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Abstract

This technical report defines the spatial representation and the map
file format used in a mobile robot map-based autonomous navigation
system designed to be deployed in urban areas. After a discussion
about common requeriments of spatial representations for map-based
mobile robot autonomous navigation, a proposed environment model
that fulfills previously discussed requeriments is formally presented.
An example of a map representing an outdoor area of an university
campus of about 10000m2 is given to better illustrate the map format.
Finally, the report shows simulation results on global localization and
path planning using the proposed map.

1 Introduction

Mobile robot map-based autonomous navigation can be defined as the ability
of a mobile robot to solve without human aid three tasks. First, ”Global
Localization”, given sensor readings and the map. Second, ”Path Planning”,
given current position of the robot and a goal point located on the map.
Third, ”Path Execution”, which involves ”Position Tracking” and ”Obstacle
Avoidance”.

Map-based navigation implies that the robot has a prior representation of
the environment called map. This map is the data model of the environment
used by the robot to autonomously navigate. Different environment repre-
sentations have been studied and proposed by researchers and the widely
accepted taxonomy divides spatial representations between metric and topo-
logical ones [5]. However, most of the existing spatial representations have
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been called hybrid since they use metric and topologic information to model
the environment [14, 15, 8].

In this work a representation based on geometric entities on the 2D space
has been choosen because of its potential scalability to larger environments
and its potential localization accuracy since space is not discretized. Two
dimensional information is enhanced with ’pseudo 3D’ data since the pro-
posed representation keeps height of these geometric entities and also models
stairs and ramps usually found in outdoor urban environments. Moreover,
semantic information is added to geometric entities to improve the spatial
representation getting closer to human models.

This report is organized as follows: section 2 discuss requeriments of
an environment model for mobile robot navigation, section 3 presents the
description of the proposed environment model, section 4 shows some results
on global localization and path planning using this map model and section 5
summarizes the conclusions and points out the future work. The report also
includes an appendix describing the used map file format.

2 Requeriments of a Spatial Representation

We have identified six key requeriments for spatial representations in mobile
robot map-based autonomous navigation:

• Scalability: stands for the property of a given representation to scale
up to large environments keeping in reasonable bounds both memory
and computational resources. In terms of memory resources, scalabil-
ity is closely related with the compactness of the representation. Some
authors have measured a compactness figure as a ratio of bits/m2 [2].
Compactness also gains importance in a network robot context where
whole or parts of the map are sent through a communications network,
therefore reducing data size is of great interest. From computational
efforts point of view, scalability to large environments have to be as-
sured in order to deal with real-time requeriments of some navigation
tasks.

• Accuracy: although an error coming from the mapping method has to
be accepted, the spatial representation should not restrict the accuracy
of localization algorithms beyond the sensor technological limitations.

• Flexibility: map model flexibilty can be defined as the capability of
a given representation to be used by different navigation methods,
sensors, tasks and robots.
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• Three dimensional extending: performing mobile robot navigation
tasks in outdoor urban areas requires 3D data coming from both per-
ception and map data. Even if three dimensional data is not exhaus-
tive, spatial representations have to incorporate useful 3D data in order
to match three dimensional perceptions with the map model.

• Automatic conversion from a mapping source: There exist different
mapping sources like robot mapping [17], Geographical Information
Systems (GIS) [12] or an architect CAD. A desirable aspect is that
the robot map can be built automatically either directly from robot
mapping or by means of an automatic conversion from other mapping
formats.

• Human compatible: representations close to human maps offer ad-
vantages, especially in systems where human-robot interactions are
expected. Therefore, a map model accepting semantic information
will be more suitable to interface with humans. A Geographical In-
formation System (GIS) can be used as a powerful interface to solve
this issue, especially in outdoor environments like urban areas [12].
However, we have to assure automatic translation from GIS maps to
robot maps.

3 Map Description

This section presents how spatial information is arranged to form the envi-
ronment data model, also called the spatial representation or the map. The
representation is in the 2D plane, based on geometric entities and inspired
from the ’GIS vector’ format [12]. However, height information of geometric
entities is added to give to the map a pseudo 3D information. Stairs and
ramps are also modelled since they are key 3D obstacles in outdoor areas
for navigation purposes.

The map M is defined with four coordinates limiting its borders and
with a list of NB obstacles. (mx1,my1) is the left-up corner point and
(mx4,my4) is the right-down corner point.

