
  

  

Abstract— In this work we propose a decision-making 
system that efficiently learns behaviors in the form of rules 
using natural human instructions about cause-effect relations 
in currently observed situations, avoiding complicated 
instructions and explanations of long-run action sequences and 
complete world dynamics. The learned rules are represented in 
a way suitable to both reactive and deliberative approaches, 
which are thus smoothly integrated. Simple and repetitive tasks 
are resolved reactively, while complex tasks would be faced in a 
more deliberative manner using a planner module. Human 
interaction is only required if the system fails to obtain the 
expected results when applying a rule, or fails to resolve the 
task with the knowledge acquired so far. 

I. INTRODUCTION 

N this work we are facing the problem of decision making 
for a multitask robot embedded in a human environment 

that should rapidly learn to perform tasks by interacting with 
humans, in an on-line way, and without any previous 
knowledge of the world dynamics or the tasks to be 
performed.  

From a very general point of view, we must consider two 
alternative approaches to the goal of building an intelligent 
agent: the deliberative and the reactive approaches. The 
deliberative approach began with the very birth of AI, and it 
is based on the principle of rationality [1], which states that 
"If an agent has knowledge that one of its actions will lead 
to one of its goals, then the agent will select that action.". 
The proponents of the knowledge-based systems using the 
principle of rationality soon realized that there are a number 
of important shortcomings with this approach, ranging from 
the frame problem [2], the difficulty of building a large 
enough database of knowledge providing the grounds for 
common sense, and the theorems stating the complexity of 
planning for even some of the simplest kinds of logical 
problems.  

Later, also the symbol grounding and related problems [3] 
entered the scene. As a response to this, the proponents of 
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the new AI [4] advocated for the reactive approach, in which 
the knowledge level was completely absent. In this approach 
actions are not driven by the rationality principle, but 
triggered by the current situation, and not guided by any 
specific purpose, but simply as a set of instincts carefully 
organized to accomplish a specific task.  

While reactive approaches have proved to be valid for 
many low-level tasks, we think that the kind of intelligent 
behavior we expect from a service robot, like a kitchen 
assistant, cannot be the result of purely reactive processes. 
We want the robot to promptly accomplish the task required 
by the user, and this means that its actions must be goal-
driven, and not just situation-driven. We expect the robot to 
be able to produce new behavior in response to a new goal 
using its knowledge of the situation and the effects of its 
actions, but it is clear that a reactive system will only be able 
to act according to already acquired behaviors. 

A number of hybrid approaches have been proposed 
along these lines. Some of them propose a decision-making 
system that permits fast agent responses to new situations 
using reactive layers while the deliberative layers generate 
behaviors used later by the reactive modules [5]. Others let 
the low-level action control to be driven by reactive 
behaviors, which are selected or modulated by a higher 
deliberative layer [6], [7]. Finally, some works focus mainly 
on the generation of behaviors such as macro-actions [8], 
primitive behaviors [9], or activation rules [10], which store 
sequences of actions frequently used or difficult to calculate, 
to use them later as macro planning operators in a 
deliberative system. 

In any of the previous cases a large amount of 
computation is usually required due to the need of exploring 
different acting behaviors to select one suitable for the task. 
The problem turns to be more complicated if the robot has 
no previous knowledge of the world dynamics and should 
perform learning while predicting what would occur with 
different behaviors. Incomplete knowledge has been tackled 
using techniques like incomplete planning [11], learning 
planning operators [12], [13], [14] or policy learning [15], 
but the drawback of computational complexity derived of 
the application of AI techniques is still not surmounted. 

The aim of this work is to develop an integrated system in 
which reactive and deliberative components are both 
present, though not strictly separated, but smoothly 
combined, and where the world dynamics and behaviors are 
rapidly learned from scratch through a natural human-robot 
interaction.  
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As we want the agent to learn only the dynamics of the 
world relevant for its purpose, the world exploration is 
guided by a teacher. It is very simple for humans to know 
which action to perform in a situation given a plain task, like 
a kitchen task, but it could be much more complicated to 
explain a priori all the sequences of actions that should take 
place in all the possible situations. It might also be difficult 
for a human to detail all the conditions that should be taken 
into account to afford a desired cause-effect for all the 
possible situations. In this work we take benefit of the 
human capabilities of explaining cause-effect relations in 
currently observed situations to efficiently generate 
knowledge for decision making in a multitask robot. The 
idea is based on Piaget's theory of cognitive development 
which claims that children gradually acquire knowledge of 
cause-effect relations by repeatedly executing processes and 
sequencing actions to reach goals.   

