

Abstract— In this work we propose a decision-making
system that efficiently learns behaviors in the form of rules
using natural human instructions about cause-effect relations
in currently observed situations, avoiding complicated
instructions and explanations of long-run action sequences and
complete world dynamics. The learned rules are represented in
a way suitable to both reactive and deliberative approaches,
which are thus smoothly integrated. Simple and repetitive tasks
are resolved reactively, while complex tasks would be faced in a
more deliberative manner using a planner module. Human
interaction is only required if the system fails to obtain the
expected results when applying a rule, or fails to resolve the
task with the knowledge acquired so far.

I. INTRODUCTION

N this work we are facing the problem of decision making
for a multitask robot embedded in a human environment

that should rapidly learn to perform tasks by interacting with
humans, in an on-line way, and without any previous
knowledge of the world dynamics or the tasks to be
performed.

From a very general point of view, we must consider two
alternative approaches to the goal of building an intelligent
agent: the deliberative and the reactive approaches. The
deliberative approach began with the very birth of AI, and it
is based on the principle of rationality [1], which states that
"If an agent has knowledge that one of its actions will lead
to one of its goals, then the agent will select that action.".
The proponents of the knowledge-based systems using the
principle of rationality soon realized that there are a number
of important shortcomings with this approach, ranging from
the frame problem [2], the difficulty of building a large
enough database of knowledge providing the grounds for
common sense, and the theorems stating the complexity of
planning for even some of the simplest kinds of logical
problems.

Later, also the symbol grounding and related problems [3]
entered the scene. As a response to this, the proponents of

This work is funded by the EU PACO-PLUS project FP6-2004-IST-4-
27657.

A. Agostini is with the Institut de Robòtica I Informàtica Industrial,
CSIC-UPC, Barcelona, 08028, Spain (corresponding author) (phone: +34-
93-401-5786; fax: +34-93-401-5750; e-mail: agostini@ iri.upc.edu).

E. Celaya, is with the Institut de Robòtica I Informàtica Industrial, CSIC-
UPC, Barcelona, 08028, Spain (e-mail: celaya@iri.upc.edu).

C. Torras is with the Institut de Robòtica I Informàtica Industrial, CSIC-
UPC, Barcelona, 08028, Spain (e-mail: torras@iri.upc.edu).

F. Wörgötter is with the Bernstein Center for Computational
Neuroscience, Göttingen, D37073, Germany (e-mail: worgott@bccn-
goettingen.de).

the new AI [4] advocated for the reactive approach, in which
the knowledge level was completely absent. In this approach
actions are not driven by the rationality principle, but
triggered by the current situation, and not guided by any
specific purpose, but simply as a set of instincts carefully
organized to accomplish a specific task.

While reactive approaches have proved to be valid for
many low-level tasks, we think that the kind of intelligent
behavior we expect from a service robot, like a kitchen
assistant, cannot be the result of purely reactive processes.
We want the robot to promptly accomplish the task required
by the user, and this means that its actions must be goal-
driven, and not just situation-driven. We expect the robot to
be able to produce new behavior in response to a new goal
using its knowledge of the situation and the effects of its
actions, but it is clear that a reactive system will only be able
to act according to already acquired behaviors.

A number of hybrid approaches have been proposed
along these lines. Some of them propose a decision-making
system that permits fast agent responses to new situations
using reactive layers while the deliberative layers generate
behaviors used later by the reactive modules [5]. Others let
the low-level action control to be driven by reactive
behaviors, which are selected or modulated by a higher
deliberative layer [6], [7]. Finally, some works focus mainly
on the generation of behaviors such as macro-actions [8],
primitive behaviors [9], or activation rules [10], which store
sequences of actions frequently used or difficult to calculate,
to use them later as macro planning operators in a
deliberative system.

In any of the previous cases a large amount of
computation is usually required due to the need of exploring
different acting behaviors to select one suitable for the task.
The problem turns to be more complicated if the robot has
no previous knowledge of the world dynamics and should
perform learning while predicting what would occur with
different behaviors. Incomplete knowledge has been tackled
using techniques like incomplete planning [11], learning
planning operators [12], [13], [14] or policy learning [15],
but the drawback of computational complexity derived of
the application of AI techniques is still not surmounted.

The aim of this work is to develop an integrated system in
which reactive and deliberative components are both
present, though not strictly separated, but smoothly
combined, and where the world dynamics and behaviors are
rapidly learned from scratch through a natural human-robot
interaction.

