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Abstract. In this work a new robust color and contour based object detection
method in images with varying shadows is presented. The method relies on a
physics-based contour detector that emphasizes material chamnga<antour-
based boosted classifier. The method has been tested in a sequentgoof o
color images presenting varying shadows using two classifiers, onéetirat
contour object features from a simple gradient detector, and anotieletrnt

from the photometric invariant contour detector. It is shown that the tletec
performance of the classifier trained with the photometric invariant detecto
significantly higher than that of the classifier trained with gradient detector.
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1 Introduction

The motivation of this work is to reduce the effect of shadevien detecting objects
in a sequence of outdoor images. We show that the photonietddant used in this
paper is more sensitive to the contours of objects that arshamlows while neglecting
shadow contours. Our experiments show a comparison betthegoroposed method
and one using image intensity gradient information only.

There have been other approaches for removing shadows fnaigeis. Nadimeét
al. [1] use a multistage approach based on physical modelsé¢otdabving shadows in
video. Input video frames are passed through a moving obgtettion stage and then
through a series of classifiers which distinguish objectlsiirom shadow pixels. They
show extensive experimental results demonstrating thilngss of their approach.
Salvadoret al. [2] exploit spectral and geometrical properties of shadtavsegment
cast shadows from still and moving images. They make iniitigdotheses assuming
that cast shadows darken the surfaces where they are cast.flither validate the
initial hypotheses using complex hypotheses based on iteiariance and geometrical
properties, to end with an integration stage that confirnmmejects the hypotheses made.

In this work we also focus on a physical model and strive toaesrthe effects of
shadows, but unlike the aforementioned methods we are nwmatevith producing a
contour image invariant to shadows. This is because we hadmosting algorithm for
object detection on contour information and having thenaiiant to shadows greatly
improves the robustness of the detection process.



Our objective is to detect objects in image sequences where tare changes in
illumination due to the presence of varying shadows. We ugeadient-like image to
perform object detection based on contours in a way diftexenlassical methods. In-
stead of calculating the gradient modulus from the coloigesawe detect contours that
correspond to material changes using a modification to theoagh proposed by Gev-
erset al. [3] based on a combination of photometric invariant cord@urd an automatic
local noise-adaptive thresholding.

Boosting algorithms are very well known methods for fasteagbdetection which
are based on building robust classifiers from simple (weeldufes [4, 5]. We follow
the framework addressed in [6], but based on contours idstEiatensity images. The
use of contour images allows the use of inner and outer objauiours to perform
robust detection without the drawback of background. Canfeatures are encoded
by Haar operators so that they can be computed in constaatusgimg the intensity
integral image. However not all local contours are takea atcount for modelling the
object as a constellation of Haar operators, since thisreguire for a large number
of weak classifiers. Therefore a learning boosting phaseasd in order to select the
most discriminant operators and then to linearly combieetfor establishing a robust
classifier.

To validate our method we have used a sequence of outdoarig@ges presenting
varying shadows to perform object detection. Two boostiaggifiers were used, one
using simple intensity-based gradient images and the aitieg the contour images
obtained with the proposed method, and their results wemgpaced. We have also
compared the effects of shadows in the appearance of spuwraniours for intensity-
based gradient images and photometric invariant contoaig@s.

2 Robust Physics-Based Contour Detection

2.1 Basic Definitions

Images are the result of complex physical interactions éetwthe light incident over
the scene, the surfaces of the objects and the device thairesdghe images. Several
models of these processes have been developed during tise @ea that is commonly
used in computer vision applications is the dichromatieifbn model [7]. This model
has two terms corresponding to two reflection processes.lighereflected from a
surface is a combination of the light reflected at the interfand the light which enters
the substrate and is subsequently reflected back as thegésaattering. It is common
to refer to these two reflection components as the interfaffection and the body
reflection. The model can be further simplified if the illumiion source is assumed to
be white or spectrally smooth and the interface reflectamagssumed to be neutral, i.e.
the Fresnel reflectance does not depend on wavelength. e assumptions the
reflection model, expressed in term of the sensor respoissgisen by