This work is organized as follows. Section II explains the 
outline and main elements of the method proposed. Section 
III presents a demo application and clarifies some concepts 
explained in Section II. In Section IV the algorithm is 
delineated in pseudo-code. A brief discussion of the ideas 
and concepts of this work in the context of the European 
project PACO+ [16] is developed in Section V. Finally, 
section VI delineates some conclusions and future works. 

II. OUTLINE OF THE METHOD 
In this work a decision making system is proposed where 

the action behaviors are generated using simple cause-effect 
relations learned with the help of a teacher. The learned 
behaviors are used either reactively or deliberatively 
depending on the complexity of the task requested.  

We will define a behavior (or rule) as a set of 
preconditions, a sequence of actions, and the final expected 
outcome. The preconditions are a set of necessary conditions 
or perceptions that must be observed before the rule can be 
applied, and the expected outcome is a series of effects that 
will be obtained after the execution of the rule. The action 
sequence may consist of a single elementary action in the 
simplest rules (the cause-effect relation for that action) or a 
list of actions, each one expressed in turn as a cause-effect. 

A general overview of the proposed method is the 
following. Given a goal, the agent tries to apply any of the 
existing rules in a reactive way to reach it from the current 
situation without any deliberation. If more than one rule is 
retrieved, the one with fewer actions in its sequence is 
applied. If a reactive behavior is not possible, then the agent 
tries to generate a plan using the existing rules as planning 
operators.  

If both the reactive and deliberative modules fail to return 
a behavior, as a consequence of an incomplete knowledge, 
the agent asks the teacher about which action or actions to 
perform. The agent executes every instructed action and 
generates a first approximation of the involved cause-effects 
by observing the changes in the environment. Then the agent 

generates a rule with the sequence of the generated cause-
effects. 

On the contrary, in the case that the agent is able to find a 
behavior with the reactive or deliberative module, then it 
executes and evaluates it at the level of each cause-effect in 
the related sequence. If any of the outcomes obtained is 
different from the one expected, the agent will ask the 
teacher for explanations about which conditions prevented 
the correct outcome of the cause-effect to occur. With the 
teacher explanation the agent automatically corrects the 
cause-effect structure as well as all the rules that apply this 
cause-effect in their sequences performing a large updating 
of the knowledge base with a little teacher interaction. 

A. Notation 
We assume that the agent has a set of N sensors that 

measure some features of the environment. The value of 
sensor i is called an observation oi. A world state SO is 
formed by the set of observations oi , SO={o1, o2, … , oN}.   

Each of these sensors is internally represented by the 
agent as a detector di that could take different discrete values 
dij, called conditions, depending on the sensed value oi. An 
internal agent state S is constituted by a set of conditions dij,  
S={d1j, d2k,…,dNl}. 

At every moment the agent is able to perform any of the k 
actions from the set A={a1, a2,…, ak}. 

The function that maps the sensor observations to 
conditions is called the perception function (PF). As we will 
explain later the PF could be updated while the learning 
process is running, permitting the management of the 
uncertainties, inherent to real environments. 

The most elementary rule consists of a cause-effect 
relation and reflects how a change is obtained using a single 
action and what preconditions are necessary to afford that 
change. We formally represent a cause-effect ceci using a 
tuple that consists in a subset Pi of state conditions called the 
preconditions of the ceci, an action ai from the set of actions 
A, and a subset Oi of state conditions denoted as the 
expected outcome of the ceci. 

 
ceci = <Pi={dgj,…,dml}, ai , Oi={dkl,…,dpq}>       (1) 

 
In the same way, a rule Rj is described using a tuple that 

consists of a subset Pj of state conditions called the 
preconditions of the rule Rj, a sequence of cec’s 
CECS=(ceck, ceci,…, cecm), and a subset Oj of state 
conditions denoted as the expected outcome of the rule. 

 
Rj = <Pj={dih,…,dml}, CECS , Oj={dkl,…,dpq}>      (2) 

 
In our approach, the expected outcome serves two 

purposes: it will be used by a goal-achieving deliberative 
system for planning, and by a learning system to improve 
rule descriptions. Every time the expected outcome is 
different from the observed we will say that the robot gets a 
surprise. 
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B. Learning Rules 
When the knowledge base of the system doesn’t permit to 

find a rule, or a sequence of rules, to be applied in an 
experienced situation, the teacher instructs the robot about 
which action or sequence of actions to execute. Then, the 
robot executes every instructed action generating a first 
approximation of the involved cause-effects, and afterwards 
builds a rule using the sequence of the generated cec’s. 

