
Exploiting single-cycle symmetries
in Branch-and-Prune algorithms

Vicente Ruiz de Angulo and Carme Torras

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain.

{ruiz, torras}@iri.upc.edu

Abstract. As a first attempt to exploit symmetries in continuous con-
straint problems, we focus on permutations of the variables consisting of
one single cycle. We propose a procedure that takes advantage of these
symmetries by interacting with a Branch-and-Prune algorithm without
interfering with it. A key concept in this procedure are the classes of
symmetric boxes formed by bisecting a n-dimensional cube at the same
point in all dimensions at the same time. We quantify these classes as a
function of n. Moreover, we propose a simple algorithm to generate the
representatives of all these classes for any number of variables at very
high rates. A problem example from the chemical field and a kinematics
solver are used to show the performance of the approach in practice.

1 Symmetry in Continuous Constraints Problems

Symmetry exploitation in discrete constraint problems has received a great deal
of attention lately [6, 4, 5, 11]. On the contrary, symmetries have been largely
disregarded in continuous constraint solving, despite the important growth in
both theory and applications that this field has recently experienced [12, 1, 9].

Continuous (or numerical) constraint solving is often tackled using Branch-
and-Prune algorithms [13], which iteratively locate solutions inside an initial do-
main box, by alternating box subdivision (branching) and box reduction (prun-
ing) steps. Motivated by a molecular conformation problem, in this paper we
deal with the most simple type of box symmetry, namely that in which domain
variables (i.e., box dimensions) undergo a single-cycle permutation leaving the
constraints invariant. This can be seen, thus, as a form of constraint symmetry
in the terminology introduced in [3].

We are interested in solving the following general Continuous Constraint
Satisfaction Problem (CCSP): Find all points x = (x1, . . . , xn) lying in an initial
box of Rn satisfying the constraints f1(x) ∈ C1 , . . . , fm(x) ∈ Cm, where fi is a
function fi : Rn → R, and Ci is an interval in R.

We assume the problem is tackled using a Branch-and-Prune (B&P) algo-
rithm. The only particular feature that we require of this algorithm is that it
has to work with boxes in Rn.

We say that a function s : Rn → Rn is a point symmetry of the problem
if there exists an associated permutation σ ∈ Σm such that fi(x) = fσ(i)(s(x))

II

and Ci = Cσ(i), ∀i = 1, . . . ,m. We consider symmetry as a property that relates
points that are equivalent as regards to a CCSP. Concretely, from the above
definition one can conclude that x is a solution to the problem iff s(x) is a
solution to the problem. Let s and t be two symmetries of a CCSP with associated
permutations σs and σt. It is easy to see that the composition of symmetries
s(t(·)) is also a symmetry with associated permutation σs(σt(·)).

An interesting type of symmetries are permutations of the components of x.
Let D be a finite set. A cycle of length k is a permutation ψ such that there exist
distinct elements a1, . . . ak ∈ D such that ψ(ai) = ψ(a(i+1)mod k) and ψ(z) = z
for any other element z ∈ D. Such a cycle is represented as (a1, . . . ak). Every
permutation can be expressed as a composition of disjoint cycles. In this paper we
focus on a particular type of permutations, namely those constituted by a single
cycle. In its simplest form, this is s(x1, x2, . . . xn) = (xθ(1), xθ(2), . . . xθ(n)) =
(x2, x3...xn, x1), where θ(i) = (i+ 1) mod n.

Example: n = 3,m = 4,x = (x1, x2, x3) ∈ [−1, 1]× [−1, 1]× [−1, 1],

f1(x) : x2
1 + x2

2 + x2
3 ∈ [5, 5] ≡ x2

1 + x2
2 + x2

3 = 5
f2(x) : 2x1 − x2 ∈ [0,∞] ≡ 2x1 − x2 > 0
f3(x) : 2x2 − x3 ∈ [0,∞] ≡ 2x2 − x3 > 0
f4(x) : 2x3 − x1 ∈ [0,∞] ≡ 2x3 − x1 > 0

There exists a symmetry s(x1, x2, x3) = (x2, x3, x1). The constraint permu-
tation associated to s is σ(1) = 1, σ(2) = 3, σ(3) = 4, and σ(4) = 2.

