninformative vision-based poses
at some iterations can be efficiently modelled in
our approach only by computing motion predic-
tions from odometry without performing map up-
dates.

Due to the fact that the raw odometry is really
poor especially when the vehicle turns and the
vision-based pose constraints can fail in transla-
tion estimation but provides quite accurate ro-
tation estimation, our SLAM gives more weight
to the translation measurements provided by the
odometry and to the rotation estimated using
SIFT points.

Figure 4 shows the position estimation errors in x
and y coordinates relative to the 12 ground truth
points marked on the floor. Whereas odometry er-
ror accumulates monotonically, vision-based pose
constraints vary in accuracy from very accurate
up to 2 meters in estimation error. Nontheless the
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fusion of both provides a consistently revised pose
estimate 5 .

5. CONCLUSIONS

This paper proposed an efficient approach to out-
door visual augmented odometry based on an
exactly sparse delayed-state filter that uses SIFT
features to compute pose constraints. Another
type of features that we seek to explore in the
future are Speed Up Robust Features SURFs (Bay
et al., 2006). These features have similar response
properties to SIFTs, replacing Gaussian convolu-
tions with Haar convolutions, and a significant
reduction in computational cost.

We can conclude saying that, concerning the ac-
curacy of the pose estimation, our approach per-
forms well when comparing the estimated tra-
jectory with ground truth points, and consider-
ably reduces the memory and execution time by
using a tri-block diagonal information matrix to
link consecutive measurements each time (time
and memory increase linearly compared to the
quadratic cost of the traditional EKF).

The experimental results presented here consti-
tute a preliminary study on the use of 6D SIFT-

5 We must take into consideration that placing the centre
of the robot to an exact ground point during the experi-
ment is not an easy task and might introduce some error
in these plots. The comparison only shows the empirical
result that a sparse delayed-state information filter for the
fusion of odometry and vision might be a good strategy for
large scale outdoor SLAM

based pose transforms for outdoor mapping. We
are currently working in vision-based hypothesis
testing for loop closure, and expect to report in
the near future results of mapping of much larger
areas, in the order of 300×300 sq. meters.
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