1) Generating cecs 
The robot generates a first approximation of the cause-

effect observing the conditions that change in the states 
before and after the execution of the instructed action a. If 
we call the state before the action execution Sprior and the 
state after the action execution Spost the new cecnew is: 
 

cecnew=< Pnew, a, Onew>                          (3) 
 

where, 
Pnew = { dij ∈ Sprior | dij ∉ Spost }                     (4) 

 
Onew = { dkl ∈ Spost | dkl ∉ Sprior }                     (5) 

 
The preconditions of the cecnew so formed could be 

incomplete in the sense that there could be conditions that 
do not change before and after action execution, but are also 
necessary to produce the changes observed (for example, the 
density of an object that prevents its deformation, the 
friction of a surface that prevents an object displacement, 
etc.). In these cases the teacher would explain which 
conditions are missing to obtain the expected outcome.  

2) Generating Rules 
The generated cec’s are used to create rules that will 

contain the cec’s sequence. The preconditions PRnew of the 
rule Rnew formed should ensure the occurrence of the cec’s 
preconditions in the proper order. For those detectors that 
take only one condition value during the sequence, it is 
straightforward that this value should also appear in the rule 
preconditions. If there is more than one condition for a 
particular detector, the one closer to the origin of the 
sequence should occur first, and this one should be in the 
rule precondition. Therefore, the rule preconditions can be 
obtained directly by back-propagating with replacement all 
the preconditions of the cec’s departing from the last cec to 
the first one. In contrast, to deduce the final outcome of the 
cec’s sequence, and hence of the rule ORnew, we should take 
into account the last changes produced in each detector. 
Therefore, if there is more than one condition for a detector, 
the one that should be considered for ORnew is the farthest 
from the origin. We can obtain all the conditions of the rule 
outcome again by back-propagating the conditions of the 
cec’s outcomes, but now without replacement departing 
from the last cec to the first one. The process of rule 
generation is illustrated in Section III.  

 There are two remarkable aspects. The first one is that, 
assuming all the proper preconditions are considered, the 

rules would produce the expected outcome in all the 
situations where the respective preconditions are present, 
despite some of these situations not having ever been 
experienced before. Therefore, rules perform generalization 
over all the situations where the corresponding sequence 
would take place. The second notable characteristic is that, 
for a given sequence CECS of cecs, as many rules as sub-
sequences in CECS could be generated, using the initial and 
final cec of the sub-sequences as the initial and final points 
for the back-propagation procedure. The subset of rules 
actually generated depends on the criterion adopted. For 
instance, the robot could be required to only learn how to 
reach the goals specified by the teacher, leading to the 
generation of only the subset of rules consisting of every 
sub-sequence from an intermediate situation to the goal. 

C. Rule Correction 
During the execution of a rule the robot can get a surprise 

if one of the involved cecs results in an unexpected 
outcome. Then, the teacher “explains” which preconditions 
prevented the expected outcome to occur. The reason of the 
surprise could be produced by either a missing condition in 
the precondition part or by a wrongly interpreted condition 
due to a problem in the perception function PF. In both 
cases the teacher tells the robot which conditions are 
responsible for the failure, specifying the detectors and the 
corresponding values. The explanation given is used to 
update the PF and to correct the cec. The explanation could 
be indeed incomplete, not specifying all the conditions that 
would prevent the expected outcome to occur, but only those 
that the teacher is capable of identifying at that moment as 
the ones responsible for the surprise. This is accepted as far 
as the teacher is able to realize in future observations the 
other conditions that are responsible for the failure.  

After the cec correction, the rules correction is simple and 
straightforward. It is performed by updating all the rules that 
contain the corrected cec in their sequences just by back-
propagating the explained conditions as explained in the rule 
generation section.  

D. On Learning to Perceive 
We want to briefly remark the underlying idea about how 

the perception function PF could be updated using the 
teacher explanations. The idea is expressed in the scope of 
simple applications (like the one presented in Section III) 
where the perceptions of the robot could be derived by the 
sensor observations using a probabilistic approach.  

