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Abstract This work presents an architecture
based on a modular and hierarchically-organised
system to perform Multiple-Target Track-
ing (MTT). A set of co-operating modules, which
work following both bottom-up and top-down
paradigms, are distributed through three levels.
Each level is devoted to a main task: Target Detec-
tion, Low-Level Tracking (LLT), and High-Level
Tracking (HLT). A principled event management
is embedded in the system. The system is allowed
to switch among Motion-based Tracking (MBT)
and Appearance-based Tracking (ABT).

Keywords: Multiple-target tracking; Trajectory
analysis; Event management; Appearance-based
tracking.

1 Introduction

Human beings, as well as a great diversity of ani-
mal species, have developed an amazing capability
of processing complex and continuous varying visual
stimuli. The ability of motion detection must be un-
doubtedly mentioned among the most powerful fac-
ulties of Natural Visual Systems. Trying to emulate
their astonishing performances represents a real chal-
lenge.

Further, this interest is also prompted by the in-
creasing number of potential applications, such as
smart video safety and video surveillance, intelligent
gestural user-computer interfaces, orthopedic ther-
apy and athlete training, or automatic content anno-
tation.

Any proposal must deal with multiple targets
whose dynamics are unknown and highly non-linear.
Scene conditions are uncontrolled, unknown, and
evolve over time due to changing illumination and
weather, or moved objects. Targets move through

scenes with complex clutter, which may mimic their
appearances. Their trajectories are expected to in-
tersect, thereby causing partial and complete occlu-
sions. Finally, the approach should cope with heavy
appearance and shape changes caused by the de-
formable and articulate nature of the targets, and
variable illumination.

The goal is to implement and experimentally ver-
ify a novel image-based tracking architecture. It
should be able to simultaneously perform a reliable
tracking of multiple targets in unconstrained and dy-
namic open-world scenarios.

The architecture itself is considered as the main
contribution: it introduces the necessary synergies
to tackle such a inherently complex problem. Fur-
ther, the different modules have been developed and
improved —such segmentation [3], low-level track-
ing [2], high-level tracking [5], and event manage-
ment [4].

2 A Framework to Human Se-
quence Evaluation

Human-Sequence Evaluation (HSE) defines a com-
plete Cognitive Vision System which transforms im-
age values into semantic descriptions of human be-
haviour by performing multiple bottom-up and top-
down processes [1]. Its aim goes far beyond detect-
ing, tracking and identifying the actions being per-
formed: its goal is to apply cognition methodologies
to understand human behaviour in image sequences.

The implementation of HSE involves three co-
operating tasks: (i) the obtention of a dynamic de-
scription of the observed human motion; (ii) the
transformation of these quantitative parameters into
logic predicates; and (iii) the communication of the
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Figure 1: HSE framework evolved from [1]. Each
level performs some general task such as providing
a machine interface —ASL, UIL— processing and
analysing the image sequence —ISL, PDL, SDL—
and describing and reasoning over the obtained quan-
titative results —CIL, BIL.

obtained results to an human user. Multiple issues are
then demanded: (i) active video camera control, (ii)
target segmentation, (iii) robust and accurate MTT,
(iv) target classification, (v) posture and action recog-
nition, (vi) facial expression analysis, (vii) behaviour
understanding, and (viii) communication to opera-
tors.

Due to this complexity, an HSE system is here pre-
sented as a structured framework, see Fig. 1. Levels
are defined according to main functionalities. The
whole structure is highly interconnected, and each
level receives inputs from higher and lower ones,
providing the system with redundancy. The inter-
level communication can be seen in three different
ways: (i) a data stream is provided to the higher lev-
els by lower ones including all the results obtained in
the bottom-up process; (ii) higher levels feed back

the lower ones in a top-down process, so that the
whole procedure can be enhanced; and (iii) higher
levels can act on the lower ones by tuning the param-
eters, and selecting different operation modes, mod-
els or approaches depending on what is known about
the current scene, and what goals are pursued.

The rest of this work is focused on the ISL, PDL
and CIL within the HSE framework. Detection, esti-
mation and adaptation tasks are here addressed.

3 System Architecture

Non-supervised MTT involves such a complexity
that leads to propose a principled architecture. Re-
liable target segmentation is critical in every tracking
system to achieve an accurate feature extraction with-
out considering any prior knowledge about potential
targets. However, complex interacting agents who
move through cluttered environments require high-
level analysis.

