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Llorens i Artigas 4-6, 08028, Barcelona, Spain

Abstract. In this paper, we want to exploit the knowledge obtained
from those detected objects which are incorporated into the background
model since they cease their movement. These motionless foreground
objects should be handled in security domains such as video surveillance.
This paper uses an adaptive background modelling algorithm for moving-
object detection. Those detected objects which present no motion are
identified and added into the background model, so that they will be
part of the new background. Such motionless agents are included for
further appearance analysis and agent categorization.

1 Introduction

The analysis of human-motion image sequences involves different tasks, such as
movement segmentation and tracking, action recognition and behaviour reason-
ing [7]. Therefore, the basis for high-level interpretation of observed patterns of
human motion relies on when and where motion is being detected. Consequently,
this low-level task still constitutes the most critical step towards Image Sequence
Evaluation (ISE) [10].

In this work, the aim is to exploit at the Image Signal Level of the ISE ar-
chitecture the knowledge obtained from those detected objects which could be
incorporate into the background since they cease their movement. These ”newly
motionless” objects should be handled in security domains such as video surveil-
lance. For example, if a suspicious bag is detected in an airport, some knowledge
can be inferred: who left it there, where this bag within in the scene, when the
person has left it. In traffic monitoring, if a car is stopped a predefined period
of time, the position of this car is inferred within the scene, but also when and
(the appearance of) who has left this car. Thus, incorporated objects constitute
additional knowledge, which can be represented using feature-based models.

Different techniques have been used for motion segmentation [12], such as
temporal differencing, optical flow and background subtraction. The latter con-
sists of a background model used to compare the current image with such a
model. Thus, foreground objects in motion are identified. To achieve this objec-
tive, many researchers have proposed methods which have been used to solve the
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problems found in segmentation, such as gradual or sudden illumination changes,
shadows, camouflage, background in motion, or deposited and removed objects
from scene, among other problems [8].

Thus, W4 [4] uses a bimodal distribution, Pfinder [13] uses a single Gaussian
to model the background, Stauffer et al. [2,3] use a mixture of Gaussians, and
Elgammal et al. [1] present a non-parametric background model. On the other
hand, the features used for segmentation vary in the literature: Horprasert et al.
[5] use colour information to classify a pixel as foreground, background, shadow
or highlighted background, while Wallflower [9] uses a three-level categorization:
pixel, region and frame level. Jabri et al. [6] use colour and edge information,
and Shen [11] uses a RGB colour space plus fuzzy classification.

These approaches incorporate gradually new motionless foreground objects
into the background model, that is, the updating rule of the background model
incorporates increasingly all the pixel values which constitute the object. There-
fore, a suitable representation of motionless objects cannot be built for post-
processing tasks, such as object recognition or classification. Moreover, adaptive
rules do not usually distinguish between background changes due to illumination
than those changes due to left or removed objects.

In particular, W4 [4] first presented a differentiation between pixel-based and
object-based detection: the pixel-based update method updates the background
model periodically to adapt it to illumination changes, and the object-based up-
date method updates the background to adapt it to physical changes, such as
those objects deposited or removed into the background scene. Consequently, our
work will be based on W4 in order to obtain a fast background scene modelling
and maintenance while considering new incorporated objects. Therefore, such
an adaptive background model is updated according to observed developments
within the scen e in order to achieve fast and robust segmentation results.

This paper is organized as follows. Section 2 shows how the background model
is created. Section 3 describes the foreground region detection, and section 4 how
the background model parameters are updated. Section 5 presents our contribu-
tion to object incorporation, and section 6 shows the results obtained. Finally,
chapter 7 concludes this paper and discusses different alternatives for future
research.