Vi = Gb(n,s)E/AB()\)Fk()\) d\+ Gi(n,s,v)ESF (1)

where V. is the kth sensor responsé&;;, and GG; are geometric terms denoting the
geometric dependencies of the body and surface reflectiorpeoent, that is sur-



face normaln, illumination direction,s, and viewing directionp. B(\) is the sur-
face albedoF denotes the illumination source, afddenotes the Fresnel reflectance,
both assumed independentaf Fj,(\) denotes théth sensor spectral sensitivity and
Fy, = [, Fr(X) dA.

2.2 Color Models

Three color models are used because of their different amplementary properties
regarding their response against parameters of the reflectodel: RG B, c1c2¢3 [8]
andolo2. In the RGB color model{ R, G, B} values correspond directly with, in
(2). Thecle2e3 color model is defined by

cl(R,G, B) = arctan(R/maxG, B)) (2)
2(R,G, B) = arctan(G/max R, B)) (3)
c3(R,G, B) = arctan(B/max R, G)) 4)

and theolo2 color model is defined by

01(R,G.B) = (R — G)/2 (5)
02(R,G,B) = (R+ G)/4— B/2 (6)

It follows from (1) that theRG B color model is sensitive to all parameters of the dichro-
matic reflection model. Geveesal. [3, 8] showed that under the assumptions included
in (1) theclc2¢3 color model depends only on the sensor spectral sengt\atind the
surface albedo or material for dull objects, being indepenadf shadows and geome-
try (£ andG, in the model)clc2¢3 still vary in the presence of highlights. They also
showed that thelo2 color model is invariant to highlights for shiny objects endhe
same assumptionslo? is still dependent on geometrg(). These results are summa-
rized in Table 1.

Table 1. Color model sensitivity to parameters of the image formation processnetes sensi-
tivity and - invariance of the color model to a particular parameter.

shadow geometry material highlights

RGB  + + + +
clc2e3 - - + +
0lo2 + + + -

2.3 Contour Detection

To compute contours we start by calculating thandy derivatives for each channel
of the three aforementioned color models using Gaussiawatiees. Then the color



gradient magnitude for each color model is computed usiadeticlidean metric over
the various channel derivatives:

Ve N 867; 2 8@ 2 7
-\%|G) + (&) g
with C' representing each color modé\, being their dimensionality, ang the partic-
ular color channels.

The presence of noise in the images can lead to the appearhn@xima in the
gradient modulus that are not related to any parameter afrthge formation process
(2). If it is assumed that the sensor noise is normally digted, and that we know
the parameters for each particular sensor, then using (Id{1b) (see appendix) the
uncertainties associated to the-2¢3 andolo2 color models, as well as the different
gradient moduli, can be propagated from the a priori knowrsgeuncertainties. Once

we have the associated uncertainty of a measure, we cantosgiininate noise, as it
is shown in Sect. 2.4.

2.4 Contour Invariance

Once the gradient modulus of each color model is availabie necessary to combine
them to obtain the invariance against the undesired paesmen the image formation
process.

Geverst al. classified the edges into shadow-geometry, material aridigigs [3].
To achieve this they first calculate the gradient magnitfdee@RG B, c1¢2 andolo2
color models. Then they propagate tR&' B uncertainties through the color models
up to the gradient magnitudes, and local thresholding wed tesbinarize the gradient
magnitudes to obtai’®. The assumption that the noise is normally distributed iespl
that 99% of the values fall within 30 margin. If the value of the gradient moddiC
is greater thalov ¢ at a particularz, y) location then the probability of that contour
being due to noise is only of 1%:

1 if VC(z,y) > 30v0(a,y)
0 otherwise

VO (x,y) = { (8)

with C® representing each color model used, thaRiS B, c1c2 and olo2. Finally
a rule-base classifier based on the sensitivity of each cotmtel to the dichromatic
reflection model parameters, see Table 1, was used to labetshltant image as fol-
lows:
if VChep #0andVC? = 0then
classify as shadow or geometry edge

elseifVC? ., #0andVCt , = 0then
classify as highlight edge
else

classify edge as material edge
end if



We have taken a different approach to obtain the invariantozo image. Rather than
classifying edges according to its physical nature we onhgye to detect object con-
tours that are due to material changes, which are the cantelavant for the task we
want to solve. Besides, we have realized that a binarizetbaoimage discards infor-
mation that might be valuable for the detection stage. Ttiencontour image that we
calculate is a gray-level image, where the image intensitgsga measure similar to a
signal to noise ratio.

As in [3], we calculate the gradient magnitudes of the thidercspaces defined in
Sect. 2.2 and propagate tli&~ B uncertainties using (15) to obtain the uncertainties
associated with the gradient magnitude of each color spage, Instead of perform-
ing the local thresholding defined in (8) at this stage, wengeéi function)/ in the
following way:

M =VRGB -Vecle2e3 - Volo2 (9)

M will have a maximum value when the gradient moduli of all caleodels have
simultaneously a maximum, and will have low values when ttagignt modulus of
any of the color models is low. By looking at Table 1 it is evitlghat the response of
M emphasizes material changes in the image, while minimittinge due to shadow-
geometry and highlights.

Then, the uncertainty in the functiao is also computed using (15) to yield

g oM . oM L oM 10)
oM =\ 9(VRGB) VR T 9(Veleae3) TV T 5(Volo2) Vo2

with oy being calculated from(15) for each color model
70,
\/Z BCL (é)cl ) :|

with C' representing each color model andthe particular color channels. The un-
certaintieso s, andos., are calculated taking into account that the derivatives are

approximateaé by filter??ﬁg with a mask, gaussian derivatinghis case. Using (15), it
results that the uncertainties can be computed by filtefieguncertainty planes with
the absolute value of the mask used for the derivatives. Mbertainty planes are noth-
ing more than the propagation of tf&= B uncertainties to the other color models using
(14).

The assumption that the noise is normally distributed usegkict. 2.4 is also used
here to obtain a local noise-adaptive threshold for rengpwioisy measurements from
M.
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Jac, +

ovC < (ll)

(12)

]\/[, _ M M > 30'1w
0 otherwise

The final result is a gray-level contour image that emphasize contribution of ma-
terial changes and at the same time reduces that of shadmwegygy and highlights on
the input images. Note that while a value of zeraMifi means there is a probability



of 1% of being wrong, higher values reduce that probability further. Thus isiignin
M’ is directly correlated with the probability of a givén, i) location being a material
change.

3 Experiments

In order to evaluate the robustness of the proposed methdthveemade experiments
of detecting an object in a sequence of images, where therehanges in the illumi-
nation of the objects due to varying shadows. For the exmariswe have used two
boosting classifiers that learn contour object feature® lirosting classifier uses con-
tour features coming from a simple gradient detector. Thers# boosting classifier
uses our method, that is the photometric invariant conteteaor

Using both methods, the learning boosting step seleti@dwveak classifiers for
each method from a learning setif object images an#00 background images. The
background images were extracted from patches of outdabinaioor images using a
randomized process. The learning set of images includezthyvith small variations
of position and scale which make this classifier robust agaimall object transforma-
tions.