M = {mx1,my1,mx4,my4, o
1, ..., oNB} (1)

The k−th obstacle of the map, ok, is defined with a list of NSk segments,
an integer idk assigned to identify the obstacle, an integer ST k describing
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the type of the shape representing the obstacle and semantic information
related to it.

ok = {sk1, ..., skNSk , idk, ST k, semanticIk} k = 1..NB (2)

where ST = 1 when obstacle is represented with a closed polygon, ST =
2 for an opened polygon, ST = 3 for a closed curved shape, ST = 4 for an
opened curved shape, ST = 5 for stairs and ST = 6 for ramps. Semantic
information is a character string labelling some features of the obstacle as
if it is a building, a column, a flowerpot, a trash and so on.

The l−th segment of the k−th obstacle , skl , is defined from the akl point
to bkl point (currently, only straight segments are implemented). Height hkl ,
an indoor/outdoor boolean and semantic information also accompanies the
segment.

skl = {axkl , aykl , bxkl , bykl , hkl , inOutkl , semanticIkl } k = 1..NB, l = 1..NSk

(3)
inOut boolean takes 0 for an indoor segment and 1 for an outdoor seg-

ment and again, semantic information is a string describing some features of
the segment as it represents a wall, a door, the material which is built with,
the color and so on. All segments are oriented, so they are defined from left
to right viewed from the free space.

3.1 Stairs and Ramps

Stairs (steps) and ramps usually present in outdoor urban areas poses to
mobile robot community a challenge since 3D information has to be taken
into account (from sensors and the map) in order to deal with navigation
tasks in a robust manner. The proposed map represents these two obstacles
identyfing them with the label ST (ST = 5 for stairs and ST = 6 for ramps).

Stairs are modelled as a list of segments, like the other obstacles of the
map . From the downstairs, the first segment is orieneted from left to right,
with a height equal to step height (p.e 0.2 m), just as a ’short’ wall. The
second step will be a segment oriented like the first one, just separated the
step width and with height two times of step height (p.e 0.4 m). Other
steps are built iteratively. Finally a segment inversely oriented with height
= 0 ends the stairs obstacle. This representation is well suited for the ray
tracing function computed for navigation purpsoes, since the robot needs
to generate synthetic (simulated) range data from the map (see section 4).
This stairs model is also useful for path planning because step segments
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define an obstacle area to be avoided for the planner (if wheeled robot!).
Figure 1 shows the stairs obstacle model.

Ramps can also be modelled as obstacles with null height. Ramp borders
are decribed with a closed polygon formed by the ramp projection to the
2D plane. Ramp orientation is parametrized with the normal vector to the
surface. With this information ray tracing function can compute synthetic
range data from the map and match them with sensor data. For path
planning, ramp obstacles can be completely ignored or used to force routes
to pass through them. Figure 1 draws the ramp model. Ramps are not yet
implemented in the current version of the map representation.

Figure 1: Stairs and Ramp model

4 Experiments

This section shows an example of using this map model to deal with two
navigation tasks: global localization and path planning. The map used de-
scribes the surroundings of the ’FIB Square’ at the Campus Nord of the
Universitat Politècnica de Catalunya (UPC), representing an outdoor envi-
ronment of about 10000m2. This area is expected to be the demostration
field for the URUS european project [13]. Figure 2 shows the geometric part
of the map of this environment, the origin of the metric coordinates and
two illustrative selected points. Blue arrows in the figure mark places where
pictures of the figure 3 were taken in order to familarize the reader with the
environment. Preliminary results on global localization and path planning
using this environment model are given in the following subsections.
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Figure 2: Geometric part of the map of the surroundings of the ’FIB Square’
at the Campus Nord of the Universitat Politècnica de Catalunya (UPC)

Figure 3: Pictures taken from a,b,c,d points on figure 2
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4.1 Global Localization

In this subsection we present a simulated experiment using a particle filter
method to global localize the robot [16]. Figure 4 shows an overview of the
implemented algorithm. The simulated robot is equipped with a compass,
a two dimensional laser scanner and the encoders of robot wheel motors. In
the experiment the orientation of the robot is assumed to be initially known
with an uncertainty of 3 degrees simulating an initial well calibrated compass
reading. In large environments like a whole campus or a city quarter, initial
readings provided by devices such as a compass, a GPS or even a GSM
device can help to solve the global localization problem drastically reducing
the search space (x, y, θ). The interest of solving global localization in an
urban area of about 100m× 100m resides in the fact that the current state
of the art in GSM urban positionning gives an average error of one hundred
meters [4].