For n > 3 there is never a unique symmetry for a given problem. If there
exists a symmetry s, then for example s2(x) = s(s(x)) is another symmetry. In
general, using the convention of denoting s0(x) the identity mapping, {si(x), i =
0 . . . n− 1} is the set of different symmetries that can be obtained by composing
s(x) with itself, while for i > n we have that si(x) = si mod n(x). Thus, a
single-cycle symmetry generates by composition n−1 symmetries, excluding the
trivial identity mapping. Some of them may have different numbers of cycles.
The algorithm presented in this paper deals with all the compositions of a single-
cycle symmetry, even if some of them are not single-cycle symmetries. The gain
obtained with the proposed algorithm will be shown to be generally proportional
to the number of different compositions of the selected symmetry. Therefore,
when several single-cycle symmetries exist in a CCSP problem, the algorithm
should be used with that generating the most symmetries by composition, i.e.,
with that having the longest cycle.

2 Box symmetry

Since B&P algorithms work with boxes, we turn our attention now to the set of
points symmetric to those belonging to a box B ⊆ Rn.

Let s be a single-cycle symmetry corresponding to the circular variable shift-
ing θ introduced in the preceding section, and B = [x1, x1] × . . . × [xn, xn] a
box in Rn. The box symmetry function S is defined as S(B) = {s(x) s.t. x ∈

III

B} = [xθ(1), xθ(1)] × . . . × [xθ(n), xθ(n)] = [x2, x2] × . . . × [xn, xn] × [x1, x1]. The
box symmetry function has also an associated constraint permutation σ, which
is the same associated to s. Si will denote S composed i times. We say, then,
that Si(B) and Sj(B) are symmetric boxes, 0 6 i, j < n, i 6= j.

As in the case of point symmetry, box symmetry has implications for the
CCSP. If there is no solution inside a box B, there is no solution inside any of
its symmetric boxes either. A box B∫ ⊆ B is a solution iff Si(B∫) ⊆ Si(B) is a
solution box for any i ∈ {1 . . . n− 1}.

Box symmetry is an equivalence relation defining symmetry equivalence classes.
Let R(B) be the set of different boxes in the symmetry class of B, R(B) =
{Si(B), i ∈ {0, . . . , n − 1}}. We define the period P (B) of a box B as P (B) =
|R(B)|. Therefore R(B) = {Si(B), i ∈ {0, . . . , P (B) − 1}}. For example, for box
B′ = [0, 4]× [2, 5]× [2, 5]× [0, 4]× [2, 5]× [2, 5], P (B′) = 3.

In the following sections we will show that the implications of box symmetry
for a CCSP can be exploited to save much computing time in a meta-algorithm
that uses the B&P algorithm as a tool without interfering with it.

3 Algorithm to exploit box symmetry classes

The algorithm we will propose to exploit box symmetry makes much use of the
symmetry classes formed by bisecting a n-dimensional cube In (i.e., of period
1) in all dimensions at the same time and at the same point, resulting in 2n

boxes. We will denote L and H the two subintervals into which the original
range I is divided. For example, for n = 2, we have the following set of boxes
{L × L,L × H,H × L,H × H} whose periods are 1, 2, 2 and 1, respectively.
And their symmetry classes are: {L × L}, {L × H,H × L}, and {H × H}.
Representing the two intervals L and H as 0 and 1, respectively, and dropping
the × symbol, the sub-boxes can be coded as binary numbers. Let SRn be the set
of representatives, formed by choosing the smallest box in binary order from each
class. For example, SR2 = {00, 01, 11}. Note that the cube In to be partitioned
can be thought of as the the set of binary numbers of length n, and that SRn is
nothing more than a subset whose elements are different under circular shift.

Section 4 will show how many components SRn has, how they are distributed
and, more importantly, how can they be generated. The symmetry exploitation
algorithm we propose below uses the B&P algorithm as an external routine.
Thus, the internals of the B&P algorithm do not need to be modified.

