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Abstract Human behavior understanding in im-
age sequences requires to study human interaction
with the environment, because human beings be-
have depending on their location. Therefore, a se-
mantic labeling of the scenario must be performed
and provided to the system. In this work we present
a method to automatically extract semantic infor-
mation from a scenario by means of a set of exist-
ing agent trajectories and an ontology of the possi-
ble semantic regions. Our training algorithm con-
structs a path database which serves to infer a con-
ceptual model of the scenario and to predict fu-
ture agent trajectories, even from different camera
views.

Keywords: Human Sequence Evaluation, Cogni-
tive Vision, Behavior Analysis.

1 Introduction

This work is focused on research towards the imple-
mentation of a cognitive vision system, capable of
recognizing behavior patterns performed by human
agents in an image sequence. In order to achieve
this goal, we follow theHuman Sequence Evalua-
tion (HSE) scheme presented in [5]. Numerical data
collected by motion trackers are discretized into a set
of conceptual predicates, which allow to match the
observed behavior with a set of predefined behavior
patterns, and finally constructing a conceptual expla-
nation of the image sequence [3]. Behavior analysis
requires not only information about agents motion,
but also information about their interaction with the
environment. This is achieved by means of a seman-
tically divided map of the scene, which must be pro-
vided to the system before the reasoning begins. Al-
though an a–priori designed scene model is a good
initial approach to obtain a suitable representation,
see Fig. 1, an accurate observation of agent trajec-

Figure 1: Predefined scene model for a pedestrian
crossing scenario.

tories concludes that there could be a better distri-
bution of regions that best fits with real human be-
havior, which is hard to define beforehand. Here we
present a method that uses a set of agent trajectories
to automatically divide the scene into segments and
generate the conceptual scene model. The resulting
scene representation is incorporated to a determinis-
tic framework which uses (i) Fuzzy Metric Tempo-
ral Logic (FTML) to extract conceptual knowledge
from numerical data collected from the image se-
quence [8, 9], and (ii) the Situation Graph Tree for-
malism to organize this knowledge into behavior pat-
terns [1, 5]. This allows to extract conceptual expla-
nations of complex behaviors and agent interaction,
see [2] for details.

2 Identifying Semantic Regions

The creation of a conceptual scene model is divided
into two steps: the learning step and the inference
step. The learning step processes complete agent tra-
jectories, represented in ground plane coordinates,
and generates a database of common paths. The in-
ference step classifies different regions of the sce-
nario using a semantic label. Since semantic con-



Figure 2: Trajectory acquisition from motion track-
ing

(a) (b)

Figure 3: Camera calibration. (a) Camera view (b)
Ground plane coordinate view.

cepts can not be inferred only by training, this step
requires to provide the system with an ontology de-
scribing the set of possible semantic labels in the sce-
nariobe and rules defining their relations, see [4].

2.1 Tracking Architecture

Non-supervised multiple-target tracking involves
such an inherent complexity that leads to propose
a structured framework to accomplish such a task,
see Fig. 2. This is implemented as a modular and
hierarchically-organised system. The resulting ar-
chitecture is based on a set of co-operating mod-
ules which are distributed through three levels. Each
level is defined according to the different tasks to be
performed: target detection, low-level tracking, and
high-level tracking, see [6], [11],[10] for details.

At each time step, the tracker outputs agent posi-
tion, orientation, speed, and itsspatial extent, i.e the
amount of area the agent occupies in camera coor-
dinates. This information is further translated into
ground plane coordinates [7] in order to obtain a rep-

Figure 4: Obtaining paths from agent trajectories.
More details in the text.

resentation independent from the camera view, see
Fig. 3.

