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Abstract Particle filters are one of the most com-
monly used techniques for full-body human track-
ing. However, given the high-dimensionality of
the involved models, the number of required par-
ticles make the problem computationally very ex-
pensive. To overcome this, we present an action-
specific model of human postures which eases the
process by guiding the prediction step of the parti-
cle filter, so only feasible human postures are con-
sidered. Thus, this model-based tracking approach
samples from a first order motion model only those
postures which are accepted by our action-specific
model. In this manner, particles are propagated to
locations in the search space with most a posteriori
information avoiding particle wastage. We show
that this scheme improves the efficiency and accu-
racy of the overall tracking approach.

Keywords: Motion Analysis and Recognition, Par-
ticle Filters

1 Introduction

Full-body 3D human tracking from a monocular im-
age sequence is one of the most challenging prob-
lems from visual human motion analysis. However,
the number of difficulties related to the problem are
very large. Among others, the shape and appearance
of a human body in 2D images may change drasti-
cally over time due to changing lighting conditions,
loose fitting clothes and background clutter. Addi-
tionally, one must deal with 2D-3D projection am-
biguities, and self and non-self occlusions of body
parts. Hence, only a reduced number of DOF present
in the model are directly observable from 2D images.
Finally, the implied models are very high dimen-
sional, non-linear, and may suffer from kinematic

ambiguities and singularities. To overcome these
issues, many approaches make use of Bayesian fil-
tering techniques combined with carefully designed
search strategies of the solution space [1, 6, 7, 9, 8].
When the involved distributions are non-Gaussian,
the computation of model parameters over time can
be approximated by means of a particle filter. This
probabilistic framework can deal with multiple hy-
potheses, and brings a principled way to incorpo-
rate a priori knowledge about human motion into the
tracking, so the solution space can be explored in a
more efficient manner.

Particle filters supply a powerful tool for repre-
senting and propagating complex posterior distrib-
utions. However, the number of needed particles
grows exponentially as the number of dimensions to
be tracked does [4]. This fact is obvious in the human
motion tracking case, due to the high DOF needed to
represent human postures. For this reason, it is nec-
essary to make particle filters more efficient. For ex-
ample, the annealed particle filter aims to reduce the
number of required samples by successively pruning
less likely hypotheses [1]. Alternatively, it is possi-
ble to use efficient motion models which concentrate
particles in areas of interest. In [7], Sidenbladh et al.
learnt a dynamic model from a pre-recorded set of
human motions, and predictions were made assum-
ing a Gaussian distribution over subsequences of the
learned motions. However, the model can only pre-
dict postures which were present in the motion data-
base.

Likewise, we propose a posture-based human ac-
tion space for modelling feasible postures within an
action. This model is used to constrain human pos-
tures within the framework of a particle filter respon-



sible for tracking the human body motion. In such
a recursive model-based tracking approach, human
postures are projected forward by means of a dy-
namic model, and they are subsequently updated ac-
cording to the measurements obtained from images.
As a result, we must define both the dynamic model
and the fitness function of human postures to images.
In this work, predictions are made according to a dy-
namic model which focuses and constrains human
postures only to a set of feasible postures within the
performance of a particular action.

The remainder of this paper is organised as fol-
lows. In Section 2 we present the training of our
action-specific model of human postures using real
data acquired with a commercial Motion Capture
system. This action model is used to determine
whether a human posture belongs to a particular ac-
tion or not. Section 3 introduces the tracking frame-
work. We define a dynamic model based on a first or-
der motion model constrained to the postures which
are accepted by the action model. Moreover, we
present a fitness function based on the overlapping
area between the projection of the body state and the
body region obtained from image segmentation. In
Section 4 results of the tracking approach are pre-
sented for a performance not considered in the train-
ing set. Finally, Section 5 discusses the conclusions
and future research.