Action Rule Induction from Cause-Effect Pairs Learned through
Robot-Teacher Interaction

Agostini A., Celaya E., Torras C. and Wörgötter F.

I

Proceedings of the 2008 International Conference on Cognitive Systems
University of Karlsruhe, Karlsruhe, Germany, April 2-4, 2008

213

As we want the agent to learn only the dynamics of the
world relevant for its purpose, the world exploration is
guided by a teacher. It is very simple for humans to know
which action to perform in a situation given a plain task, like
a kitchen task, but it could be much more complicated to
explain a priori all the sequences of actions that should take
place in all the possible situations. It might also be difficult
for a human to detail all the conditions that should be taken
into account to afford a desired cause-effect for all the
possible situations. In this work we take benefit of the
human capabilities of explaining cause-effect relations in
currently observed situations to efficiently generate
knowledge for decision making in a multitask robot. The
idea is based on Piaget's theory of cognitive development
which claims that children gradually acquire knowledge of
cause-effect relations by repeatedly executing processes and
sequencing actions to reach goals.

This work is organized as follows. Section II explains the
outline and main elements of the method proposed. Section
III presents a demo application and clarifies some concepts
explained in Section II. In Section IV the algorithm is
delineated in pseudo-code. A brief discussion of the ideas
and concepts of this work in the context of the European
project PACO+ [16] is developed in Section V. Finally,
section VI delineates some conclusions and future works.

II. OUTLINE OF THE METHOD
In this work a decision making system is proposed where

the action behaviors are generated using simple cause-effect
relations learned with the help of a teacher. The learned
behaviors are used either reactively or deliberatively
depending on the complexity of the task requested.

We will define a behavior (or rule) as a set of
preconditions, a sequence of actions, and the final expected
outcome. The preconditions are a set of necessary conditions
or perceptions that must be observed before the rule can be
applied, and the expected outcome is a series of effects that
will be obtained after the execution of the rule. The action
sequence may consist of a single elementary action in the
simplest rules (the cause-effect relation for that action) or a
list of actions, each one expressed in turn as a cause-effect.

A general overview of the proposed method is the
following. Given a goal, the agent tries to apply any of the
existing rules in a reactive way to reach it from the current
situation without any deliberation. If more than one rule is
retrieved, the one with fewer actions in its sequence is
applied. If a reactive behavior is not possible, then the agent
tries to generate a plan using the existing rules as planning
operators.

If both the reactive and deliberative modules fail to return
a behavior, as a consequence of an incomplete knowledge,
the agent asks the teacher about which action or actions to
perform. The agent executes every instructed action and
generates a first approximation of the involved cause-effects
by observing the changes in the environment. Then the agent

generates a rule with the sequence of the generated cause-
effects.

On the contrary, in the case that the agent is able to find a
behavior with the reactive or deliberative module, then it
executes and evaluates it at the level of each cause-effect in
the related sequence. If any of the outcomes obtained is
different from the one expected, the agent will ask the
teacher for explanations about which conditions prevented
the correct outcome of the cause-effect to occur. With the
teacher explanation the agent automatically corrects the
cause-effect structure as well as all the rules that apply this
cause-effect in their sequences performing a large updating
of the knowledge base with a little teacher interaction.

A. Notation
We assume that the agent has a set of N sensors that

measure some features of the environment. The value of
sensor i is called an observation oi. A world state SO is
formed by the set of observations oi , SO={o1, o2, … , oN}.

Each of these sensors is internally represented by the
agent as a detector di that could take different discrete values
dij, called conditions, depending on the sensed value oi. An
internal agent state S is constituted by a set of conditions dij,
S={d1j, d2k,…,dNl}.

At every moment the agent is able to perform any of the k
actions from the set A={a1, a2,…, ak}.

The function that maps the sensor observations to
conditions is called the perception function (PF). As we will
explain later the PF could be updated while the learning
process is running, permitting the management of the
uncertainties, inherent to real environments.

The most elementary rule consists of a cause-effect
relation and reflects how a change is obtained using a single
action and what preconditions are necessary to afford that
change. We formally represent a cause-effect ceci using a
tuple that consists in a subset Pi of state conditions called the
preconditions of the ceci, an action ai from the set of actions
A, and a subset Oi of state conditions denoted as the
expected outcome of the ceci.

ceci = <Pi={dgj,…,dml}, ai , Oi={dkl,…,dpq}> (1)

In the same way, a rule Rj is described using a tuple that

consists of a subset Pj of state conditions called the
preconditions of the rule Rj, a sequence of cec’s
CECS=(ceck, ceci,…, cecm), and a subset Oj of state
conditions denoted as the expected outcome of the rule.