2.2 Path Database Construction

Our learning procedure constructs a database of com-
mon paths for a given scenario, represented in ground
plane coordinates. It uses a wide set of existing
agent trajectories, whose information includes the
agent position, orientation and speed for each time
step. Moreover, thespatial extentof the agent is pro-
vided, i.e the amount of area the agent occupies in
the ground plane. The termpathis defined in this pa-
per as a portion of terrain which has been occupied
by an agent during its trajectory. Figure 4 shows the
conversion from trajectory to path. Considering the
orientationO and the spatial extentA of the agent
at each pointTi, a perpendicular line is drawn and
Tir andTil

are found, both at distanceA to the point
Ti. Then, the pointTir is joined with the pointTi+1r

,
the pointTil

is joined with the pointTi+1l
, and the

four pointsTir , Ti+1r
, Til

, Ti+1l
define a portion of

the resulting path. Each new trajectory is converted
to a path and compared to existing paths in the data-
base. Two paths are considered to be equivalent if
they share a percentage of their respective area. In
our experiments, we have found that a 85–90% of
shared area is a good threshold to declare the equiv-
alence of two paths. Figure 5 shows examples of
equivalent and different paths. When two paths are
found equivalent, they are merged into the database.
If no equivalences have been found, the new path is
added to the database. This database generation can
be done online, creating new paths as new trajecto-
ries have been obtained from the vision system. Once
the path database is considered stable, i.e. paths re-
main unchanged for a period of time, a threshold is
applied in order to remove those paths having a low
frequency in the training set, i.e. they are the result of



(a) (b)

Figure 5: Path comparison. Shared area between ex-
isting (blue) and the incoming path (red). (a) Equiv-
alent paths (b) Non equivalent paths

very few merges during the training period. Remain-
ing paths are considered to be thecommonpaths the
agentsusuallytake in such a scenario.

2.3 Semantic Region Generation

The path database is analyzed in order to generate
a conceptual model of the scene. The translation
from quantitative data to qualitative concepts is done
by means of an ontology [4], which declares the se-
mantic labels that might be used to describe differ-
ent parts of a scenario, and simple fuzzy logic pred-
icates, which establish the typical relation between
these labels. To describe this procedure, we use a
pedestrian crossing scenario withvehicleandhuman
agents, and available labels areroad, sideway, cross-
walk and waiting line.

The conceptual scene model is constructed by
means ofcompositeand leaf regions. Each path of
the database is considered to be a composite region.
Leaf regionsare determined by how do composite re-
gions overlap and define a semantic portion of the
scenario. Once composite and leaf regions have been
obtained, they are labeled using a two–step inference
process:

1. Each composite region is classified according to
the kind of agent that performed the trajectories
to construct the path.

road(CR):- vehicle_path(CR)

2. Leaf regions are labelled using logic rules that
define the geographical relation between com-
posite regions. For example, the following rule
shows how to label a crosswalk region:

crosswalk(LR):- belongs(LR,CR),
road(CR),
belongs(LR, CR2),
pedestrian(CR2)

(a)

(b)

Figure 6: Path database for (a) pedestrians (b) vehi-
cles. Note that working with world coordinates eases
the addition of new cameras, only demanding a pre-
vious calibration in order to use the obtained data-
base.

3 Experimental results

In this section we show results obtained in the above
mentioned procedures applied on image sequences
recorded from an outdoor scenario, at a pedestrian
crossing over a one–way road. The semantic labels
used to classify regions areroad, sideway, andcross-
walk.

3.1 Scene Model Generation

In order to obtain a consistent region generation,
we have used a wide trajectory set divided into two
classes depending on which kind of agent, vehicle
or pedestrian, has been tracked. This separation has
been provided by the tracking process at the detec-
tion level and has been achieved by means of consid-
ering the size of the detected blob. Figure 6 shows
the path databases obtained for pedestrians and vehi-
cles, respectively.
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Figure 7: Path prediction. The current agent state
(position and orientation) is confronted to each path
of the database.

3.2 Applications

The results obtained by applying this method have
two important applications in the HSE scheme. First,
the path database obtained from the training period
can be used to predict future agent trajectories, thus
helping the tracking system. Second, the conceptual
scene model inferred from the path database allows
to reason about future agents interaction with their
environment.