Figure 4: Overview of particle filter algorithm implemented for global local-
ization
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The likelihood for the particle i − th is calculated between a simulated
laser scanner lsL with sensor noise of σL, generated from the actual robot
position (xr, yr, θr), and the simulated synthetic laser scanner lsi generated
from the i − th particle position (xi, yi, θi) on the map. For the j − th
synthetic ray of the i− th particle, say lsij , we compute the difference with
the j − th perceived ray lsLj :

∆i
j = lsLj − lsij i = 1..NP, j = 1..NL (4)

The sensor model is implicitly encoded in the likelihood function L(∆i
j)

which is modelled as:

L(∆i
j) = αN (0, σm) + βU(−RMAX, 0) (5)

where N (0, σm) is a normal bell-shaped curve centered on zero, with
variance σm. U(−RMAX, 0) is an uniform function from −RMAX to 0.
The normal curve models sensor innacuracies and tolerancy to range mea-
surements since the particle set is a sampling of the infinite set of all possible
positions for the robot. Therefore, σm models both sensor noise and the ac-
ceptance of the algorithm to give good ’score’ to particles close to the robot
position. The second uniform function, inspired on the model proposed in
[16], models the possibility that actual sensor readings could be smaller than
the computed synthetic rays for a given location due to the environment dy-
namics when unmodelled objects (people, cars, bikes, ...) occlude modelled
regions.

The update of the i − th particle weight of the current iteration, wi(t),
is made using all the individual likelihoods, L(∆i

j), between each perceived
and synthetic rays and using the previous weight, wi(t − 1) of the i − th
particle:

wi(t) = wi(t− 1) · 1∑NL
j=1

1
L(∆i

j)

(6)

Figure 5 shows the first four iterations of this particle filter implementa-
tion using the presented map model. These simulation results are calculated
with NP = 6000 particles, NL = 131 laser scan points, scanner range limit-
ted to RMAX = 15m, laser scanner noise σL = 5cm, α = 1, β = 0.1 and
σm = 0.5m. For this exposed simulation results, both compass and laser
scanner readings are not actual readings from sensors, but sensor data is
simulated.

The ray tracing function that computes the synthetic ray lsij traced on
the map from the i− th particle position for the j− th scan point, takes into
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Figure 5: Four iterations of particle filter for global localization

account the laser mounting height in the robot, hL, and the map segment
height hkl to decide if ray stops or ’crosses’ the l − th segment of the k − th
obstacle of the map. Special care has also to be taken with stairs obstacles
when ray tracing is performed. If the intersection of a synthetic ray with
a given stairs obstacle is with the step segment of hkl = 0, it says that the
robot is upstairs and, therefore, the ray will cross completely the obstacle.
Otherwise, ray will stop at the first step with height greater than laser device
mounting height. Figure 6 shows this situation.

This algorithm has a complexity of O(NP · NL · NS) where NP is
the number of particles, NL the number of scan points and NS is the
number of segments of the map. The dependence in NL of the complexity
could limit scalability of the map to larger environments. Therefore, in
order to overcome this drawback, we have adopted a trick borrowed from
computational geometry to avoid a global search for each segment of the
map and each synthetic ray. When the robot loads the map, it computes
for each obstacle ok the minimum bounding circle [7], so a center ck and
a radius Rk is assigned to each obstacle ok of the map. Before computing
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Figure 6: Ray tracing behaviour with stairs when robot is downstairs (left)
or upstairs (right).

the intersection between ray and the segments of the given obstacle ok, a
single intersection test is done between semicircle of the synthetic scanner
lsi (positioned on (xi, yi, θi) with radius equal RMAX) and the minimum
bounding circle (ck, Rk). If intersection fails, the obstacle ok is enterely
ignored to compute ray tracing. In order to carry out real time requirements
when position tracking is performed, we are studying adaptative techniques
to iteratively reduce the number of particles (NP ) and the number of used
scan points (NL) such as it has been proposed on [9, 3].

