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Abstract. In this paper a new technique to perform tracking in clut-

tered scenarios with varying illumination conditions is presented. The

robustness of the approach lies in the integration of appearance and

structural information of the object. The fusion is done using the CON-

DENSATION algorithm that formulates multiple hypothesis about the esti-

mation of the object's color distribution and validates them taking into

account the contour information of the object.

1 Introduction

Color represents a visual feature commonly used for object detection and track-

ing systems, specially in the �eld of human-computer interaction [1][5]. For such

cases in which the environment is relatively simple, with controlled lighting con-

ditions and an uncluttered background, color can be considered a robust cue.

The problem appears when we are dealing with scenes with varying illumination

conditions and confusing background. For example, in the upper row of Fig. 1 we

can see some frames from a motion sequence of a Lambertian surface, in which

the object of interest revolves around the light source. In the lower row, we show

the corresponding color distributions, (in RGB color space) that belong to the

reddish rectangle. Last image shows the path followed by the color distribution

for the entire sequence.

Fig. 1. Example frames of a time-varying color illuminant.

Thus, an important challenge for any color tracking system to work in real

unconstrained environments, is the ability to accommodate variations in the

amount of source light reected from the tracked surface.
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The choice of di�erent color spaces like HSL, normalized color rgb ([10],[7]),

or the color space (B �G;G�R;R+G+B), can give some robustness against

varying illumination, highlights, interreections or changes in surface orientation

(see [2] for an analysis of di�erent color spaces). But none of these transforma-

tions is general enough to cope with arbitrary changes in illumination.

Instead of searching for color constancy, other approaches try to adapt the

color distribution over time. In [6], for example, Gaussian mixtures models are

used to estimate densities of color, and under the assumption that lighting con-

ditions change smoothly over time, the models are recursively adapted. In [8],

the color distribution is parameterized as a random vector and a second order

Markov model is used to predict the evolution of the corresponding color his-

togram. These techniques perform much better than the mere change of color

space representation, but have the drawback that they do not check for the

goodness of the adaptation, which can lead to a failure.

The fusion of several visual modules using di�erent criteria o�ers more reli-

ability than methods that only use one feature. In this sense, the real-time head

tracking system presented in [1], models the head of a person by an ellipse and

uses intensity gradients and color histograms to update the head position over

time. In [5], color histograms are fused with stereovision information in order to

dynamically adapt the size of the tracked head. These real time applications are

constrained to tracking of elliptical shapes.

In this paper, we present a new methodology that addresses the problems

presented by the approaches described above, that results in a robust tracking

system able to cope with cluttered scenes and varying illumination conditions.

The robustness of our method lies in the fusion of color and shape information,

which are iteratively adapted using the CONDENSATION algorithm [3].

Section 2 presents the main features of our method and the advantages of

fusing color and shape. In Section 3 a detailed description of the method is given.

Results and conclusions are presented in Sections 4 and 5, respectively.

2 Overview

Before entering into a detailed description of the proposed method we give a

short glimpse of its main features:

{ Integration of color and shape information:fusion of both vision mod-

ules makes our method appropriate to work in cluttered scenes. In Fig. 2 we

can see an example of the power of this fusion in the tracking of a snail shell.

(a) (b) (c) (d)

Fig. 2. Clutter in edge-map is reduced using the information from the object's color.



Lecture Notes in Computer Science 3

Fig. 2b illustrates the clutter of the scene diÆculting the tracking procedure

when only using edge information. If the color distribution of the shell is

known, the image can be segmented via color histograms [9] (see Fig. 2c),

and use this information to discriminate many false edges (Fig. 2d).

{ Ability to adapt shape deformation and varying illumination: ac-

commodation to varying illuminating conditions is needed to get a good

color segmentation of the tracked object. As shown above (Fig. 2d), color

segmentation is used to eliminate many false edges from the region of in-

terest, simplifying a �nal stage of adapting a snake (maintaining aÆnity) to

the contour of the object (assuming that the set of possible shapes of image

contours do indeed form aÆne spaces). We introduce a restriction to the clas-

sical snake minimization procedure [4], to obtain aÆne deformations only.

This feature makes our system robust to partial occlusions of the target.

{ Fusion of color and shape in a probabilistic framework: the CONDEN-

SATION algorithm o�ers the appropriate framework to integrate both color

and contour information, and to perform tracking of the object color distri-

bution in color space, and that of the object contour in image space, both

simultaneously. That is, using the predictive �lter, multiple estimates of the

object color distribution are formulated at each iteration. These estimates

are weighted and updated taking into account the object shape, enabling the

rejection of objects with similar color but di�erent shape than the target.

Finally, the best color distribution is used to segment the image and re�ne

the object's contour.

3 The Tracking Algorithm

In this section a detailed description of the steps used in the method is presented.