Rj = <Pj={dih,…,dml}, CECS , Oj={dkl,…,dpq}> (2)

In our approach, the expected outcome serves two

purposes: it will be used by a goal-achieving deliberative
system for planning, and by a learning system to improve
rule descriptions. Every time the expected outcome is
different from the observed we will say that the robot gets a
surprise.

214

B. Learning Rules
When the knowledge base of the system doesn’t permit to

find a rule, or a sequence of rules, to be applied in an
experienced situation, the teacher instructs the robot about
which action or sequence of actions to execute. Then, the
robot executes every instructed action generating a first
approximation of the involved cause-effects, and afterwards
builds a rule using the sequence of the generated cec’s.

1) Generating cecs
The robot generates a first approximation of the cause-

effect observing the conditions that change in the states
before and after the execution of the instructed action a. If
we call the state before the action execution Sprior and the
state after the action execution Spost the new cecnew is:

cecnew=< Pnew, a, Onew> (3)

where,
Pnew = { dij ∈ Sprior | dij ∉ Spost } (4)

Onew = { dkl ∈ Spost | dkl ∉ Sprior } (5)

The preconditions of the cecnew so formed could be

incomplete in the sense that there could be conditions that
do not change before and after action execution, but are also
necessary to produce the changes observed (for example, the
density of an object that prevents its deformation, the
friction of a surface that prevents an object displacement,
etc.). In these cases the teacher would explain which
conditions are missing to obtain the expected outcome.

2) Generating Rules
The generated cec’s are used to create rules that will

contain the cec’s sequence. The preconditions PRnew of the
rule Rnew formed should ensure the occurrence of the cec’s
preconditions in the proper order. For those detectors that
take only one condition value during the sequence, it is
straightforward that this value should also appear in the rule
preconditions. If there is more than one condition for a
particular detector, the one closer to the origin of the
sequence should occur first, and this one should be in the
rule precondition. Therefore, the rule preconditions can be
obtained directly by back-propagating with replacement all
the preconditions of the cec’s departing from the last cec to
the first one. In contrast, to deduce the final outcome of the
cec’s sequence, and hence of the rule ORnew, we should take
into account the last changes produced in each detector.
Therefore, if there is more than one condition for a detector,
the one that should be considered for ORnew is the farthest
from the origin. We can obtain all the conditions of the rule
outcome again by back-propagating the conditions of the
cec’s outcomes, but now without replacement departing
from the last cec to the first one. The process of rule
generation is illustrated in Section III.

 There are two remarkable aspects. The first one is that,
assuming all the proper preconditions are considered, the

rules would produce the expected outcome in all the
situations where the respective preconditions are present,
despite some of these situations not having ever been
experienced before. Therefore, rules perform generalization
over all the situations where the corresponding sequence
would take place. The second notable characteristic is that,
for a given sequence CECS of cecs, as many rules as sub-
sequences in CECS could be generated, using the initial and
final cec of the sub-sequences as the initial and final points
for the back-propagation procedure. The subset of rules
actually generated depends on the criterion adopted. For
instance, the robot could be required to only learn how to
reach the goals specified by the teacher, leading to the
generation of only the subset of rules consisting of every
sub-sequence from an intermediate situation to the goal.

C. Rule Correction
During the execution of a rule the robot can get a surprise

if one of the involved cecs results in an unexpected
outcome. Then, the teacher “explains” which preconditions
prevented the expected outcome to occur. The reason of the
surprise could be produced by either a missing condition in
the precondition part or by a wrongly interpreted condition
due to a problem in the perception function PF. In both
cases the teacher tells the robot which conditions are
responsible for the failure, specifying the detectors and the
corresponding values. The explanation given is used to
update the PF and to correct the cec. The explanation could
be indeed incomplete, not specifying all the conditions that
would prevent the expected outcome to occur, but only those
that the teacher is capable of identifying at that moment as
the ones responsible for the surprise. This is accepted as far
as the teacher is able to realize in future observations the
other conditions that are responsible for the failure.

After the cec correction, the rules correction is simple and
straightforward. It is performed by updating all the rules that
contain the corrected cec in their sequences just by back-
propagating the explained conditions as explained in the rule
generation section.

D. On Learning to Perceive
We want to briefly remark the underlying idea about how

the perception function PF could be updated using the
teacher explanations. The idea is expressed in the scope of
simple applications (like the one presented in Section III)
where the perceptions of the robot could be derived by the
sensor observations using a probabilistic approach.