If we assume that the sensor observations oi are 
continuous variables with uncertainties and non-
stationarities, the way to correctly map a value oi to a 
condition dij is difficult to establish a priori. It is possible to 
face this matter through a probabilistic approach that for 
each condition dij permits to infer how probable it is that a 
sensed value oi is interpreted as dij. Then, for a particular 
observed value oi, the condition dij perceived is the one with 
highest probability in oi. The estimated statistic values 
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related to a condition dij could be updated using the teacher 
explanations on this condition using the corresponding 
observed value oi. This updating permits the teacher also to 
explain the robot how to interpret the world.  

III. DEMO APPLICATION 

Figure 1 shows a schema of a simple real world 
application implemented in a Staubli arm that permits to 
visualize the important aspects of the method performance. 
The application consists in an environment with 9 cells 
configured in a 3 by 3 grid world. Each cell could contain a 
black box or be empty. The amount of boxes that can be 
placed in the grid ranges from 1 to 8. Among all the boxes 
there is one target box marked with a red label. The task 
consists in placing the target box into a goal cell without 
taking any box outside of the grid. To this purpose the arm 
can move, when it is possible, any box form its current cell 
to one of the contiguous cells in straight line (diagonal 
movements are not allowed). Movements that take any box 
out of the grid cannot be performed. 

A cell is considered as a detector in the state 
representation. The state is represented graphically in the 
examples, where a black cell represents a box in that cell, a 
white represents an empty cell and a black with a red mark 

represents the cell containing the target box. Dashes cells 
mean “don’t care” if there is either a box or an empty space. 
Figure 1 explains the possible actions and how the cells are 
indexed to reference detectors and actions. 

Before presenting some results we would like to mention 
that the rule generation criterion adopted for this example is 
to generate as many rules as sub-sequences there are in the 
instructed sequences. The robot started the experiments 
without any previous knowledge. Due to space restrictions 
the process of instructions is not shown graphically but 
mentioned during the descriptions of the experiments.  

The first instruction received by the robot was to move 
the target box from cell 7 to cell 0 with the grid full of boxes 
except cell 0 which was empty. This instructed sequence 
will be referenced in the following as iseq1. Figure 2 shows 
the largest rule generated from iseq1 and snapshots of the 
rule execution given an initial state and goal where the rule 
was applicable. Figure 3 shows two more rules generated 
with iseq1 executed under different requirements of goals 
and with initial states never experienced before by the robot. 
The possibility of resolving situations never experienced 
elucidates the generalization capabilities of the method. 

We now instruct the robot to move the target box from 
cell 5 to cell 4, when cell 4 is occupied and cell 7 is empty. 
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Fig. 4. Plan that linked rule 4 and rule 2 to fulfill a given 
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Fig. 1. Demo application elements. 
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Fig. 2. The largest rule generated after the instructions iseq1 to 

take the target box from cell 7 to cell 0. 
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The instructed sequence is denoted as iseq2. As a 
consequence of iseq2 the robot generated rule 4 (see figure 
4). Next, to show how the planner module is activated when 
no rule is reactively triggered the target cell was placed 
again in cell 5 but now four more boxes were added in the 
grid configuring an initial situation shown in figure 4. The 
robot was then asked to take the target cell from cell 5 to cell 
0. For these requirements there was no rule in its database 
that permitted a reactive behaviour. The planner module was 
then activated and a plan, that linked rule 4 with rule 2, was 
found and executed. Figure 4 also suggests how a plan could 
be transformed into a new rule using the condition 
propagation. 

A. Surprise and Explanation 
In this section we exemplify how a surprise arises and 

how the explanations are used to correct the incomplete cec 
and the rules that involve it. First we instructed the robot to 
move the target box from cell 5 to cell 8 when cells 8 and 7 
are occupied and cell 6 is free. This instruction is referred to 
as iseq3. Figure 5 shows the execution of the largest rule 
generated with iseq3, as well as the other two rules 
generated with the same sequence. Note that for the first 
action instructed the robot pushed boxes in the cells 8 and 7 
but the state representation for cell 7 remained the same 
before and after the action execution. Hence the generated 
cec, which extracted only the conditions that changed, 
initially contained a “don’t care” in that position.   

Afterward, in figure 6, we made the robot to face a 

problem where the initial state and goal triggered rule 5. The 
first cec execution led to a surprise as the obtained outcome 
was not included in the expected ones. The teacher then 
explained that a black in cell 7 should also be considered 
and the robot corrected the cec as well as the involved rules.  