For ease of explanation these steps are divided as in the CONDENSATION algorithm

(Fig. 3 shows the one dimensional case):

Fig. 3. One iteration of the CONDENSATION algorithm for the one-dimensional case.

The weight of each sample is represented by its gray level.

3.1 Parameterization and pdf of color distribution

It has been pointed out that an interesting feature of the presented method is

that tracking is performed simultaneously in both color and image spaces. In fact,
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the element being directly tracked by the �lter is the object color distribution

C, that at time t is the collection of all image pixel color values It that belong

to the target, i.e, Ct = f(Ri; Gi; Bi) j i = 1; : : : ;Mtg, where Mt is the number

of object points at time t, and 0 � Ri; Gi; Bi � 1 (we assume without loss

of generality, that the color space is RGB, but it is extensible to any color

space). As the set of object points can be arbitrarily high, the state vector

xt will be a parameterization of Ct with components (adapted from [8]) xt =h
m>

t ;�
>
t ; �t; �t

i>
, wheremt =

�
�R; �G; �B

�>
is the centroid of Ct , �t = [�1; �2; �3]

>

are the magnitudes of the principal components of Ct; and �t, �t are the angles

centered at mt that align the two most signi�cant principal components of Ct
with respect to the principal components of Ct�1 (see Fig. 4).

Fig. 4. Principal directions of two consecutive color distributions. The parameter �t is

the angle that aligns e1
t�1 with respect to e1

t
. The parameter �t is the angle that aligns

e2
t�1 with respect to e2

t
after having rotated e2

t�1 an angle �t around the axis e1
t�1�e1

t
.

At time t, a set of N samples s
(n)
t�1 (n = 1; : : : ; N) of the form of x, param-

eterizing N color distributions C
(n)
t�1 are available (step (a) from Fig. 3). Each

distribution has an associated weight �
(n)
t�1. The whole set represents an approx-

imation of the a posteriori density function p (xt�1jZt�1) (see Fig. 5), where

Zt�1 = fz0; : : : ; zt�1g is the history of measurements.

Fig. 5. Four samples of color distribution from the set
n
s
(n)

t�1

o
(in the last image,

samples are shown together). Gray level is proportional to the sample weights. The set

of all these distributions approximates the a posteriori pdf p (xt�1jZt�1).

3.2 Sampling from p (xt�1jZt�1)

The next step in the estimation of p (xtjZt) consists of sampling with replacement

N times the set
n
s
(n)
t�1

o
, where each element has probability �

(n)
t�1 of being chosen

(step (b) from Fig. 3). This, will give us a new set
n
s0
(n)
t

o
of color distribution

parameterizations. Those distributions having higher weights may be chosen
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several times, so the new set can have identical copies of elements. On the other

hand, those distributions having lower weights may not be chosen (see Fig. 6a).

3.3 Probabilistic propagation of samples

Each sample s0
(n)
t of the set is propagated (see Fig. 3c and Fig. 6a) according to

the following dynamic model:

s
(n)
t = As0

(n)
t +Bw

(n)
t

where A is the deterministic part, assigned as a �rst order model describing the

movement of an object with constant velocity. Bw
(n)
t is the stochastic compo-

nent, with w
(n)
t a vector of standard normal random variables with unit standard

deviation, and BB> is the process noise covariance. The parameters A and B

are estimated a priori from a training sequence.

Each predicted sample s
(i)
t represents the set of parameters de�ning the rigid

transformations that will be used to warp the color distribution C0
(i)
t associated

with the sample s0
(i)
t , in order to obtain the new estimated distribution C

(i)
t (with

parameters s
(i)
t ).

3.4 Measure and weight

In this step, each element s
(n)
t has to be weighted according to some measured

features, and is precisely at this point where we integrate the structural infor-

mation of the object's contour. From the propagated color distributions C
(n)
t , we

construct the color histograms H
(n)
t with R � G � B bins:

H
(n)
t

(r; g; b) = #

�
(R;G;B) 2 C

(n)
t

j
r � 1

R
< R �

r

R
;
g � 1

G
< G �

g

G
;
b � 1

B
< B �

b

B

�

and where r = [1; : : : ;R], g = [1; : : : ;G], b = [1; : : : ;B], with fr; g; b;R;G;Bg 2

N. This histogram is used to generate a segmentation S
(n)
t from the entire

image It. That is, given a pixel It(u; v) with color value (R;G;B) the corre-

sponding value of the segmented image S
(n)
t (u; v) will be assigned a value 1 if

H
(n)
t (r; g; b) > 0, where r = bR � Rc, g = bG � Gc and b = bB � Bc (Fig. 6b).