If we assume that the sensor observations oi are
continuous variables with uncertainties and non-
stationarities, the way to correctly map a value oi to a
condition dij is difficult to establish a priori. It is possible to
face this matter through a probabilistic approach that for
each condition dij permits to infer how probable it is that a
sensed value oi is interpreted as dij. Then, for a particular
observed value oi, the condition dij perceived is the one with
highest probability in oi. The estimated statistic values

215

related to a condition dij could be updated using the teacher
explanations on this condition using the corresponding
observed value oi. This updating permits the teacher also to
explain the robot how to interpret the world.

III. DEMO APPLICATION

Figure 1 shows a schema of a simple real world
application implemented in a Staubli arm that permits to
visualize the important aspects of the method performance.
The application consists in an environment with 9 cells
configured in a 3 by 3 grid world. Each cell could contain a
black box or be empty. The amount of boxes that can be
placed in the grid ranges from 1 to 8. Among all the boxes
there is one target box marked with a red label. The task
consists in placing the target box into a goal cell without
taking any box outside of the grid. To this purpose the arm
can move, when it is possible, any box form its current cell
to one of the contiguous cells in straight line (diagonal
movements are not allowed). Movements that take any box
out of the grid cannot be performed.

A cell is considered as a detector in the state
representation. The state is represented graphically in the
examples, where a black cell represents a box in that cell, a
white represents an empty cell and a black with a red mark

represents the cell containing the target box. Dashes cells
mean “don’t care” if there is either a box or an empty space.
Figure 1 explains the possible actions and how the cells are
indexed to reference detectors and actions.

Before presenting some results we would like to mention
that the rule generation criterion adopted for this example is
to generate as many rules as sub-sequences there are in the
instructed sequences. The robot started the experiments
without any previous knowledge. Due to space restrictions
the process of instructions is not shown graphically but
mentioned during the descriptions of the experiments.

The first instruction received by the robot was to move
the target box from cell 7 to cell 0 with the grid full of boxes
except cell 0 which was empty. This instructed sequence
will be referenced in the following as iseq1. Figure 2 shows
the largest rule generated from iseq1 and snapshots of the
rule execution given an initial state and goal where the rule
was applicable. Figure 3 shows two more rules generated
with iseq1 executed under different requirements of goals
and with initial states never experienced before by the robot.
The possibility of resolving situations never experienced
elucidates the generalization capabilities of the method.

We now instruct the robot to move the target box from
cell 5 to cell 4, when cell 4 is occupied and cell 7 is empty.

5L

4F

Rule 4

P4 O4

Initial State Goal

Plan

P2 O24L

3F

1F

0R

3B

Rule 2

Pp Op

Plan
execution

Fig. 4. Plan that linked rule 4 and rule 2 to fulfill a given

requirements of initial state and goal.

012

678

345

012

678

345
forward (i F)

backward (i B)

left (i L)

right (i R)

Actions
Cell indexes

4B

4F

4L4R

4B

4F

4L4R

With i= 0..8

Fig. 1. Demo application elements.

4L

3F

6R

7B

4L

3B

Rule 1

P1 O1

1F

0R

3D

Initial State Goal

Rule 1
execution

Fig. 2. The largest rule generated after the instructions iseq1 to

take the target box from cell 7 to cell 0.

P2 O24L

3F

1F

0R

3B

Rule 2

Rule 2
execution

Rule 3

4L

3F

6R

7B

4L

3B

P3 O3

Initial State Goal Initial State Goal

Rule 3
execution

Fig. 3. Execution of two rules generated from iseq1 under different
goals requirements.

216

The instructed sequence is denoted as iseq2. As a
consequence of iseq2 the robot generated rule 4 (see figure
4). Next, to show how the planner module is activated when
no rule is reactively triggered the target cell was placed
again in cell 5 but now four more boxes were added in the
grid configuring an initial situation shown in figure 4. The
robot was then asked to take the target cell from cell 5 to cell
0. For these requirements there was no rule in its database
that permitted a reactive behaviour. The planner module was
then activated and a plan, that linked rule 4 with rule 2, was
found and executed. Figure 4 also suggests how a plan could
be transformed into a new rule using the condition
propagation.