2 Initial Background Model

W4 uses a model of background variation constructed from order statistics of
background values during a training period. The background scene is modelled
by representing each pixel by three values: its minimum m(x) and maximum n(x)
intensity values, and the maximum intensity difference d(x) between consecutive
frames observed during this training period. Furthermore, W4 uses a two-stage
method for exclude foreground objects during training period, such as moving
people. First, the median filter |V z(x) − λ(x)| < 2 ∗ σ(x) distinguishes moving
pixels from stationary pixels. V z(x) is the intensity of a pixel location x in the
z − th image of sequence V , λ(x) is the median value, and σ(x) is the standard
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(a) (b)

(c) (d)

Fig. 1. Detection results in a road sequence with a high number of foreground objects
during the training period: (a) foreground detection results using W4, showing that no
detection is achieved; (b) the background is updated using W4, showing that cars are
erroneously incorporated into the background model; (c) foreground detection results;
and (d) background model update using our approach

deviation. After that, in the second stage, only stationary pixels are considered
for building the initial background model.

However, a training period is not always available, because this period can
contain multiple foreground objects in the scene, such as for the road sequence,
see Fig. 1 The initial background model can be erroneous if foreground objects
are incorporated into the background model. The two-stage method used for
W4 explained above is not sufficient for excluding all foreground objects. Fig.
1.(a) shows a frame with a high number of foregrounds objects during the train-
ing period, where foreground regions are shown and no detection is achieved.
Consequently, the new background model will be wrong too. Fig. 1.(b) shows a
wrong updated background model because of incorporated foreground objects
in motion.

To solve the aforementioned problem, the first stage is applied in a recursive
way. The median filter is applied until the standard deviation from the new back-
ground model is the same as the last background model. Now, the foreground
objects are eliminated, as it can be seen in Fig. 1.(c), where foreground objects
are detected in contrast to Fig. 1.(a). The background model is well updated as
it can be seen in the Fig. 1.(d), and compared to Fig. 1.(b).
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3 Foreground Region Detection

W4 uses a four-stage process to obtain a foreground object: thresholding, noise
cleaning, morphological filtering, and object detection. The threshold stage clas-
sifies each pixel as either a background or a foreground pixel using the back-
ground model. A pixel is a foreground pixel if:

B(x) =

⎧
⎨

⎩

0 background
{

(It(x) + m(x)) > kf ∗ max(d(x), dmin)
∧ It(x) − n(x)) < kf ∗ max(d(x), dmin)

1 foreground otherwise .
(1)

Parameter kf serves for extend or reduce the detection range1, and parameter
dmin is added to create a minimum background detection range. In this work,
all the sequences are processed using only the first stage, i.e. thresholding, in
order to evaluate in a better way the overall approach presented here.

4 Updating Background Model Parameters

The background model is updated using the pixel-based update and object-based
update conditions as in W4. The first condition ”(gS(x) > k ∗ N)” updates
the background model periodically to adapt it to illumination changes in the
background scene. And the second one ”(gS(x) < k ∗ N ∧ mS(x) < r ∗ N)”
updates the background model to adapt it to physical changes in the background
scene, when new objects are deposited or removed in the background scene.

W4 uses a detection support map (gS ), to represent the number of times a
pixel is classified as a background pixel:

gS(x, t) =
{

gS(x, t − 1) + 1 if x is background pixel
gS(x, t − 1) if x is foreground pixel . (2)

A motion support map (mS) represents the number of times a pixel is classified
as moving pixel:

mS(x, t) =
{

mS(x, t − 1) + 1 if M(x, t) = 1
mS(x, t − 1) if M(x, t) = 0 ,

(3)

where M(x,t) represents moving pixels, computed as:

M(x, t) =

⎧
⎨

⎩

1 if (|I(x, t) − I(x, t + 1)| > 2 ∗ σ)∧
(|I(x, t − 1) − I(x, t)| > 2 ∗ σ)

0 otherwise .
(4)

The new background parameters [m(x),n(x),d(x)] are updated after a prede-
termined number N of frames, and they are determined using the aforementioned
maps as follows:
1 The parameter kf is set to 2, according to our experiments and the results presented

in W4 [4].
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[m(x), n(x), d(x)] =⎧
⎪⎪⎨

⎪⎪⎩

[
mb(x), nb(x), db(x)

]
if (gS(x) > k ∗ N) pixel-based update[

mf (x), nf (x), df (x)
]

if (gS(x) < k ∗ N ∧ mS(x) < r ∗ N)
object-based update

[mc(x), nc(x), dc(x)] otherwise ,

(5)

where k and r are typically 0.8 and 0.1, respectively [4]. The parameters [mb(x),
nb(x), db(x)] represent those pixels classified as background in this period of time,
[mf (x), nf(x), df (x)] those pixels classified as foreground pixels, and [mc(x),
nc(x), dc(x)] are the value of the background parameters in the last background
model. When the background model is updated, the maps are set to zero.