Our proposal combines both bottom-up and top-
down approaches in a modular and hierarchically-
organised architecture, see Fig. 2. A set of co-
operating modules are distributed through three lev-
els. Each level is defined according to the different
tasks to be performed: Target Detection, LLT, and
HLT.

The different modules take part in both bottom-
up and top-down processes. The former provides
the system with capabilities for initialisation, error-
recovering and simultaneous modelling and tracking.
The latter allows using detailed models according to
a high-level event interpretation to perform tracking
following a MBT or ABT approach.

These concurrent processes are allowed due to the
fact that in the proposed architecture the tracking task
is split into two levels: the lower one, which is based
on short-term blob trackers, and a higher one, based
on long-term target trackers. The latter has a crucial
importance: it automatically builds and tunes mul-
tiple appearance colour models, manages the events
in which the target is involved, and selects the most
appropriate tracking approach according to these.

A complex event management is performed.
Multiple-target interaction events, and a proper
scheme for tracker instantiation and removal accord-
ing to scene events, are considered. This allows the
system to switch between both operation modes, and
tackle open-world applications.
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Figure 2: Tracking architecture. I; represents the
current frame; the observation, LLT and HLT data
structures are denoted by Z;, X; and S; respectively;
u; represents a vector of potential system control sig-
nals, while C; refers to high-level information. Ongo-
ing and future-planned modules are shown in trans-
parent dash lines.

The approach copes with clutter distracters by se-
lecting the most convenient colour-related features.
A set of appearance models is continuously con-
formed, smoothed and updated. Thus, multiple tar-
gets are represented using several models for each of
them, while they are simultaneously being tracked.
Further, colour information relative to the target
background and other close targets is used to tune
the appearance models.

This tracking architecture is a part of the complex
HSE framework, see in Fig 3. Segmentation tasks
within the Detection Level correspond to ISL; tar-
get detection and classification, as well as LLT, and
appearance representation within the HLT belong to
PDL; and event management, operation-mode selec-
tion, and other HLT tasks are assimilated to CIL. The
global position, shape and appearance of all targets
within the scene is fed forward by this system.
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Figure 3: Relations between the HSE framework and
the proposed tracking architecture. See text for de-
tails.

4 Natural Paradigm Foundation

In a natural paradigm, visual-stimuli processing is di-
vided into two categories: on the one hand, bottom-
up or pre-attentive processes carry out raw data pro-
cessing without high-level, a-priori learnt informa-
tion; on the other hand, top-down or attentive pro-
cesses perform goal-oriented tasks by making use of
context and domain knowledge. Nevertheless, these
two kind of processes are strongly linked, and they
occur simultaneously in a closed loop. Further, the
pre-attentive stage of vision performs the processing
for different visual cues, such as motion or colour.
This is done in a parallel and independent way. These
results are fused in the attentive stage.

Hence, our proposed architecture follows this nat-
ural paradigm. The pre-attentive stage given by the
LLT’s provides a coarse localisation, while the atten-
tive one performs an accurate tracking of those ob-
jects of interest.
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Figure 4: Sample tracking results on HERMES_Outdoor_Caml sequence. The dissolution of a non-detected
group is correctly detected in (b); targets are successfully tracked through groups and occlusions; left objects
are detected in (b), an correctly tracked after being picked up in (c).

LLT’s are created at a initial level of abstraction.
This step provides several advantages: (i) segmen-
tation errors due to noise, camouflage, or the inclu-
sion of shadows and reflections are reduced, thereby
limiting potential spurious structural changes; (ii) the
LLT’s target representation can be handled by HLT’s,
thereby reducing the sensory gap between images
and high-level abstractions; and (iii) the computa-
tional complexity is cut down by using a compact
representation, which also removes confusing ele-
ments.

Thus, LLT’s perform a rough tracking where de-
tailed models are avoided. No appearance informa-
tion is used, and events are not analysed. Subse-
quently, the system performs selective examinations
of the tracked objects that draw its attention. Hence,
HLT’s build accurate appearance colour-based mod-
els, and analyse the events in which they take part
in. This information is then used to act on the lower
trackers, thereby yielding a closed-loop system.

The operation modes follow also the paradigm
of first-order and second-order motion perception.
While the former is performed by detecting changes
in a particular point of the retina, the latter depends
on moving blobs defined in terms of contrast or tex-
ture.

S Experimental Results

The performance of our system has been tested us-
ing sequences taken from both public well-known
databases, and own ones. Successful tracking results

have been achieved in all processed sequences', see
Figs. 4,5, 6.