2 Learning posture constraints

The 3D human body model used in this work is com-
posed of 12 limbs with 3 DOF per joint expressed
as relative angles in a 3D polar coordinate system.
Using a commercial Motion Capture System, we ac-
quired 45 performances, in average, of 9 different
actions performed by 9 different actors. From the
observed motion, we aim to automatically learn per
each action, which human postures are feasible dur-
ing the performance of that particular action. To-
wards this end, we first express all the training pos-
tures for action A in a lower dimensional representa-
tion called aSpace [2] which is computed as follows:

Let φ be a 36-dimensional vector representing a
particular human posture, and Φ be a sequence of
human postures, hereafter performance. Then, for
a particular action A, we compute PCA over all the
training performances Φj for that action. The re-
sulting PCA-like space - called aSpace - will be de-

(a) (b)

Figure 1: Before (a) and after (b) synchronization of
the training set using key-frames.

noted as ΩA. The projections Φ̃j on the aSpace of
Φj constitute the lower dimensional version from the
original data. Subsequently, we aim to characterize
the shape of the training performances for action A
within the aSpace. Since each performance Φ̃j may
be composed of a different number of postures and
may exhibit different speeds, we use the method de-
scribed in [5] for synchronizing all the performances
from the training set. As a result, we obtain a syn-
chronized version of the training set. Fig. 1 shows
the first 4 dimensions of the aSpace from the non-
synchronized (Fig. 1.(a)) and the synchronized (Fig.
1.(b)) versions of the training set for a bending ac-
tion.

As a result, we can put in correspondence postures
between different training performances. Therefore,
we compute the synchronised mean performance ĝA,
and the standard deviation σA

k for each k-th pos-
ture, using all the synchronised performances Φ̃j . In
Fig.1.(b), we show the synchronised training perfor-
mances (thin lines) and its mean performance (thick
line) for a bending action. The dashed black line cor-
responds to three times the standard deviation com-
puted from the mean. Finally, our action model is
defined as:

ΓA = (ΩA, ĝA, σA
k ), (1)

where ΩA defines the aSpace, ĝA stands for the syn-
chronised version of the mean performance, and σA

k

is the observed standard deviation.

The learnt action model will be used in the pre-
diction step of the particle filter to probabilistically
determine whether a posture belongs to action A or
not. The probabilistic framework used to face the
tracking problem is described in the next section.
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3 Using the posture constraints

The Bayesian filter recursively estimates the state of
the tracked object at each time step given the evi-
dences (image data) up to that moment. It decom-
poses the problem in two differentiated steps, i.e.
the prediction and update steps. The prediction step
projects forward the model parameters to the next
time step by means of a dynamic model. Then the up-
date step makes use of a likelihood probability func-
tion in order to evaluate the fitness of the predictions
to the evidences available at each moment.

Formally, within the Bayesian filtering frame-
work, we formulate the computation of the posterior
distribution p(φt|It) of our model parameters over
time as follows:

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1) p(φt−1|It−1) dφt−1 ,

(2)
where φt is a 36-dimensional vector from our body
model representing a particular pose of the human
body at time t, It is the image sequence up to time t,
p(It|φt) is the likelihood of observing the image It

given the parametrization φt of our model at time t,
and finally p(φt|φt−1) is the dynamic model.

We use particle filtering techniques in order to ap-
proximate the true posterior pdf by means of a dis-
crete weighted set of samples. Hence, whilst the
likelihood function decides which particles are worth
to propagate, the dynamic model is responsible for
guiding the exploration of the space of solutions. The
posterior p(φt|It) represents all the current knowl-
edge about the model state we have extracted from
image measurements. We can estimate the state φt at
a particular time step by computing the mean of the
posterior pdf.

The number of samples -or particles- determines
the accuracy and the speed of the tracker. How-
ever, the computational cost of particle filters mainly
comes from the computation of the likelihood func-
tion from image measurements [10]. Addition-
ally, the number of needed particles grows expo-
nentially as the number of dimensions of the model
to be tracked does [4]. Therefore, given the high-
dimensionality present in human motion tracking, we
need to design efficient search strategies to lower the
number of particles needed. In other words, the dy-
namic model from the prediction step of the particle

filter should be generic enough to track any motion,
but specific enough to focus particles only to areas
with high a posteriori information.

3.1 Constrained motion model

The action-specific posture model constitutes a pri-
ori knowledge on human motion which can be in-
corporated into the Bayesian tracking framework by
means of the dynamic model p(φt|φt−1) from Eq.
(2). We aim to define a dynamic model which sam-
ples only those postures which are feasible during the
performance of a particular action A, based on a 1st
order motion model. Thus, the prediction step of the
particle filter is designed as a two-step process. First,
we project forward the particle set {φs

t−1} following
a 1st order motion model plus some Gaussian noise,
i.e.,

φ̂s
t = φs

t−1 + Vt−1 + η(σφ), (3)

where φs
t−1 denotes the particle s at time t − 1, and

φ̂s
t is the prediction for this particle. Vt−1 is the ve-

locity term computed at time at time t−1, and η(σφ)
is a Gaussian diffusion term. To determine σφ, we
used a constant velocity model to predict each per-
formance of the training set. Then, σφ was computed
as the standard deviation of the average error com-
mitted. Subsequently, we update the term Vt accord-
ing to Vt = αVt−1 + (1−α)(φt−1−φt−2), where α
is a learning coefficient, and φt−1, φt−2 correspond
to the estimated state of the human body at the two
previous time steps.