The idea is to first divide the initial box into a number of symmetry classes.
Next, one needs to process only a representative of each class with the B&P
algorithm. At the end, by applying box symmetries to the solution boxes ob-
tained in this way, one would get all the solutions lying in the space covered
by the whole classes, i.e., the initial box. The advantage of this procedure is
that the B&P algorithm would have to process only a fraction of the initial box.
Assuming that the initial box is a n-cube covering the same interval [xl, xh] in
all dimensions, we can directly apply the classes associated to SRn. A procedure
to exploit single-cycle symmetries in this way is presented in Algorithm 1.

IV

Algorithm 1: CSym algorithm.
Input: A n-cube, [xl, xh]× · · · × [xl, xh]; S: a single-cycle box symmetry;
B&P : a B&P algorithm.
Output: A set of boxes covering all solutions.

SolutionBoxSet← EmptySet1

x∗ ← SelectBisectionPoint(xl, xh)2

foreach b ∈ SRn do3

B ← GenerateSubBox(b, xl, xh, x∗)4

SolutionBoxSet← SolutionBoxSet ∪ ProcessRepresentative(B)5

return SolutionBoxSet6

Algorithm 2: The ProcessRepresentative function.
Input: A box B; S: a single-cycle box symmetry; B&P : a B&P algorithm.
Output: The set of solution boxes contained in B and its symmetric boxes.

SolSet← B&P (B)1

SymSolSet← SolSet2

for i=1: P (B)− 1 do3

SymSolSet← SymSolSet ∪ApplySymmetry(SolSet, Si)4

return SymSolSet5

The operator GenerateSubBox(b, xl, xh, x
∗) returns the box correspond-

ing to binary code b when [xl, xh] is the range of the initial box in all dimensions
and x∗ is the point in which this interval is bisected. The iterations over line 4
of Algorithm 1 generate a set of representative boxes such that, together with
their symmetries, cover the initial n-cube.

ProcessRepresentative(B) returns all the solution boxes associated to B,
that is, the solutions inside B and inside its symmetric boxes. Since the number
of symmetries of B is P (B), the benefits of exploiting the symmetries of a class
representative is proportional to its period.

4 An illustrative example

Molecules can be modeled as mechanical chains by making some reasonable ap-
proximations, such as constant bond length and constant angle between consec-
utive bonds. Finding all valid conformations of a molecule can be formulated as
a distance-geometry [2] problem in which some distances between points (atoms)
are fixed and known, and one must find the set of values of unknown (variable)
distances by solving a set of constraints consisting of equalities or inequalities of
determinants formed with subsets of the fixed and variable distances [2].

The problem can be solved using a B&P algorithm [9, 8]. Figure 1(a) displays
the known and unknown distances of the cycloheptane, a molecule composed of
a ring of seven carbon atoms. The distance between two consecutive atoms of

V

d1

d 6

d 3

d4

d
5

d7

d
2

(a) (b)

Fig. 1. (a) Cycloheptane. Disks represent carbon atoms. Constant and variable dis-
tances between atoms are represented with continuous and dashed lines, respectively.
(b) Three-dimensional projection of the cycloheptane solutions. The lightest (yellow)
boxes are the solutions found inside the representatives using the B&P algorithm (line
1 in Algorithm 2). The other colored boxes are the solutions obtained by applying
symmetries to the yellow boxes (line 4 in Algorithm 2).

the ring is constant and equal everywhere. The distance between two atoms
connected to a same atom is also known and constant no matter the atoms. The
problem has several symmetries. One is s(d1, . . . , d7) = (dθ(1), dθ(2), . . . , dθ(7)) =
(d2, d3 . . . , d7, d1). When this symmetry is exploited with the CSym algorithm
the problem is solved in 4.64 minutes, which compares very favorably with the
31.6 minutes spent when using the algorithm in [8] alone. Thus, a reduction by
a factor close to n = 7 (i.e., the length of the symmetry cycle) in computing
time is obtained, which suggests that the handling of box symmetries doesn’t
introduce a significant overhead. Figure 1(b) shows a projection into d1 d2 and
d3 of the solutions obtained using CSym.