5 Improving Object-Based Update

Achieving a robust object-based updated constitutes a challenging task thereby
managing the incorporation of the new objects to the background, and removing
the old background objects. The goal is to work with newly motionless fore-
ground objects: detected objects in motion which have exhibited motion up to
that moment. They should be identified, and the object-based update should
take them into the background model. The first problem is that pixels which
are no longer considered as motionless foreground pixels are updated as object-
based, since the minimum number of times a particular pixel has been classified
as foreground is usually not restrictive enough (according to object-based con-
dition).

In addition, the foreground pixels considered to construct the background
model [mf (x), nf (x), df (x)] do not have to include foreground moving pixels,
because these have different intensity values than foreground pixels considered
object-based along the updating window.

Furthermore, other problems can be found with those pixels considered as
object-based. If these pixels belong to a foreground motionless object which
left the scene before the background is updated, such pixels can be included
erroneously into the background model. This happens because these pixels also
satisfy the object-based condition. Fig. 2.(a) shows a representative example of
an background updating intensity value for a given pixel along the updating
window with one foreground object which left the scene before the background
is updated. Consequently, the pixel is added erroneously in the new background
model.

Additionally, different foreground objects can appear at the same place in dif-
ferent times of the same background updating window, and they can be included
together. Thus, the object-based parameters may be updated with a minimum
intensity value m(x) from one object and a maximum intensity value n(x) from
the other. Therefore, as both objects are different, the updating parameters
[m(x),n(x),d(x)] will be erroneous. Fig. 2.(b) illustrates the background updat-
ing when a new object appears at the same position where another object was
before: these two objects will be incorporated into the background model, and
the maximum and minimum intensity value from these two objects will wrongly
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a) b)

Fig. 2. Problems with object-based update. The pictures represent the background
updating model for a given pixel along updating window, where: (a) a foreground object
enters (background updating window 1) and leaves the scene before the background
is updated (background updating window 2). Consequently, the pixel is incorporated
erroneously in the new background model. (b) Background updating when a new object
appears at the same position where another object was before: these two objects will
be erroneously incorporated into the background model. See text for details.

constitute the new background model. The ghost which appears when an ob-
ject belongs to the background awakes can present the similar problems above
explained.

In order to solve the drawbacks explained above, object-based update is not
performed when the pixels belongs to different foreground objects, or belongs to
foreground objects that left the scene before the background is updated.

Our algorithm is based on the last detected object. In other words, the number
of foreground pixels is computed from the latest foreground pixel in motion
or background pixel. A new map is created, called Foreground History Map,
fS(x,t), which represents the number of times a pixel is detected as foreground
continuously without pixels in motion, M(x,t), neither background pixels during
its history:

fS(x, t) =
{

fS(x, t − 1) + 1 if x is a foreground pixel and M(x, t) = 0
0 otherwise. (6)

The Eq. (5) must be changed to include fS(x,t) map instead of gS(x,t). The
minimum number of foreground pixels which are necessary for considering a pixel
as object-based should be within the limits commented above. The foreground
history map is more restrictive than gS map, and include this restriction. Fur-
thermore, the use of M(x,t) is avoided in the background updating parameters,
because this restriction is already included inside fS(x,t).
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(a) (b) (c) (d)

Fig. 3. Image sequence after background model updating. (a) Original sequence. (b)
New background model with motionless foreground object (i.e. a rubbish bin). (c)
Foreground detection without motionless foreground object. (d) Newly motionless fore-
ground objects are added to the background model. Results are obtained without any
kind of filtering.

The background updating parameters results as follows:

[m(x), n(x), d(x)] =

⎧
⎨

⎩

�
mb(x), nb(x), db(x)

�
if (gS(x) > k ∗ N) pixel-based update�

mf (x), nf (x), df (x)
�

if (fS(x) > k ∗ N) object-based update
[mc(x), nc(x), dc(x)] otherwise .