Secondly, we filter those predictions φ̂s
t which are

not accepted as feasible postures during the perfor-
mance of the action Ai by our action-specific model.
If a prediction φ̂s

t is rejected, we resample from Eq.
(3) until a feasible posture is generated for this par-
ticle. Finally, the new set of predicted particles {φs

t}
at time t is constituted by those predictions φ̂s

t which
were accepted by the action model.

As a result, we reformulate Eq. (2) including the
action model into the prediction step as

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1,ΓA) ·
p(φt−1|It−1) dφt−1. (4)

Now, by applying the Bayes’ rule and assuming
independence between φt−1 and ΓA, i.e. only current
postures are constrained by the action model, we can
further decompose Eq. (4) as
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p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1) p(φt|ΓA) ·
p(φt−1|It−1) dφt−1, (5)

where p(φt|ΓA) is a function which determines
whether a particular posture φt belongs to action A
or not defined as follows:

p(φt|ΓA) =





1 if(|φ̃t,d, ĝ
A
j,d| < 2 · σA

j,d),
∀d = 1..D

0 otherwise

, (6)

where φ̃t = (φ̃t,1, ..., φ̃t,D)T is the projection of φt

in the D-dimensional aSpace. ĝA
j is the j-th posture

from the mean performance computed for the action
A which probabilistically matched φ̃t, i.e., we draw
ĝA
j from a Gaussian conditional distribution assum-

ing that φ̃t = ĝA
j + η(∆), where ∆ is empirically de-

termined from the training set. σA
j = (σA

j,1, ..., σ
A
j,D)

stands for the learnt standard deviation of the j-th
posture for the action A. Notice that the level of fil-
tering depends on the number of dimensions D con-
sidered in the aSpace representation.

By defining this filtering method, we prune those
predictions which are more distant than two times
the learnt standard deviation from the matched pos-
ture of a particular action. As a result, our dynamic
model predicts feasible human postures avoiding par-
ticle wastage on postures which are not likely to ap-
pear during the performance of a particular action.

3.2 Image Measurements

The likelihood function p(It|φt) computes how
likely is to observe the image It given a human body
posture φt. In this paper, we implemented a like-
lihood function based on the image region filled by
the human body. Hence, the human body model has
been fleshed out with 3D volumetric primitives con-
sisting in 3D cylinders. As a result, we synthesise an
image Ĭφs

t
of the region defined by a particular para-

metrization φs
t of the human body model. For sim-

plicity and efficiency, we have simplified the 2D pro-
jections onto the image plane from the limbs’ cylin-
ders as rectangles.

(a) (b) (c)

(d) (e)

Figure 2: It (a), Ĭφt (b), Ît (c), IOV
t,φt

(d) and IU
t,φt

(e)
images from the likelihood computation. See text for
details.

On the other hand, we extract the true region filled
by the body in the current image It by applying a
background subtraction algorithm from Horprasert
et al. [3]. This pixel-wise algorithm needs to be
trained with several background-only frames before-
hand. Then, for each frame to be segmented, the al-
gorithm computes for each pixel the normalised dis-
tortion on chromacity and brightness with respect to
the learnt background model. Based on this values,
each pixel is classified as background, foreground,
shadow, or highlight. We denote the segmented body
region image as Ît. Finally, the likelihood is com-
puted based on the overlapping area between the syn-
thesised and the segmented images, i.e.,

p(It|φt) ∝
∑

x

∑
y(I

OV
t,φt

(x, y))
∑

x

∑
y(IU

t,φt
(x, y))

, (7)

where IOV
t,φt

refers to the overlapping region between
Ĭφt and Ît, IU

t,φt
is the union of both regions. The nota-

tion I(x, y) is used to make reference to the pixel of I
at column x, row y. As a result, we assign maximum
weight to those postures whose synthesised image
coincide totally with the segmented one, and lower
values otherwise. Fig. 2 shows the images It (a), Ĭφt

(b), Ît (c), IOV
t,φt

(d) and IU
t,φt

(e) computed at a partic-
ular time t of the algorithm.