 Finally, we made the robot face the same problem that 
previously resulted in a surprise but then no rule could be 
applied reactively. Nevertheless, the robot found a plan 
using one of the rules generated with iseq1 (rule 8) and the 
recently corrected rule (rule 5) as illustrated in figure 7. The 
plan found is not the optimal way to solve the problem 
because the robot was only able to use the limited 
knowledge acquired so far. It is important to mention that, in 
case many plans are found, the robot uses the same criterion 
as with the rules, i.e., it selects the one with fewer actions. 

IV. SKETCH OF THE ALGORITHM   
In this section we present the whole method in pseudo-

code. It is important to remark that, in this first approach, we 
let the teacher control the rule generation by the instruction 
given. The teacher will instruct a single action when no 
sequence is convenient to be merged in a rule, and will 
instruct a sequence of actions for repetitive sequences.  

A. Pseudo-code 
INIT system RR={}, LCECS={}, CECS={} 
Define GOAL 
Sprior=PF(SOprior) 
WHILE goal is not reached 
  RR: rules that connect Sprior to GOAL 
  IF RR is not empty (Reactive) 
    Select rule of RR with fewer cecs in CECS 
    Execute CECS 
  ELSE (RR is empty) 
    Try to find a PLAN with the rules. 
    IF PLAN is possible (Deliberative) 
      Execute CECS 
    ELSE (If plan is not possible) 
      Teacher instructs actions 
      FOR each action instructed,  
        Sprior = PF(SOprior)   
        Execute action  
        Spost = PF(SOpost) 
        GENERATE new cec using Sprior and Spost 
        APPEND the cec to LCECS 
      END FOR 
      GENERATE RULES using LCECS 
    END ELSE (planning not possible) 
  END ELSE (RR is empty) 
  Sprior=PF(SOprior)  
  Teacher supervises if Sprior is well perceived 
  IF Sprior is wrongly perceived 
   Teacher explains bad conditions 
    UPDATE PF 
    Correct Sprior  
  END IF 
END WHILE (goal is not reached) 
 

1) Execute CECS 
FOR each cec in CECS 
  Execute action 
  Spost=PERCEIVE(SOpost) 
    IF not the expected outcome (SURPRISE) 
      Teacher explains bad/missing conditions  
      Correct cec with teacher explanations 
      Correct rules containing the cec 
      Update PF 
      EXIT FOR 
END FOR 
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Fig. 5. Rules generated with iseq3. 
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Fig. 6. A schema of the surprise-explain-correct process. 
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V. DISCUSSION IN THE CONTEXT OF PACO+ 
Most of the “learning to act” approaches are based on 

human learning and cognition capabilities. Despite these 
approaches present many differences among them, they all 
establish a direct relation between perceptions of the agent, 
coded mainly as states, and actions.  In contrast to the 
amount of approaches developed, only few attempts were 
aimed at creating a common framework that permits to 
consistently relate the learning to act approaches with the 
human cognition capabilities for learning and acting. One of 
these attempts is the concept of object-action complexes 
(OACs) [17] that has been evaluated and developed by the 
European PACO+ consortium [16]. Briefly, the OAC 
concept claims that the world contains undistinguished 
“things” meaningless for the agent that only become 
meaningful “objects” through actions and tasks, where the 
objects are described by the properties relevant for the 
fulfillment of the final desired outcome through the action.  

We believe that the explicit coding of the world 
conditions and actions through rules and cause-effects 
presented above is suitable for a first insight in the study and 
refinement of the OAC concept. One of the reasons is that 
the elements of these structures could be directly associated 
with the main elements of the OACs concept formulated so 
far. Another reason is that they permit a direct association 
with the human cognition capabilities through the explicit 
declaration of the abstract meaning of the conditions of the 
world, and hence a better understanding and a faster 
evaluation of the results. 

VI. CONCLUSION AND FUTURE EXTENSIONS 
Despite the advantages presented in using simple human 

instructions for learning to perform tasks, the system should 
be also able to perform a task without the help of any human 
in case there is none available. This could be fulfilled by 
giving the instructions and explanation by other embedded 
automatic systems. The instruction could be given by an 
incomplete planner establishing some criterion for rule 
generation with a measure of the frequency of usage and the 

amount of computational process needed to generate a given 
plan. The explanation could be replaced by a constructive 
learning system where, for instance, a memory-based system 
could permit to infer which conditions are responsible for 
the surprise [12], [13], [14]. We believe that the presented 
method establishes a very suitable platform for future 
extension to develop a robust decision-making system for a 
complex robot interacting in a human environment. 
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