5 Counting and generating box symmetry classes

Let us define some quantities of interest:
-Nn: Number of elements of SRn.
-FPn: Number of elements of SRn that correspond to full-period boxes , i.e.,

boxes of period n.
-N p

n : Number of elements of SRn having period p.
Polya’s theorem [7] could be used to determine some of these quantities

for a given n by building a possibly huge polynomial and elucidating some of
its coefficients. We present a simpler way of calculating them by means of the
formulae below. A demonstration of their validity as well as expressions for
similar quantities distinguishing the number of 1’s can be found in [10]. We
begin with FPn:

FPn =
2n

n
−

∑
p∈div(n), p<n

p

n
FPp. (1)

VI

2 4 6 8 10 12
box dimensionality (i.e., number of variables)

0

50

100

150

200

250

300

350

nu
m

be
r o

f c
la

ss
es

 o
f s

ym
m

et
ric

 b
ox

es

(a)

2 4 6 8 10 12 14 16 18 20
box dimensionality (i.e., number of variables)

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f f
ul

l-p
er

io
d

cla
ss

es

(b)

Fig. 2. (a) Number of elements of SRn as a function of n. (b) Percentage of full-period
elements in SRn as a function of n.

This recurrence has a simple baseline condition: FP1 = 2. Nn is calculated
with

Nn =
2n

n
+

∑
p∈div(n), p<n

n− p

n
FPp. (2)

This formula is valid for n > 1. The remaining case is N1 = 2. Finally,

N p
n =

{
0 if p /∈ div(n)
FPp otherwise

(3)

Figure 2(a) displays the number of classes (Nn) as a function of n. The curve
indicates an exponential-like behavior. Figure 2(b) shows the percentage of full-
period classes in SRn (100 Nn

n /Nn). Note that the percentage of classes with
period different from n is significant for low n, but approaches quickly 0 as n
grows.

The naive procedure to generate SRn involves a huge number of operations.
Here we suggest an algorithm capable of calculating SRn on the fly. We use
a compact coding of the binary numbers representing the boxes consisting of
chains of numbers. The first number in the code is the number of 0’s appearing
before the first 1. The i-th number in the code for i > 1 is the number of 0’s
between the (i− 1)-th and the i-th 1’s. For example, the number 0100010111 is
codified as 13100. The length of this numerical codification is the number of 1’s
of the codified binary number, which has been denoted by m.

Algorithm 3, explained in [10], generates SRn
nm, the subset of the elements

of SRn having m 1’s and period n, from which the whole SRn can be obtained,
as showed also in [10]. The algorithm outputs a list of codes in decreasing nu-
merical order. For instance, the output obtained when requesting SR9

93 with
ClassGen(6, 1, 1, 3, A) is: {600, 510, 501, 420, 411, 402, 330, 321, 312}.

6 Conclusions

We have approached the problem of exploiting symmetries in continuous con-
straint satisfaction problems using B&P algorithms. Our approach is general

VII

Algorithm 3: ClassGen algorithm.
Input: sum is the sum of the digits that remain to be written on the right

(from position pos to m); pos: the index of the next position to be
written; ctrol: the index of the current control element, whose value
cannot be surpassed in the next position; m: the length of the code;
A: array where class codes are being generated.

Output: A set of codes representing classes, SR.

SR← EmptySet1

if pos = m then2

if sum < A[ctrol] then /* otherwise, SR will remain EmptySet */3

A[m]← sum4

SR← {A};5

else6

if pos 6= 1 then7

LowerLimit = 08

UpperLimit←Minimum(A[ctrol], sum)9

else10

LowerLimit = dsum/me11

UpperLimit← sum12

for i = UpperLimit to LowerLimit do13

A[pos]← i14

if i = A[ctrol] then /* i = A[ctrol] = UpperLimit */15

SR← SR
S

ClassGen(sum− i, pos + 1, ctrol + 1, m, A)16

else SR← SR
S

ClassGen(sum− i, pos+1, 1, m, A); /* i < A[ctrol] */17

return SR18

and could be used also with other box-oriented algorithms, such as Branch-and-
Bound for nonlinear optimization. The particular symmetries we have tackled
are single-cycle permutations of the problem variables.