A. Surprise and Explanation
In this section we exemplify how a surprise arises and

how the explanations are used to correct the incomplete cec
and the rules that involve it. First we instructed the robot to
move the target box from cell 5 to cell 8 when cells 8 and 7
are occupied and cell 6 is free. This instruction is referred to
as iseq3. Figure 5 shows the execution of the largest rule
generated with iseq3, as well as the other two rules
generated with the same sequence. Note that for the first
action instructed the robot pushed boxes in the cells 8 and 7
but the state representation for cell 7 remained the same
before and after the action execution. Hence the generated
cec, which extracted only the conditions that changed,
initially contained a “don’t care” in that position.

Afterward, in figure 6, we made the robot to face a

problem where the initial state and goal triggered rule 5. The
first cec execution led to a surprise as the obtained outcome
was not included in the expected ones. The teacher then
explained that a black in cell 7 should also be considered
and the robot corrected the cec as well as the involved rules.

 Finally, we made the robot face the same problem that
previously resulted in a surprise but then no rule could be
applied reactively. Nevertheless, the robot found a plan
using one of the rules generated with iseq1 (rule 8) and the
recently corrected rule (rule 5) as illustrated in figure 7. The
plan found is not the optimal way to solve the problem
because the robot was only able to use the limited
knowledge acquired so far. It is important to mention that, in
case many plans are found, the robot uses the same criterion
as with the rules, i.e., it selects the one with fewer actions.

IV. SKETCH OF THE ALGORITHM
In this section we present the whole method in pseudo-

code. It is important to remark that, in this first approach, we
let the teacher control the rule generation by the instruction
given. The teacher will instruct a single action when no
sequence is convenient to be merged in a rule, and will
instruct a sequence of actions for repetitive sequences.

A. Pseudo-code
INIT system RR={}, LCECS={}, CECS={}
Define GOAL
Sprior=PF(SOprior)
WHILE goal is not reached
 RR: rules that connect Sprior to GOAL
 IF RR is not empty (Reactive)
 Select rule of RR with fewer cecs in CECS
 Execute CECS
 ELSE (RR is empty)
 Try to find a PLAN with the rules.
 IF PLAN is possible (Deliberative)
 Execute CECS
 ELSE (If plan is not possible)
 Teacher instructs actions
 FOR each action instructed,
 Sprior = PF(SOprior)
 Execute action
 Spost = PF(SOpost)
 GENERATE new cec using Sprior and Spost
 APPEND the cec to LCECS
 END FOR
 GENERATE RULES using LCECS
 END ELSE (planning not possible)
 END ELSE (RR is empty)
 Sprior=PF(SOprior)
 Teacher supervises if Sprior is well perceived
 IF Sprior is wrongly perceived
 Teacher explains bad conditions
 UPDATE PF
 Correct Sprior
 END IF
END WHILE (goal is not reached)

1) Execute CECS
FOR each cec in CECS
 Execute action
 Spost=PERCEIVE(SOpost)
 IF not the expected outcome (SURPRISE)
 Teacher explains bad/missing conditions
 Correct cec with teacher explanations
 Correct rules containing the cec
 Update PF
 EXIT FOR
END FOR

5L

4F

Rule 5

P5 O5

4F

Rule 6

P6 O6

5L

Rule 7

P7 O7

Initial State Goal

Rule 5
execution

Other rules generated
with iseq3

Fig. 5. Rules generated with iseq3.

Initial State Goal

5L

4F

Rule 5

P5 O5

4F

Rule 7

P6 O6

4F

5L

4F

P5 O5

Rule 5

4F

Surprise Explain

Correct cec

Correct rules

⊄

Rule 6

Rule 5
execution

Fig. 6. A schema of the surprise-explain-correct process.

217

V. DISCUSSION IN THE CONTEXT OF PACO+
Most of the “learning to act” approaches are based on

human learning and cognition capabilities. Despite these
approaches present many differences among them, they all
establish a direct relation between perceptions of the agent,
coded mainly as states, and actions. In contrast to the
amount of approaches developed, only few attempts were
aimed at creating a common framework that permits to
consistently relate the learning to act approaches with the
human cognition capabilities for learning and acting. One of
these attempts is the concept of object-action complexes
(OACs) [17] that has been evaluated and developed by the
European PACO+ consortium [16]. Briefly, the OAC
concept claims that the world contains undistinguished
“things” meaningless for the agent that only become
meaningful “objects” through actions and tasks, where the
objects are described by the properties relevant for the
fulfillment of the final desired outcome through the action.