(7)
With this approach, the problems mentioned above are solved. However, this

means that foreground objects which cease their movements are no longer in-
cluded into the background model. This happens since the pixels from those
objects are often considered pixels in motion erroneously. The problem is that
M(x,t) map does not distinguish real motion from fluctuations.

A pixel in motion must show an evolution of its intensity value. Presently,
M(x,t) compare current intensity value for each pixel with its previous and its
posterior intensity value. This can be enhance by comparing its previous value
with its posterior one. The new M(x,t) will be computed as follows:

M(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (|I(x, t) − I(x, t + 1)| > 2 ∗ σ)∧
(|I(x, t − 1) − I(x, t)| > 2 ∗ σ)∧
(|I(x, t + 1) − I(x, t − 1)| > 2 ∗ σ)

0 otherwise .

(8)

Thus, the knowledge of motionless foreground objects is incorporated into the
background model. Fig. 3.(b) shows a rubbish bin correctly updated as object-
based. Furthermore, the problems with ghosts are also solved, see the rubbish
bin ghost in Fig. 4.

6 Experimental Results

Our algorithm has been tested with multiple and different sequences which con-
tain different motionless foreground objects and persons who interact with them.
Fig.3 shows the scene where a rubbish bin is added to the background model.
Fig.3.(a) shows the original image, Fig.3.(b) shows the background model where
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Fig. 4. First column shows the original image sequence, second column shows the
results of foreground detection using W4, third column displays the background model
using W4, fourth column shows foreground detection results using our approach and
fifth column displays the background model using our approach. Image results are
obtained without any kind of filtering. See text for details.
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the motionless foreground object (i.e. a rubbish bin) is correctly added. Fig.3.(c)
shows the foreground region detection without the motionless foreground object,
and Fig.3.(d) shows the newly motionless foreground object which has been prop-
erly added to the background model following the object-based criterion. This
newly motionless foreground object can then be used for further processing such
as object classification or recognition.

Fig. 4 represents the same sequence using the same parameter values. This
particular sequence contains 900 frames, and the first 200 frames are used to
construct the initial background model, which do not contain any foreground
object. The background model is updated every N=100 frames. The sequence
corresponds to an agent who leaves a rubbish bin in the middle of the scene.
Later on, a new agent enters into the scene. Subsequently, another agent takes
the rubbish bin.

In Fig. 4, the first column shows the original image sequence at frame numbers
264, 372, 473, 612, 631, 682, 806. The second column shows the foreground
region detection, and the third column shows the background model, and how
it is updated using W4. Fourth and five columns show the foreground region
detection and update background model using our approach. In those last two
columns can be observed that the foreground person and the object are well
segmented, and that the motionless foreground object is incorporated properly
into the background model. The agent who passes in front of the incorporated
object is also well segmented. After that, when this agent carries the object and
leaves the scene, the ghost of this background object is solved and the background
model is correctly updated.

7 Conclusions and Future Work

The proposed approach copes with (i) the non-incorporation of erroneous fore-
ground objects to the background model, and (ii) the incorporation of motionless
foreground objects. Pixels belonging to false foreground objects, foreground ob-
jects in motion, foreground objects that leaves the scene before the background is
updated, and multiple foreground objects at the same time have been removed.
Finally, a correct detection procedure of motionless foreground objects which
have ceased their motion have been presented, and an efficient incorporation of
such objects into the background model for a posterior processing have been
proposed. Furthermore, the bootstrapping is solved even when many foreground
objects are presented.

Future work needs to split the pixel-based and object-based update condition
into two separate windows: problems corresponding to the first condition are
detected earlier than those physical changes in the scene corresponding to the
second one. That is to say, pixel-based update needs to be carried out more
periodically than the object-based one. The approach copes with the physical
changes in the scene, but the experimental results shows that it is necessary
to improve the illumination-change modelling (i.e. the pixel-based update), and
background in motion. Likewise, shadows are currently not handled, but these
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can be eliminated by means of colour information [1,5]. The use of colour will
also improve the detection of camouflage. Lastly, objects detected by object-
based update should be part of a multilayer background model. In addition,
an object appearance model is needed to cover situations involving crowds or
multiple objects.
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