Further, a ground-truth annotation tool has been
developed, and the interaction between human and
computer is aided by using a pen tablet. Thus,
foreground regions can be annotated, visualised and
edited. Targets are labelled, and visible and occluded
regions are pointed out, as well as the head and feet.

Ground-truth events are confronted with com-
puted ones, see Table 1. Events are correctly de-
tected, albeit hardly ever occur at the exactly same
time instant. This issue is of course sensitive to loca-
tion estimation errors of a few pixels. However, tar-
getl does not keep its ID after leaving the bag, due
to major shape and appearance changes, and two new
trackers are instantiated. Hence, targetl is referred as
target 4 after bag is left. Consequently, subsequent
tracker instantiations have the labels shifted.

Further, several trajectory indicators over the
tracked targets are computed and presented in Ta-
ble 2. Every time a new blob is detected, a LLT
is instantiated. This usually happens when targets
merge into groups, they dissolve themselves, or tar-
gets undergo significant changes due to camouflage,
occlusions, etc. Thus, the number of LLT’s is much
higher than the number of targets in every analysed
sequence. When a LLT become stable, a HLT is
created and associated with it. These are hopefully
subsequently associated with the HLT that is already
tracking the target. In this case, the target identity
is not broken. When this process last more than one
frame, the identity is temporarily broken. Since a

"The reader is encouraged to see the sequences at http:
//iselab.cvc.uab.es/?g=agent_motion
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Figure 5: Sample tracking results on CVC_Zebral sequence. Targets are successfully tracked despite mutual

occlusions in (a) and (d), or occlusions with the background in (c) and (e); interaction and scene events are
correctly inferred.
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Figure 6: Sample tracking results on the PETS_DATASETI_TESTING_CAMERAI sequence. Targets are
tracked despite no segmentation is available in (a), a single blob is obtained for the group in (b), (d), or they

are heavily occluded in (e); multiple simultaneous events are correctly inferred, such as target 13 is grouped in
group 15 while splitting from 14 in (d).

HLT is created after the event is over, together with the number of HLT’s is higher than the actual num-
the fact that HLT are also instantiated to track groups, ber of targets, even if the identities are correctly kept.



Table 1: Annotated and computed events.

Event (t, ID) Computed event

observed (550, 1) observed (550, 1)
entering (629, 2) entering (629, 2)

— group dissolv. (655, 1)
split. from 3 (662, 1) split. from 3 (655, 4)
split. from 1 (662, 3) split. from 4 (655, 3)
group. with 2 (681, 1) group. with 2 (682, 4)
group. with 1 (681, 2) group. with 4 (682, 2)
grouped in 4 (689, 1) grouped in 5 (697, 4)
grouped in 4 (689, 3) grouped in 5 (697, 3)
group: 1 & 2 (689, 5) group: 4 & 2 (697, 5)

Table 2: Trajectory Measures.

CAVIAR PETS HERMES
Targets 2 8 8
LLT 8 78 86
HLT (tgs) 4 28 36
HLT (grs) 1 13 11
Broken ID 0 0 1
FP 0 0 2
FN 0 0 0

The permanent broken ID, and the false positives are
due to ghosts yielded by a non-detected motionless
car which starts motion.

6 Concluding Remarks

In this work a principled and structured system is
presented in an attempt to take a step towards solv-
ing the numerous difficulties which appear in uncon-
strained tracking applications. The system here pro-
posed implements a hierarchical but collaborative ar-
chitecture, in which each level is composed of several
modules which are devoted to specific tasks. There-
fore, albeit the different modules have been here de-
veloped or improved, we consider the architecture it-
self as the main contribution: it introduces the syner-
gies between the algorithms which permit to tackle a
problem with such an inherent complexity.

This structured framework combines in a princi-
pled way both bottom-up and top-down tracking ap-
proaches: each level feeds the higher one with its
computed results, and is itself fed back with high-
level results. In this way, by taking advantage of
both approaches, the system is allowed to benefit

from bottom-up capabilities, such as simultaneous
modelling and tracking without making used of a-
priori knowledge; but also, high-level analysis is
performed, granting accurately tuned models, and
proper operation-mode selection. In addition, each
level has an internal loop which also provides the sys-
tem with adaptive capabilities by updating the back-
ground module, making use of the knowledge about
existing tracks, or selecting the most appropriate ap-
proach according to the events in which the targets
are involved.

Future research will be focused on enhancing tar-
get representation by including structure components
—such as body-part histograms— and shape cues —
such as SIFT descriptors. Further, the system will
benefit from high-level information provided by the
cognitive levels.
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