We believe that the explicit coding of the world
conditions and actions through rules and cause-effects
presented above is suitable for a first insight in the study and
refinement of the OAC concept. One of the reasons is that
the elements of these structures could be directly associated
with the main elements of the OACs concept formulated so
far. Another reason is that they permit a direct association
with the human cognition capabilities through the explicit
declaration of the abstract meaning of the conditions of the
world, and hence a better understanding and a faster
evaluation of the results.

VI. CONCLUSION AND FUTURE EXTENSIONS
Despite the advantages presented in using simple human

instructions for learning to perform tasks, the system should
be also able to perform a task without the help of any human
in case there is none available. This could be fulfilled by
giving the instructions and explanation by other embedded
automatic systems. The instruction could be given by an
incomplete planner establishing some criterion for rule
generation with a measure of the frequency of usage and the

amount of computational process needed to generate a given
plan. The explanation could be replaced by a constructive
learning system where, for instance, a memory-based system
could permit to infer which conditions are responsible for
the surprise [12], [13], [14]. We believe that the presented
method establishes a very suitable platform for future
extension to develop a robust decision-making system for a
complex robot interacting in a human environment.

REFERENCES
[1] A. Newell. “The knowledge level”. Artificial Intelligence, 18(1), 87-

127, 1982.
[2] J. McCarthy and P.J. Hayes. “Some Philosophical Problems from the

Standpoint of Artificial Intelligence”, in B. Meltzer and D. Michie
eds., Machine Intelligence, Edinburgh: Edinburgh University Press,
1969, pp. 463-502.

[3] S. Harnad. “The Symbol Grounding Problem”. Physica D 42: 335-
346, 1990.

[4] R. Brooks. “Intelligence without representation”. Artificial
Intelligence, 47, pp. 139-159, 1991.

[5] M. Lemaître, G. Verfaillie. “Interaction between reactive and
deliberative tasks for on-line decision-making” presented at the 2007
International Conference on Automated Planning and Scheduling,
Providence, Rhode Island, USA, 2007.

[6] E. Gat. “On three-layer architectures” in D. Kortenkamp, R. P.
Bonnasso, and R. Murphy, editors. Artificial Intelligence and Mobile
Robots. MIT/AAAI Press, pp. 195-210, 1998.

[7] M. J. Schoppers. “Universal Plans for Reactive Robots in
Unpredictable Environments”, in Proceedings of the Tenth
International Joint Conference on Artificial Intelligence (IJCAI 87),
Milan, Italy, 1987, pp. 1039-1046.

[8] M. Newton, J. Levine. “Evolving Macro-Actions for Planning”,
presented at the 2007 International Conference on Automated
Planning and Scheduling, Providence, Rhode Island, USA, 2007.

[9] M. Nicolescu, M. Mataric. “A Hierarchical Architecture for Behavior-
Based Robots” in Proc. of the 1st Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, Bolgna, Italy, 2002, pp. 227-233.

[10] D. Rao, Z. Jiang, Y. Jiang. “Learning Activation Rules for Derived
Predicates from Plan Examples” presented at the 2007 International
Conference on Automated Planning and Scheduling, Providence,
Rhode Island, USA, 2007.

[11] S.Yoon, S. Kambhampati . “Towards Model-lite Planning: A Proposal
For Learning & Planning with Incomplete Domain Models” presented
at the 2007 International Conference on Automated Planning and
Scheduling, Providence, Rhode Island, USA, 2007.

[12] X. Wang. “Learning planning operators by observation and practice”,
in Proceedings of the Second International Conference on AI
Planning Systems, Chicago, IL, USA, 1994.

[13] T. Oates and P. Cohen. “Learning planning operators with conditional
and probabilistic effects”, in Proceedings of the AAAI Spring
Symposium on Planning with Incomplete Information for Robot
Problems, 1996, pp. 86-94.

[14] S. Benson. “Inductive learning of reactive action models”, in
Proceedings of the 12th International Conference of Machine
Learning, 1995, pp. 47–54.

[15] R. Sutton and A. Barto. “Reinforcement Learning. An Introduction”.
MIT Press, 1998.

[16] http://www.paco-plus.org
[17] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman, N. Krüger

and F. Wörgötter. “Object Action Complexes as an Interface for
Planning and Robot Control”, presented at IEEE RAS Int Conf.
Humanoid Robot, Genova, Italy, 2006.

4F

P8 O8

Rule 8

5L

4F

P5 O5

Rule 5

Plan

Initial State Goal

Plan
execution

Generated
from iseq1

Pp Op

Fig. 7. Plan execution involving one rule generated with iseq1
and the corrected rule generated with iseq3.

218