4 Experimental results

To test this work we used a training set of 40 perfor-
mances of a bending action carried out by 9 different
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Figure 3: MSE obtained with both approaches.

(a) (b)

Figure 4: Predictions of the aSpace and 1st order mo-
tion approaches.

actors. However, the approach is easily extensible to
other sets of actions. Hence, we have tested the track-
ing approach using a bending sequence not present in
the training set, consisting in 86 frames from which
we have 3D ground truth data available.

The number of D dimensions considered when
building the aSpace representation determines the
degree of adaptation of the action model to the train-
ing data. Hence, too low values for D result in a
poor filtering effect, since too many particles with
low a posteriori information will be accepted by the
action model. On the other hand, too high values
lead to overfitting to the training set, since the action
model only accepts particles that are almost equal to
postures used to learn the action model. To test this
work, we used D = 13 dimensions which proved
to achieve a good compromise between generality of
the model and non-feasible postures rejection.

To test the effectiveness of the approach, we com-
pared the results obtained using our action model
against a first order motion model without any filter-
ing method. We repeated the same experiment vary-
ing N from 100 to 10000 particles, with D = 13 and
the learning coefficient of the velocity set to α = 0.5.

Figure 5: Estimated frames 1, 11, 21, 31, 41, 51, 61,
71 and 81.

In Fig.3 we show the obtained error for the aSpace
filtering method (solid line) and the simple first or-
der motion model (dashed line). The error was com-
puted as the average Mean Square Error (MSE) of
the relative angles between the final estimated pos-
tures -computed as the expectation of the posterior
pdf- and the ground truth data from the sequence. We
may observe that the action model overperforms the
1st order motion model in all the experiments. Fur-
thermore, the error for the aSpace filtering method
quickly stabilises around 7 at N = 3000 particles.
One may observe that we obtain similar error mea-
sures using 2000 particles with the aSpace approach
than 10000 particles without any filtering. Addition-
ally, with very few particles -below 1000-, our ap-
proach quickly lowers the error and tends to stabilise,
while the 1st order motion model approach gives
very high error rates. Hence, our approach never
totally looses the tracked object since it never pro-
duces non meaningful postures. This is depicted in
Fig.4 where a frame of the tracked sequence is plot-
ted with a randomly selected set of predicted postures
projected over it for (a) the aSpace approach, and (b)
the 1st order motion model approach. One may ob-
serve that the latter leads to unlikely and non feasible
human postures for this action, while the aSpace fil-
tering approach predicts natural and coherent human
postures.

Finally, selected frames of the final estimated se-
quence are shown in Fig.5 for N = 5000 particles.
We may observe, that the left arm is confused with
the right arm in the first frames. This is an expected
behaviour, since the right arm is totally occluding the
left one, so the likelihood function gives us no clue
for evaluating the proper arm position. However, in
the second half of the sequence, the left arm tends to
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its correct position since it becomes slightly visible
in those frames, so the likelihood function is higher
for postures covering the left arm. The ability to han-
dle multiple hypothesis of the particle filtering frame-
work is proved to be very suitable, since it can re-
cover from a self-occluding situation where the like-
lihood function doesn’t provide the right maxima.

5 Conclusion

We have presented an efficient tracking approach
based on particle filtering for full-body human track-
ing, which makes use of an action model to guide
the prediction step of the particle filter. Despite the
use of a simple likelihood function, the space of
possible solutions is explored in an efficient manner
since only feasible human postures are generated by
our dynamic model. We compared the overall error
of our tracking approach against a first order mo-
tion model without filtering in the aSpace. Results
point out that the action model approach drastically
reduces the number of particles needed to track a
36 DOF human body model, thus reducing the high
computational cost inherent to typical particle filter
approaches. Moreover, given the PCA-like definition
of the action space, the degree of dependence of the
predictions to the training data set can be tuned by
considering more or less dimensions when building
the space.

Future work relies on extending this approach to
a more general set of actions, so we can track any
action and transitions between actions. Furthermore,
the likelihood function needs to be improved in
order to include other image-based cues like color
or edges, so it provides more reliable information
for evaluating the predicted poses. Moreover, we
need to define a method for handling self-occlusions
based on predicting which body parts are visible at
each time step. Finally, it is possible to improve
the action model by considering other formulations
which may improve the pruning effect providing
more accuracy and efficiency to the overall tracking
process.
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