No other global localization techniques such as [1, 6] have been imple-
mented but from the map model point of view, automatic conversion can
provide the geometric feature map required in [1] or the occupancy grid
map used by [6]. However, converting the map model to other environment
models used by these localization methods can deal to lost of some of the
discussed properties of the original map.

4.2 Path Planning

Path planning between two points located on the map, point0 and pointGoal,
has been implemented using Rapidly-Exploring Random Trees (RRT) [11].

The idea of the RRT’s is to randomly and iteratively build a tree in the
free space attempting to connect the start point with the goal point. In
each iteration, a new randomly generated point tries to directly connect to
the tree. Algorithm iterates until the goal point can also directly connect
to the tree. Figure 7 presents the implemented algorithm used to generate
an RRT.

Algorithm description makes use of a set of geometric primitive functions
such as point interference or segment interference with the map obstacles.
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Figure 7: Implemented algorithm generating an RRT

This functions takes into account all obstacles ok with hk > 0, therefore
ramps will be treated as free space assuming that wheeled robots can move
across them. Figure 8 shows a generated RRTree and the resultant smoothed
path on the map.

Like in the global localization problem, we have not implemented other
methods for path planning but we are confident that other planning methods
can be implemented using the geometric basis of the proposed environment
representation (see [10, 11]).

For environments with narrow passages like the presented one (see cor-
ridors between buildings at figure 2), computational efficiency of RRT’s can
be improved implementing a balanced RRT. In balanced RRT’s two trees
are alternatively generated, one starting at point0 and the other one starting
at pointGoal. The fact of building two trees speeds up the algorithm since
connection between point0 and pointGoal is reached faster. RRT algorithm
also easily accept to force paths passing through ramps.
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Figure 8: Path planning using Rapidly-Exploring Random Trees (RRT)

5 Conclusions and Future Work

In this technical report we have identified six key requeriments of a spatial
representation for mobile robot map-based navigation: scalability, accuracy,
flexibility, 3D extending, automatic conversion from an existing mapping
source and human compatible representation.

The proposed map model fulfills the six requeriments exposed on sec-
tion 2. The representation is scales up to large environments (such as the
modelled one) thanks to the implicit ’metric/topologic grouping’ when us-
ing geometric entities. In the exposed example (see section 4), an area of
about 10000m2 is described on a file of 30KB. Without any data com-
pression or encoding, the compactness figure is about 3Bytes/m2. In terms
of accuracy, the error on robot position comes from the mapping method
and the sensor limitations but not from the environment model arrange-
ment, so the proposed representation can provide robot localization up to
mapping errors and sensor inaccuracies. Discussion about flexibilty can be
more subjective but we have experienced global localization, path planning
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and position tracking using the exposed map format, proving that the same
representation can be used by multiple tasks. Flexibility in terms of using
this representation in robots equipped with different sensors is assured for
sensors providing metric data but is not assured if sensors only provides
appearance data. The map file can be edited with a GIS editor and then
automatically converted to the map file format required for the robot. This
implies that the robot and a GIS server can efficiently comunicate sending
parts of the map and georeferenced data. However, automatic map building
with a robot of such a map remains an open question. The easy commu-
nication with a GIS server offers us the possibility to use friendly and well
proved human-machine interfaces to deal with geographic data.

Two simulated experiments on global localization and path planning are
presented using an area of about 10000m2 represented with the proposed
map format. The results of these experiments encourages us to use this envi-
ronment model in map-based autonomous navigation for large environments
like an university campus or an urban quarters.

As future works, we are working implementing ramp model to complete
the map in order to perform field experiments. These field experiments
will evaluate the actual possibilty of using the proposed map for map-based
autonomous navigation in urban areas, or if an exhaustive extension to
three dimensional data is imperative for navigation purposes in outdoor
urban environments. In the perception side, we are working on using a
laser scanner mounted in a tilt unit in order to beneficiate of 3D perception
data to be matched with the ’pseudo’ 3D data of the proposed environment
model. Matching other 3D sensors like stereo cameras with these map data
is also an open question.

We are also planning how to incorporate visual information to the rep-
resentation entities such as shapes and lines to enhance flexibility of the
map format since appearance data could help navigation tasks. However,
incorporation of appearance data should keep the compactness requeriment.