The goal is to assign higher weights to the samples s
(n)
t generating \better"

segmentations of the tracked object. To this end, simple morphological opera-

tions are performed on S
(n)
t to extract a blob corresponding to the segmented

object (Fig. 7a). After adjusting a snake along the contour of this blob, the

weight assigned to s
(n)
t is computed according to the function:

�
(n)
t = e�

�
2

2�2

and � = �1(1� �affine) + �2(1� �area) + �3(1� �quality).

Functions �affine, �area and �quality return a value in the range [0; 1] and

represent a measure of the following features:
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(a) (b)

Fig. 6. (a) Sampling and probabilistic propagation from color distributions C
(n)
t

, of

Fig. 5. Observe that the sample having the highest weight has been chosen two times,

while another sample with lower weight has not been chosen. (b) Construction of the

histograms H
(n)
t

and results of the corresponding segmentations S
(n)
t

.

{ AÆne similarity: letrS
(n)
t be a binary image of the edges of S

(n)
t , and rt�1

a collection of image points along the snake adjusted to the contour of the

object in the iteration t� 1. rt�1 is used as initialization of an aÆne snake

r
(n)
t that is adjusted to rS

(n)
t . �affine, measures the similarity between

r
(n)
t = (u

i;(n)
t ; v

i;(n)
t ) (i = 1; :::; Nr), and rS

(n)
t :

�affine =
1

Nr

NrX
i=1

rS
(n)
t

�
u
i;(n)
t ; v

i;(n)
t

�

{ Congruent value of area: another factor to take into account when evalu-

ating the goodness of the segmentation S
(n)
t is how close is the area Area

(n)
t

of the snake r
(n)
t to the predicted area ]Areat = Areat�1 + �(Areat�1 �

Areat�2), where Areat�i is the area of the re�ned snake at iteration t � i

(see Sect. 3.5). This is considered in the function:

�area = j]Areat �Area
(n)
t j=max

n
]Areat; Area

(n)
t

o

{ Quality of the segmentation: the function �quality is introduced to pe-

nalize those segmentations of \low" quality that present some holes into the

area of the segmented object. �quality is a linear function of the Euler number

of the processed S
(n)
t .

Finally, the set of N weights �
(n)
t associated to each of the samples s

(n)
t , repre-

sents an approximation to the a posteriori density function p (xtjZt).

3.5 Contour updating

The last step of our algorithm, consists in re�ning the �tting of the object

boundary, in order to obtain rt. This is done by taking the contour of the seg-

mented image corresponding to the best sample (rS
(i)
t j �

(i)
t � �

(j)
t 8j 6=
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(a) (b) (c) (d)

Fig. 7. (a) Segmented image S
(n)
t

after postprocessing operations (the example from

Fig. 2) (b) The red curve is the initial snake (rt�1). The black curve is the boundary

(rS
(n)
t

) of the segmented image. (c) Intermediate steps of the aÆne snake �tting. (d)

Final result of the snake �tting (r
(n)
t

). Observe that if the deformations were not aÆne,

the snake may have erroneously evolved to encompass the neck of the snail.

i; 1 � j � N), and instead of adjusting the snake rt�1 to rS
(i)
t , it is adjusted

to rI�t = rIt � dil(rS
(i)
t ), where rIt is the gradient of It, and the function

dil(�), refers to a morphological dilate operation. rI�t is in fact the original edge

image, from which all the clutter and disturbing edges have been eliminated (see

Fig. 2).

4 Experimental Results

In this Section four sets of sequence results are presented (summarized in Fig. 8)

to illustrate the robustness of our system under di�erent conditions. As the

algorithm has been implemented in an interpretative language (MATLAB), speed

results will not be analyzed. Attention will be focused on the e�ectiveness of the

method. In the �rst experiment we show how our system is able to accommodate

color by applying it over a synthetic sequence of circles moving around and

changing randomly its color. In the upper left image of Fig. 8 the path of the color

distributions for the tracked circle is shown. The second experiment (tracking of

a colored rectangle) corresponds to the sequence introduced in Fig 2. It has to

be pointed out that in the previous experiment we used the RGB color space,

but in the present and subsequent experiments the color space used was the

(B �G;G�R;R+G+B) in order to provide robustness to specular higlights.

The last two experiments, correspond to outdoor scenes, where although the

change in illumination conditions is limited, they are useful to show that our

method works with non-uniform shapes (third experiment of a beatle tracking),

and in cluttered scenarios (fourth experiment of a snail tracking).

5 Conclusions

In this paper we have presented a new approach to the color object tracking

under cluttered and varying illumination environments that dynamically accom-

modates the color distribution and shape of the object. The robustness of the

method lies in the fusion of both modules in the probabilistic framework pro-

vided by the CONDENSATION algorithm. Results demonstrate the reliability of

the tracking system in several experiments.
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Fig. 8. Results of the 4 experiments.
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