3.2.1 Agent Trajectory Prediction

When thresholded, the path database contains the
commonpaths the agents follow in a given scenario.
Hence, future agents being tracked in an image se-
quence are expected to follow one of the existing
paths in the database. Although the database has
been obtained by a set of existing trajectories and
thereby it does not provide absolute truth value about
future agent locations in the scenario, this informa-
tion can be useful as a feedback to the tracking sys-
tem introduced before.

Given a new agent in the scenario, the subset of
paths containing the current agent position is se-
lected, and those whose local orientation does match
with the tracked agent orientation are shown as a
probable paths for the agent in the further frame
steps, see Fig. 7. Obviously, different predictions
have a truth value according to the frequency of each
path. The more frequent a path is, i.e. the number
of trajectories merged to obtain this path, the higher
the truth value is. Finally, the list of predictions is
reported to the tracking architecture, which may use

(a)

(b)

Figure 8: Results for agent trajectory prediction.
More details in the text.

this information when it is unable to establish a posi-
tion estimation, due to e.g. occlusions with the envi-
ronment.

The training results have been applied to an im-
age sequence and a complete trajectory prediction
has been obtained. Figure 8 show possible paths that
might be followed by the human agent wearing a red
sweater. Each path has been colored choosing ran-
domly one of the primitive colors (red, green or blue)
and the color intensity at each pixel denotes the prob-
ability for the next agent position to be in that pixel.

3.2.2 Describing Agent Interaction with the En-
vironment

The conceptual scene model obtained using the pre-
vious procedure can be further used to generate con-
ceptual descriptions about incoming agent trajecto-
ries. We use the logic formalism Fuzzy Metric Tem-
poral Logic (FMTL) to convert the quantitative data
obtained from tracking, i.e. the agents positions for
each time step, to qualitative concepts, which seman-
tically describe the sequence of semantic regions the



Figure 9: SGT describing agent location in the pedestrian crossing scenario.

agent is walking through. Next, this list of predicates
is used to match a predefined set of behavior patterns,
being those defined using the Situation Graph Tree
(SGT) formalism, see [1] for details. Fig. 9 shows
the SGT used to describe the transitions between the
possible semantic regions in the pedestrian crossing
scenario. The predicateson road, on sidewayseg,
and on crosswalkare derived from the agent posi-
tion at each timet, using the scene model. As an
example, Table 1 shows a description obtained from
a tracked human trajectory, which denotes an agent
crossing the road while walking along the crosswalk.

4 Conclusions and Further Work

In this work we have presented a method to auto-
matically extract conceptual information from a sce-
nario by means of a set of existing agent trajectories,
a calibrated camera, and an ontology of the possible
semantic regions. Our training algorithm has con-
structed a path database which served to infer a se-
mantic model of the scene and to predict future agent
trajectories, even from a different calibrated camera.
The resulting scene representation has been incorpo-
rated to a deterministic framework devoted to gener-
ate conceptual descriptions from a image sequence.

Start End Situation

1 105 onsidewayseg(agent 1,sseg5).
106 225 onsidewayseg(agent 1,sseg6).
226 321 oncrosswalk(agent 1).
322 402 onsidewayseg(agent 1,sseg12).
403 524 onsidewayseg(agent 1,sseg13).

Table 1: Conceptual description of the regions
crossed by an agent. This description denotes that
the agent walked along the sideway during the frame
interval 1–226 and then crossed the road using the
crosswalk in the frame interval 226–321. Finally, the
agent walked again in the sideway. Note that ensur-
ing the agent crossed requires to distinguish between
left andright sideway. This is easily achieved using
FMTL rules like those explained in Section 2.3.

Future work will focus on improving the perfor-
mance of the categorization of the scene. The first
step is to take into account the temporal information,
introduced as the third coordinate of the path shape.
This will allow to differentiate paths depending on
their temporal evolution. Moreover, trajectories will
be processed online, and thus paths will be updated
as the new agent positions are provided by the track-



ing system allowing the system to work with incom-
plete trajectories.
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