The suggested strategy is to bisect the domain, the initial n-cube, simulta-
neously in all dimensions at the same point. This forms a set of boxes that can
be grouped in box symmetry classes. A representative of each class is selected
to be processed by the B&P algorithm and all the symmetries of the representa-
tive are applied to the resulting solutions. In this way, the solutions within the
whole initial domain are found, while having processed only a fraction of it –the
set of representatives– with the B&P algorithm. The time savings tend to be
proportional to the number of symmetric boxes of the representative. Therefore,
symmetry exploitation is complete for full-period representatives.

We have also developed a method for generating the classes resulting from
bisecting a n-cube. The numerical analysis of the classes revealed that the aver-
age number of symmetries of the class representatives tends quickly to n as the
number of variables, n, grows. These are good news, since n is the maximum
number of symmetries attainable with single-cycle symmetries of n variables.

VIII

However, for small n there is still a significant fraction of the representatives not
having the maximum number of symmetries. Another weakness of the proposed
strategy is the exponential growth in the number of classes as a function of n.

The problems with small and large n should be tackled with a more refined
subdivision of the initial domain in box symmetry classes, which is left for near
future work. We are also currently approaching the extension of this work to
deal with permutations of the problem variables composed of several cycles.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Education
and Science through the contract DPI2004-07358 and by the “Comunitat de
Treball dels Pirineus” under contract 2006ITT-10004.

References

1. Benhamou F., Goulard F.: Universally Quantified Interval Constraints. Proc. 6th
CP (2000) 67-82

2. Blumenthal, L.: Theory and aplications of distance geometry. Oxford University
Press, 1953.

3. Cohen D., Jeavons P., Jefferson Ch., Petrie K.E., Smith B.M.: Symmetry Definitions
for Constraint Satisfaction Problems. Constraints 11(2-3) (2006) 115-137

4. Flener P., Frisch A.M., Hnich B., Kiziltan Z., Miguel I., Pearson J., Walsh, T.:
Breaking Row and Column Symmetries in Matrix Models. Proc. 8th CP (2002)
462-476

5. Gent I.P., Harvey W., Kelsey T.: Groups and Constraints: Symmetry Breaking
During Search. Proc. 8th CP (2002) 415-430

6. Meseguer P., Torras C.: Exploiting symmetries within constraint satisfaction search.
Artificial Intelligence 129 (2001) 133-163

7. Polya, G. and Read, R.C.: Combinatorial enumeration of groups, graphs and chem-
ical compounds. Springer-Verlag, New York, 1987.

8. Porta, J.M., Ros Ll., Thomas F., Corcho F., Canto J. and Perez J.J.: Complete maps
of molecular loop conformational spaces. Journal of Computational Chemistry (to
appear)

9. Porta J.M., Ros Ll., Thomas F., Torras C.: A Branch-and Prune Solver for Distance
Constraints. IEEE Trans. on Robotics 21(2) (2005) 176-187

10. Ruiz de Angulo V., Torras C.: Exploiting single-cycle symmetries in
continuous constraint satisfaction problems. IRI DT 2007/02, June 2007,
http://www.iri.upc.edu/people/ruiz/articulos/symmetriesreport1.pdf.

11. Puget J-F.: Symmetry Breaking Revisited. Constraints 10(1) (2005) 23-46
12. Sam-Haroud D., Faltings B.: Consistency Techniques for Continuous Constraints.

Constraints 1(1-2) (1996) 85-118
13. Vu X-H., Silaghi M., Sam-Haroud D., Faltings B.: Branch-and-Prune Search Strate-

gies for Numerical Constraint Solving. Swiss Federal Institute of Technology (EPFL)
LIA-REPORT 7 (2006)