Map Format for Mobile Robot Map-based Autonomous Navigation 14

References

[1] Arras, K.O., Castellanos, J.A., Schilt, M., Siegwart, R. ’Feature-based
multi-hypothesis localization and tracking using geometric constraints’.
Journal of Robotics and Autonomous Systems, Vol. 44, p. 41-53. 2003.

[2] Arras, K.O., Philippsen, R., Tomatis, N., de Battista, M., Schilt, M.,
Siegwart, R. ’A Navigation Framework for Multiple Mobile Robots and
its Application at the Expo.02 Exhibition’. Proc. of the 2003 IEEE In-
ternational Conference on Robotics and Automation - ICRA. Taipei,
Taiwan. September 2003.

[3] Beeson, P., Muraka, A., Kuipers, B. ’Adapting Proposal Distributions
for Accurate, Efficient Mobile Robot Localization’. Proc. of the 2006
IEEE International Conference on Robotics and Automation - ICRA.
Orlando, Florida, USA. May 2006.

[4] Chen, M., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J.,
Hughes, J., LaMarca, A., Potter, F., Smith, I., Varshavsky, A. ’Prac-
tical Metropolitan-Scale Positioning for GSM Phones’. Ubicomp 2006,
September 2006.

[5] Filliat, D., Meyer, J-A., ’Map-based Navigation in Mobile Robots. I.
A review of localization strategies’, Cognitive Systems Research, Vol 4,
Issue 4, December 2003.

[6] Fox, D., Burgard, W., Thrun, S. ’Markov Localization for Mobile Robots
in Dynamic Environments’, Journal of Artificial Intelligence Research,
11. pages 391-427. 1999.
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A Map File Format

The map is encoded in a .txt file as follows, and some parts of the file
describing the presented environment are listed in the next page:

border;

mx1;my1;

mx4;my4;

#

obstacle;

id1;ST 1;NS1; semanticInfo1;

#

ax1
1; ay1

1 ;

bx1
1; by1

1 ;

h1
1; inOut11; semanticInfo1

1;

#

.

.

#

ax1
NS1 ; ay1

NS1 ;

bx1
NS1 ; by1

NS1 ;

h1
NS1 ; inOut1

NS1 ; semanticInfo1
NS1 ;

#

.

.

#

obstacle;

idNB ;STNB ;NSNB ; semanticInfoNB ;

#

axNB1 ; ayNB1 ;

bxNB1 ; byNB1 ;

hNB1 ; inOutNB1 ; semanticInfoNB1 ;

#

.

.

#

axNB
NSNB

; ayNBNSNB ;

bxNB
NSNB

; byNB
NSNB

;

hNB
NSNB

; inOutNB
NSNB

; semanticInfoNB
NSNB

;

#
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border;

-4;58;

58;-4;

#

obstacle;

1;1;4;column,A5;

#

4.53;12.10;

7.29;12.10;

5;1;wall,orange,brick;

#

7.29;12.10;

7.29;13.86;

5;1;wall,orange,brick;

#

7.29;13.86;

4.53;13.86;

5;1;wall,orange,brick;

#

4.53;13.86;

4.53;12.10;

5;1;wall,orange,brick;

#

obstacle;

2;1;4;column,A5;

#

8.12;12.10;

8.86;12.10;

5;1;wall,orange,brick;

#

8.86;12.10;

8.86;13.33;

5;1;wall,orange,brick;

#

8.86;13.33;

8.12;13.33;

5;1;wall,orange,brick;

#

8.12;13.33;

8.12;12.10;

5;1;wall,orange,brick;

#

.

.

.

obstacle;

13;1;4;bench,A5;

#

7.73;4;

40.66;4;

0.5;1;wall,grey,cement;

#

40.66;4;

40.66;5.30;

0.5;1;wall,grey,cement;

#

40.66;5.30;

7.73;5.30;

0.5;1;wall,grey,cement;

#

7.73;5.30;

7.73;4;

0.5;1;wall,grey,cement;

#

.

.

.

obstacle;

26;5;4;step,FIBsquare;

#

34.65;40.72;

57.5;40.72;

0;1;wall,grey,cement;

#

57.5;41.02;

34.65;41.02;

2;1;wall,grey,cement;

#

57.5;41.32;

34.65;41.32;

1.8;1;wall,grey,cement;

#

57.5;41.62;

34.65;41.62;

1.6;1;wall,grey,cement;

#

.

.

.
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