The two boosting classifiers were tested over a sequeng¢gidmages where one
static object under varying shadows appears. Some fraraashawn in Figure 1, where
we can also appreciate some detection results. The inpoit toages are on the left
column, the results of the classifier based on the simpleigmadetector are on the
middle column, and the results of the proposed method arberight column. Each
green square in the images represents one object detédfocan see how the classi-
cal method is perturbed by the varying shadows, being unialoletect the object under
these illumination variations. On the other hand, the di@sdbased on photometric in-
variant contours achieves a correct detection thanks tettadow-free contours, being
the contour object features reliable over the sequence. Fithee 3 shows the ROC
(Receiver Operating Characteristic) curves for both methods. The proposed method
overcomes the classical one, achievlitig% detection, meanwhile the simple gradient
method perform§9% without false positives.

In Figure 4, there are some test frames when the thresholdasting classifier
is reduced from3 = 0.75 (Figure 1) tog = 0.65. We can notice that the object is
detected in all cases though with many false positives femtliethod based on simple
gradients, unlike the proposed method that continues tilegezorrectly, demonstrating
its robustness and reliability with a relaxed classifiaatiareshold.

We have evaluated the influence of shadows both in the prdpasatometric in-
variant contour images and the simple gradient images. Tatevation of the exper-
iment was to test the relative increase in contour pixelsedly shadows. To this
purpose, a subset of the outdoor image sequence consigBiigrmages from the total
of 934 was randomly selected. This subset was enlarged byagamselected with the
constraint of being shadow free. Because this constraiitlamt be met over the entire
image, the images were cropped around the carton recyclgskih as target object in
the detection experiments.

! Information about the boosting classifier can be found in [6].
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Fig. 1. Test1. Frames when the thresholflin the boosting classifier is set ©75. (a) Input
images, (b) gradient based detections and (c) invariant based desectio



The images were processed and both the gradient and thenpdtoio invariant
contour images were obtained. One shadow free contour imageisually inspected
for each method. The inspection determined a thresholdaichn enethod that produced
a binarized image with a similar aspect between them and googlation between
object features and contours. This shadow-free image vebassthe reference image,
and then the following metric was used for all images

Epq = count(abs(AI) > k) /E, (13)

with AI = I; — I, the difference between a given image and the referelnthe
aforementioned thresholds, one for each methodgne count(I,. > k) the number
of contours in the reference image,, is the ratio of the number of incorrectly detected
contours to the number of contours in the reference image.rékults are shown in
Fig. 2. As can be seen, the ratio is small and stable for thpgsed method, with a
maximum number of misdetected contours of around 3% of tielren of contours in
the reference image. For the gradient contour image theisatinstable and the number
of misdetected contours ranges from 35 to 65 percent of thébruof contours in the
reference image. This simple metric clearly shows the imnpathe proposed method

in the presence of shadows.
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Fig. 2. Percent ratio of the number of misdetected contours to the number tdurerin the
reference image for the photometric invariant contour image (—), antheé simple gradient

contour image (- -).

4 Conclusions

The proposed method has demonstrated to perform robusttadggeection in out-
door images under varying shadows and illumination chgrayescoming the classical
method relying on a simple gradient detector. This lattethoe fails due to varying
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Fig. 3.ROC curves. (a) Simple gradient and (b) photometric invariant cositour
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Fig. 4. Test2. Frames when the threshaftin the boosting classifier is reducedd®5. (a) Input
images, (b) gradient based detections and (c) invariant based desectio



shadows producingew object contour features that eventually mislead the diassi

On the other hand, the proposed method based on photonmetitant gives a contour
image without shadow effects. This facilitates the idecdtfion task, as the classifier fo-
cuses on actual object features. The experiments showeagéfielness of the shadow
invariance of the method in a sequence of outdoor imageshi@cbdetection where

the illumination conditions were not controlled.
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Appendix: Error Propagation

Suppose that, ..., z are measured values with uncertaint®s. . . , o, and the mea-
sured values are used to compute the funcfian. . ., z). If the uncertainties in, . . . , 2
are independent and random, then the uncertaingyisri9]

B dq 2 dq 2
(2 e (20) ao

In any case the uncertainty is never larger that the ordigiany
%
0z

0
0q<’az O+ -+ o, (15)




